
Journal of Information Processing Vol.23 No.1 2–8 (Jan. 2015)

[DOI: 10.2197/ipsjjip.23.2]

Regular Paper

Heuristic Search Exploiting Non-additive and Unit
Properties for RTS-game Unit Micromanagement

Tung Duc Nguyen1,†1 Kien Quang Nguyen2,†2 Ruck Thawonmas1,a)

Received: February 21, 2014, Accepted: September 12, 2014

Abstract: This paper presents an approach that integrates fuzzy integral and fast heuristic search for improving the
quality of unit micromanagement in the popular RTS game StarCraft. Unit micromanagement, i.e., detailed control
of units in combat, is one of the most challenging problems posed by RTS games and is often tackled with search
algorithms such as Minimax or Alpha-Beta. Due to vast state and action spaces, the game tree is often very large, and
search algorithms must rely on evaluation methods from a certain limited depth rather than exploring deeper into the
tree. We therefore attempt to apply fuzzy integral and aim for an evaluation method with high accuracy in the search.
To achieve this aim, we propose a new function that allows fuzzy integral to cope with not only non-additive properties
but also unit properties in RTS games. Experimental results are reported at the end of this paper, showing that our
approach outperforms an existing approach in terms of win rates in this domain.

Keywords: heuristic search, fuzzy integral, unit properties, RTS games, unit micromanagement

1. Introduction

Real-time strategy (RTS) is a sub-genre of strategy video
games which normally involves resource gathering, base con-
structing, strategy planning, and combat scenarios. In typical
RTS games, such as Age of Empires, WarCraft or StarCraft, each
player is supposed to produce many combat units and build up a
powerful army with the ultimate goal of destroying all units and
buildings of the enemy. With fast-paced gameplay and the exis-
tence of simultaneous moves, RTS games have reached a level of
complexity unseen in other traditional games like Chess or Go.
This also helped developing AI systems for RTS games gain in-
creasing attention among the AI research community in recent
years [1], [2], [3], [4], [5], [6], [7], [8], [9].

In StarCraft, one of the most popular RTS games, unit mi-
cromanagement not only is the key to winning a battle but also
decides the result of the whole game. With high quality micro-
management, one side can completely destroy the other side that
commands even more or stronger units. Although there have been
several AI studies on this domain, bots whose unit behaviors are
predefined via scripts (sequences of rule-based actions) still pre-
dominate in AI competitions. However, due to their non-adaptive
nature, they are highly exploitable and can be countered quite
easily by using appropriate countermeasures. Therefore, a recent
trend in unit micromanagement is that of using search-based tech-
niques to dynamically control units while still considering col-

1 College of Information Science & Engineering, Ritsumeikan University,
Kusatsu, Shiga 525–8577, Japan

2 Graduate School of Information Science & Engineering, Ritsumeikan
University, Kusatsu, Shiga 525–8577, Japan

†1 Presently with Framgia Vietnam, CO., LTD, Vietnam
†2 Presently with Microsoft Development Ltd., Japan
a) ruck@ci.ritsumei.ac.jp

laboration among them. Some state-of-the-art methods such as
Alpha-Beta [10], UCT [11], and Monte Carlo planning [12] have
been applied and achieved dominance over script-based tech-
niques.

It is known that the performance of a search-based technique
relies mainly on its heuristic evaluation function as such a func-
tion is required in almost all search algorithms. Even Monte-
Carlo tree search, which performs simulation of possible future
game-scenarios to evaluate the current state, due to time restraints
in RTS games, still needs a weak evaluation function when such
simulation cannot reach its end. In StarCraft, heuristic functions
tend to be very generic (such as LTD and LTD2 used in Ref. [10]),
and therefore cannot fully capture the game state, especially when
multiple types of units can interact and boost each other.

Recently, Stanescu et al. [13] built a system to predict a com-
bat’s outcome, in terms of the winning probability of each side.
Their prediction results could also be used as an evaluation func-
tion. However, that system considers each unit type separately
and later combines the result of each type. It, therefore, does
not take into account the interaction among different unit types in
RTS games, which have non-additive properties as discussed in
Section 2.1.

In order to improve the performance of search algorithms, we
propose an evaluation method using fuzzy integral that can ac-
curately evaluate a game state even when there are several unit
types involved. We then apply this evaluation method to heuris-
tic search for unit micromanagement. The contributions of this
paper are as follows:
• an accurate evaluation method that can cope with non-

additive properties and unit properties in RTS games and
• a successful application of this evaluation method to heuris-

tic search for RTS-game unit micromanagement.

c© 2015 Information Processing Society of Japan 2

Journal of Information Processing Vol.23 No.1 2–8 (Jan. 2015)

2. Background

2.1 Non-additive Properties in RTS Games
There may be dozens of unit types that can interact in differ-

ent ways in an RTS game. This leads to enormous numbers of
possible unit combinations. A combination of two unit types
may result in greater or less impacts than the sum of their in-
dividual impacts. Suppose μ(X) is the measure of effectiveness
provided by unit combination X. In RTS games, it is common
that μ(X) is non-additive, i.e., μ(X1 ∪ X2) ≥ μ(X1) + μ(X2) or
μ(X1 ∪ X2) ≤ μ(X1) + μ(X2). For example, a combination of
Siege Tank and Vulture (Fig. 1) is a standard tactic in StarCraft.
Siege Tank (normally used in siege mode) is a powerful unit with
massive damage and very long attack range. However, it has a
minimum attack range of 2, making it quite weak against melee
(short-range) units. On the other hand, Vulture is an extremely
mobile unit which moves quickly enough to be able to “hit and
run” against most melee units without risk. Thus, Siege Tank and
Vulture are widely used to protect each other. In this case, one can
generally say that μ({Tank,Vulture}) > μ({Tank}) + μ({Vulture}).

2.2 Fuzzy Measure and Fuzzy Integral
Measure is an important concept in mathematical analysis. A

measure on a set is a function that assigns a number to each suit-
able subset of that set. Originally, the measure of a ‘large’ subset,
which is composed of a finite number of ‘smaller’ disjoint sub-
sets, is equal to the sum of the measures of the ‘smaller’ subsets.
This is the main characteristic of a classical measure and known
as the additive property. Due to the existence of non-additive
properties in many practical applications, classical measure does
not always perform well. To circumvent this issue, fuzzy mea-
sure was introduced that replaces the additive property with the
weaker property of monotonicity [14].

Definition 1: A fuzzy measure on a measurable space (X, F) is
a real-valued set function μ : F → R satisfying:

(1) μ (∅) = 0,
(2) μ (A) ≤ μ (B) whenever A ∈ F, B ∈ F, A ⊆ B.
Definition 2: A non-monotonic fuzzy measure on (X, F) is a

Fig. 1 A combination of Siege Tank and Vulture (red circles) against a com-
bination of Dragoon and Zealot (green circles).

real-valued set function μ : F → R satisfying only μ (∅) = 0.
Non-monotonic fuzzy measure matches well with non-additive

properties in RTS games and can be learned by machine learning
methods without expert knowledge.

Choquet integral [15], named after the French mathematician
Gustave Choquet, is an expansion of Lebesgue integral and a
classical fuzzy integral. It has been successfully applied in many
areas such as statistical mechanics and potential theory. The def-
inition of Choquet integral with respect to a fuzzy measure is as
follows.

Definition 3: Let μ be a fuzzy measure on X. The discrete
Choquet integral of a function f : X → R with respect to μ is
defined by∫

f (x) ◦ μ (X) =
n∑

i=1

((f (xi) − f (xi−1)) × μ (Ai)) (1)

where Ai = {x | f (x) ≥ f (xi)}, 0 = f (x0) ≤ f (x1) ≤
f (x2) ≤ · · · ≤ f (xn).

3. Related Work

3.1 Fuzzy Integral for Unit Selection Problem in RTS Game
So far, there has been only a limited number of AI research

incorporating fuzzy measure and fuzzy integral into RTS game
agents. Li et al. applied different fuzzy integrals to solve the unit
selection problem in RTS games [16]. The key to winning in most
RTS games is to build up a strong army with appropriate unit
types which can gain massive destroy power against the enemy
army. Different unit combinations give different effectiveness.
Therefore, to estimate the power (strength) of each unit combi-
nation becomes one of the most essential tasks in the game. Due
to interactions occurring among different unit types, the effective-
ness of a unit combination cannot be simply calculated by using
weighted average. As a result, they tried to apply fuzzy integral to
that calculation. In their research, they proposed three new fuzzy
integrals and compared them with the classical Choquet integral.
Because we base our work on part of this previous work, the de-
tails of those fuzzy integrals are given below. Note that the work
by Li et al. focuses on strategy planning (i.e., their main purpose
is to find the most powerful unit combination to produce) while
our work focuses on unit micromanagement (i.e., our main pur-
pose is to control combat units in order to win the battle and gain
strategic advantages over the enemy). In the following formulas,
X is a unit combination, x is a unit type, f (x) is defined as the
proportion of x, and the fuzzy integral returns the effectiveness of
that combination.
3.1.1 Max-based Fuzzy Integral

Max-based fuzzy integral is developed with the policy of win-
ner takes all. It considers only the most powerful unit combina-
tion which involves the unit type of interest as follows:∫

f (x) ◦ μ (X) =
n∑

i=1

(f (xi) ×max (μ (S i))) (2)

where n is the number of unit types, and S i is a combination that
includes xi.
3.1.2 Mean-based Fuzzy Integral

Mean-based fuzzy integral is calculated considering all the in-

c© 2015 Information Processing Society of Japan 3

Journal of Information Processing Vol.23 No.1 2–8 (Jan. 2015)

teractions that are related to each unit type. All the fuzzy mea-
sures which involve the unit type of interest will be selected, and
the average value is computed as follows:∫

f (x) ◦ μ (X) =
n∑

i=1

⎛⎜⎜⎜⎜⎜⎜⎝ f (xi) × 1
mi

mi∑
j=1

μ
(
S i j

)⎞⎟⎟⎟⎟⎟⎟⎠ (3)

where n is the number of unit types, S i j is a combination that
includes xi, and mi is the number of such combinations.
3.1.3 Order-based Fuzzy Integral

Order-based fuzzy integral takes into account the unit produc-
tion in RTS games. Data analysis shows that advanced or strong
units often dominate the proportion in the army and thus should
be considered as having more cooperation with other units. For
each unit type, the interaction will be calculated with the one hav-
ing less proportion than it, and the largest f (x) is combined with
the fuzzy measure of all unit types as follows:∫

f (x) ◦ μ (X) =
n∑

i=1

(f (xi) × μ ({x | f (x) ≤ f (xi)})) (4)

where n is the number of unit types, and f (x1) ≥ f (x2) ≥ · · · ≥
f (xn) > 0.
3.1.4 Technical Issue in the Previous Work

All of the three fuzzy integrals above have been proven to give
better results than the classical Choquet integral when applied to
RTS games. However, because their research focuses on finding
the most powerful unit combination to produce, their function
f (x) is defined without considering the properties of individual
units (damage, cooldown, current hit points). In detail, their f (x)
is defined as

f (x) = n/N, (5)

where N is the maximum number of units that a player can have
in the game and n represents the number of type-x units.

For example, suppose that there are three different unit combi-
nations with the same proportions between the member unit types
as follows:
(1) 5 Zealots and 5 Dragoons, each unit having 50 hit points,
(2) 5 Zealots and 5 Dragoons, each unit having 100 hit points,
(3) 10 Zealots and 10 Dragoons, each unit having 100 hit points.
It can easily be seen that the fuzzy integrals mentioned above re-
turn the same value for all of these three combinations. Thus, this
prompted us to come up with another definition of f (x) when we
apply those fuzzy integrals to our problem—unit micromanage-
ment. A comparison between the original function Eq. (5) and
our proposed function is shown in Section 5.1.

3.2 Portfolio Greedy Search
Combat scenarios in RTS games can be classified as two-player

zero-sum simultaneous move games, in which each player is sup-
posed to find a sequence of moves that lead to a victory over the
opponent. Search algorithms can be used to solve this problem,
but they have to deal with various difficulties such as vast state
and action spaces, huge branching factor, harsh constraints on
computational resources. Churchill, D. and Buro, M. proposed
a novel greedy search called Portfolio Greedy Search (PGS) that
uses a hill-climbing technique to reduce the branching factor in

RTS games’ combats [11]. Instead of searching all possible ac-
tions for each unit, PGS only considers actions created by a set
of scripts called a portfolio. In addition, although it determines a
node’s value based on playout and a heuristic evaluation function,
only a single playout is carried out, unlike UCT which requires
multiple playouts. In order to evaluate a game state, PGS first
performs a deterministic script-based playout, and after the play-
out reaches its terminal condition, it calls the following evaluation
formula.

LTD2(s) =
∑
u∈U1

√
hp(u) × dpf (u) −

∑
u∈U2

√
hp(u) × dp f (u) (6)

Here s, hp, dpf , U1, and U2 denote a game state, hit points, dam-
age per frame, set of units controlled by player 1 (the current
player) and player 2, respectively. Intuitively, by assuming both
players use the same policy and performing a playout, one can
estimate which player has an advantage at a given state. It has
been shown that Portfolio Greedy Search can outperform both
state-of-the-art search methods—Alpha-Beta and UCT—in large
StarCraft combat scenarios where the branching factor is large.
As a result, in our work, we adopt this search method (see Algo-
rithm 1 excerpted from Ref. [11] for the details) as our targeted
heuristic search.

4. Methodology

Our main idea is to improve the quality of evaluation functions
used in existing search algorithms by applying fuzzy measure and
fuzzy integral to estimate the value of a game state. In our prob-
lem, we define that value as the difference between the power of
the player’s army and the enemy’s army, where the power of one’s
army is estimated by calculating the following fuzzy integral:

Army power =
∫

f (x) ◦ μ (X) (7)

Here μ (X) is the fuzzy measure of the corresponding unit combi-
nation and can be considered as its contribution to the total power.
In addition, f (x) is a unit statistic function defined by

f (x) =
1
N

n∑
i=1

hp (ui)
max hp (ui)

(8)

where x is a unit type, N is the maximum number of units that a
player can have in the game, n is the number of type-x units, ui

is a type x unit, and max hp denotes the maximum number of hit
points. Unlike the original function Eq. (5), our function includes
the temporary unit status (in this case, the current hit points of
each unit); it could thus solve the technical issue discussed in
Section 3.1.4. Note that when all units have the possible maxi-
mum hit points, the value of f (x) is equal to the proportion of
type-x units and our function becomes the original one.

4.1 Data Collection and Analysis
We selected StarCraft: Brood War (SC: BW) as our research

platform. It is a military science fiction, real-time strategy game
released by Blizzard Entertainment in 1998. As of February
2009, SC: BW has sold more than 11 million copies and be-
came one of the most popular video games of all time. For AI
researchers, SC: BW is also an ideal test bed for AI algorithms,
thanks to the BWAPI (Brood War API [17])’s comprehensive in-

c© 2015 Information Processing Society of Japan 4

Journal of Information Processing Vol.23 No.1 2–8 (Jan. 2015)

Algorithm 1 Portfolio Greedy Search [11]
1: Portfolio P � Script Portfolio

2: Integer I � Improvement Iterations

3: Integer R � Self/Enemy Improvement Responses

4: Script D � Default Script

5:

6: procedure PortfolioGreedySearch(State s, Player p)

7: Script enemy[s.numUnits(opponent(p))].fill(D)

8: Script self[]← GetSeedPlayer(s, p, enemy)

9: enemy← GetSeedPlayer(s, opponent(p), self)

10: self← Improve(s, p, self, enemy)

11: for r = 1 to R do

12: enemy← Improve(s, opponent(p), enemy, self)

13: self← Improve(s, p, self, enemy)

14: return generateMove(self)

15:

16: procedure GetSeedPlayer(State s, Player p, Script e[])

17: Script self[s.numUnits(p)]

18: bestValue← −∞
19: Script bestScript← ∅
20: for Script c in P do

21: self.fill(c)

22: value← Playout(s, p, self, e)

23: if value > bestValue then

24: bestValue← value

25: bestScript← c

26: self.fill(bestScript)

27: return self

28:

29: procedure Improve(State s, Player p, Script self[], Script e[])

30: for i = 1 to I do

31: for u = 1 to self.length do

32: if timeElapsed > timeLimit then

33: return

34: bestValue← −∞
35: Script bestScript← ∅
36: for Script c in P do

37: self[u]← c

38: value← Playout(s, p, self, e)

39: if value > bestValue then

40: bestValue← value

41: bestScript← c

42: self[u]← bestScript

43: return self

terface for accessing the game engine.
300 replays of professional one-versus-one SC: BW games

were collected from the Internet *1. We focused only on Protoss
(one of the three character races in StarCraft) vs. Protoss match-
up. This is the only match-up that provides multiple most used
unit types and is available in a simulator called SparCraft used
in our experiments described in Section 5. A program written
in C++ was used to analyze the replays, from which the data
of 940 battles were obtained. Before and after each battle, the
unit statistics and the score of both players were recorded. Those
scores were given by the game system after the winner destroyed
his enemy units and then used to learn the fuzzy measure in our
research.

*1 http://www.bwreplays.com/
http://www.teamliquid.net/replay/

Fig. 2 Best fitnesses at each generation obtained by different fuzzy inte-
grals. The best value is 0.86.

4.2 Learning Fuzzy Measure by Genetic Algorithm
There is a relation among the score a player obtains in each

battle, the strength of his army and the result of the battle. Our
data analysis shows that the higher the score, the more power-
ful the army and that the higher chance of winning. Thus, we can
consider the estimated power of the army as the expected value of
the score. This leads to the problem of finding the fuzzy measure
that “best” fits the collected data. In this paper, we used a genetic
algorithm approach to learn the aforementioned fuzzy measure,
as done in Ref. [16].

Each chromosome was composed of 2n−1 fuzzy measures cor-
responding to all possible unit combinations, i.e., μ(x1), μ(x2),. . . ,
μ(x1, x2), . . . , μ(x1, x2, . . . , xn) where x1, x2, . . . , xn represent n

kinds of unit types. In our work, there were 8 unit types included
in the collected replays (n = 8), and real-valued encoding was
used, which resulted in the length of a chromosome being 255.
The fitness calculation of a chromosome is described as follows:
(1) Extract the fuzzy measure from that chromosome.
(2) Extract real scores and values of the unit statistic function

from the replays, and normalize those real scores between 0
and 1.

(3) Calculate the estimated scores by using fuzzy integral in
Eq. (7).

(4) Calculate the root mean square error over the training data:

RMS E =

√√√
1
N

N∑
i=1

(scoreest − scorereal)
2, (9)

where N represents the number of cases in the training data;
because we collected data from 940 battles, with each battle
contributing two training cases (two sides), N = 1,880.

(5) Calculate the fitness:

Fitness =
1

1 + RMSE
(10)

In our GA, a mixture of roulette wheel selection and elitist se-
lection was used to construct a new population. Population size,
number of generations, crossover rate, and mutation rate were set
to 1,000, 500, 0.75, 0.05, respectively (the last two settings were
made following the recipe in Ref. [18]). The result of the learn-
ing process is illustrated in Fig. 2. Shown are the best fitnesses
obtained at each generation by using different fuzzy integrals:
max-based fuzzy integral, mean-based fuzzy integral, and order-
based fuzzy integral. As can be seen, order-based fuzzy integral

c© 2015 Information Processing Society of Japan 5

Journal of Information Processing Vol.23 No.1 2–8 (Jan. 2015)

showed the best performance among those three methods, which
also confirms the findings obtained by Li et al. [16]. Thus, only
order-based fuzzy integral and the corresponding fuzzy measure
are used in our evaluation below.

5. Evaluation

Two main series of experiments were carried out to compare
the performance of the proposed fuzzy-based evaluation method
and another existing evaluation method—LTD2 described in Sec-
tion 3.2. SparCraft, an open source simulation package that can
simulate StarCraft combats with a high level of accuracy [19],
was used in the experiments. Researchers can easily implement
new algorithms and integrate them into this simulator and use it
as a test bed for their research. The aforementioned Portfolio
Greedy Search, which uses playouts together with LTD2, hence-
forth called the baseline method, to evaluate a game state, is also
available in this simulator and used in our experiments. It has
been shown in Ref. [10] that using the baseline method gives
much better performance than using only LTD2. We thus re-
placed LTD2 by the proposed fuzzy-based evaluation method and
compared it with the baseline method (Fig. 3).

5.1 Direct Comparison of Evaluation Methods
In this experiment, we directly compared the proposed method

with the baseline method. The settings used for Portfolio Greedy
Search (Algorithm 1) were as follows:
• Time limit per search episode: 10 ms
• Improvement iteration I: 1
• Response iterations R: 0
• Portfolio P: (NOKAV *2, Kiting *3)
• Initial enemy script: NOKAV
• Script used for playouts: NOKAV.
The first setting was made considering the fact that in prac-

tice the game runs at 24 frames per second, i.e., 42 ms for each
frame, and there are several modules for handling different tasks

Fig. 3 The general mechanism of tree search using playout and a heuristic
evaluation function for evaluating the nodes.

*2 Following this script, a unit will attack the enemy unit with the highest
attack-value defined by damage per f rame / hit points within its attack
range. However, in order not to do any over-kill, it will not attack enemy
units which have already been targeted and can be destroyed by other
friendly units this round. It will instead choose the next highest priority
target, or wait if such a target does not exist.

*3 Following this script, a unit will attack the closest enemy unit within its
attack range. When it is reloading and unable to attack, it will move
away from that enemy unit.

in a StarCraft AI bot. Thus, 10 ms given to an essential module
like unit micromanagement each frame is considered as a reason-
able time limit. Meanwhile, the other settings were based on the
recipe in Ref. [11].

The experiment consisted of a series of combat scenarios, in
which two players control similar armies. Each scenario initially
had 24 Protoss units of 4 types available in the simulator Spar-
Craft, with the number of units in each type being randomly cho-
sen in range [1, 23] subject to having in total 24 units each side.
All 15 available combinations (Table 1), each corresponding to
a combat scenario, were tested. This setting enabled us to exam-
ine the effectiveness of the proposed fuzzy-based method in han-
dling situations that have collaboration among different kinds of
units. At the beginning of each battle, two forces are placed sep-
arately in a random fashion but symmetrically around the vertical
line running through center of the map, as done in the previous
work [11].

100 games were played for each combat scenario, giving 1,500
total games. The performance of the proposed method against
the baseline method is presented in Fig. 4. As can be seen, there
were no significant differences between the two methods in sim-
ple combat scenarios. This can be explained by the fact that
there was only 1 unit type in scenarios 1–4, and therefore both
LTD2 formula and fuzzy integral could readily evaluate game
states as accurately as their counterparts. However, when combat
scenarios became more complicated since more unit types were

Table 1 Combat scenarios used in the experiments.

Scenario No. of unit types Unit types

1

1

Zealot
2 Dragoon
3 Dark Templar
4 Archon

5

2

Zealot, Dragoon
6 Zealot, Dark Templar
7 Zealot, Archon
8 Dragoon, Dark Templar
9 Dragoon, Archon
10 Dark Templar, Archon

11

3

Zealot, Dragoon, Dark Templar
12 Zealot, Dragoon, Archon
13 Zealot, Dark Templar, Archon
14 Dragoon, Dark Templar, Archon

15 4 Zealot, Dragoon, Dark Templar, Archon

Fig. 4 Win rates of the proposed method against the baseline method when
applied in Portfolio Greedy Search. Average win rate: 61%.

c© 2015 Information Processing Society of Japan 6

Journal of Information Processing Vol.23 No.1 2–8 (Jan. 2015)

Fig. 5 Win rates of the evaluation method using the original function against
the baseline method when applied in Portfolio Greedy Search. Aver-
age win rate: 2%.

involved and interacted with each other, the proposed method out-
performed the baseline method. In this case, the proposed method
achieved a win rate above 50%, i.e., it helped improve the perfor-
mance of Portfolio Greedy Search.

Furthermore, to prove that our proposed f (x) function is more
effective than the original function Eq. (5), we show in Fig. 5 the
performance of the latter function against the baseline method
with the same scenarios above. This figure indicates that the win
rates of the original function against the baseline method are only
around 2% on average. This can be explained as since the proper-
ties of a unit (in this case, the current hit points) are not considered
in the original function, its playout evaluation is not accurate; for
example, as long as both sides have a same unit combination,
evaluation using the original function will always return “tie” re-
gardless of each side units’ hit points.

5.2 Search vs. Script
We also performed an indirect comparison of the two meth-

ods by evaluating them against NOKAV (No-OverKill-Attack-
Value). NOKAV is a common script used in many StarCraft bots
and has been shown to be the most effective script so far; its out-
line is given in a footnote in Section 5.1.

This experiment had the same combat scenario setup as used
in the previous one, i.e., two players were made to control simi-
lar armies to assure fairness. With the same setup in Section 5.1,
each scenario was played 100 times, giving 400, 600, 400, and
100 games in total for the scenarios with one, two, three, and
four types of units involved, respectively. As shown in Fig. 6,
the search-based AIs (both the baseline method and the pro-
posed method) achieved dominance over the scripted AI, winning
over 90% of battles. This confirms the fact that script-based ap-
proaches often lack foresight and do not deal well with highly dy-
namic and real-time aspects in RTS games as compared to search
techniques. It can also be seen that Portfolio Greedy Search us-
ing the proposed evaluation method obtained better performances
than the original one, which is similar to the result in Section 5.1.

6. Conclusion and Future Work

In this paper, we presented a new approach for constructing
an evaluation function that is essential in most search algorithms
when applied to computer games. We learned the fuzzy measure
from real game data and used it to calculate the order-based fuzzy

Fig. 6 Win rates of Portfolio Greedy Search against the script NOKAV.

integral as an estimation for the value of a game state. We carried
out experiments with various settings to evaluate the proposed
method and the results were encouraging. We were successful
in improving the existing heuristic search and achieved a better
quality of unit micromanagement in SparCraft, a simulator the
popular RTS game StarCraft.

Our next step is to apply the heuristic search that uses the
proposed evaluation method to a future version of our StarCraft
bot—ICEbot *4 and test it on the real game. We plan to collect
more replay data and perform clustering of them in order to ob-
tain better fuzzy measures that can handle more scenarios seen in
the game. In addition, it is also our intention to combine the pro-
posed method in this paper with one of our previous works that
utilizes potential flow for positioning combat units [21], and aim
for a more human-like StarCraft agent.

References

[1] Chung, M., Buro, M. and Schaeffer, J.: Monte Carlo planning in
RTS games, 2005 IEEE Symposium on Computational Intelligence
and Games, Essex, UK, pp.1–8 (2005).

[2] Churchill, D. and Buro, M.: Incorporating Search Algorithms into
RTS Game Agents, Proc. 8th AAAI Conference on Artificial In-
telligence and Interactive Digital Entertainment, California, pp.1–7
(2012).

[3] Li, Y.J.: Integrating genetic algorithm and fuzzy integral for evaluating
game units combination in RTS game, M.Phil., Dept. of Computing,
The Hong Kong Polytechnic University (2012).

[4] Ontanon, S.: The combinatorial multi-armed bandit problem and
its application to real-time strategy games, Proc. 9th AAAI Confer-
ence on Artificial Intelligence and Interactive Digital Entertainment,
Massachusetts, pp.58–64 (2013).

[5] Sailer, F., Buro, M. and Lanctot, M.: Adversarial planning through
strategy simulation, 2007 IEEE Symposium on Computational Intelli-
gence and Games, Honolulu, HI, pp.80–87 (2007).

[6] Sharma, M., Holmes, M., Santamaria, J., Irani, A., Isbell, C. and
Ram, A.: Transfer learning in real-time strategy games using hybrid
CBR/RL, International Joint Conference on Artificial Intelligence,
Hyderabad, India, pp.1041–1046 (2007).

[7] Synnaeve, G. and Bessiere, P.: A Bayesian model for opening predic-
tion in RTS games with application to StarCraft, 2011 IEEE Confer-
ence on Computational Intelligence and Games, Seoul, pp.281–288
(2011).

[8] Weber, B.G., Mateas, M. and Jhala, A.: Building human-level AI
for real-time strategy games, Proc. AAAI Fall Symposium, Virginia,
pp.329–336 (2011).

[9] Wender, S. and Watson, I.: Applying reinforcement learning to small
scale combat in the real-time strategy game StarCraft: Broodwar, 2012
IEEE Conference on Computational Intelligence and Games (CIG),
Granada, pp.402–408 (2012).

*4 ICEbot has participated in Student StarCraft AI Tournament
(SSCAI [20]) since 2012. It was ranked 1st and 2nd in Mixed
division of SSCAI 2012 and SSCAI 2013 respectively.

c© 2015 Information Processing Society of Japan 7

Journal of Information Processing Vol.23 No.1 2–8 (Jan. 2015)

[10] Churchill, D., Saffidine, A. and Buro, M.: Fast heuristic search for
RTS game combat scenarios, Proc. 8th AAAI Conference on Arti-
ficial Intelligence and Interactive Digital Entertainment, California,
pp.112–117 (2012).

[11] Churchill, D. and Buro, M.: Portfolio greedy search and simulation
for large-scale combat in StarCraft, 2013 IEEE Conference on Com-
putational Intelligence in Games, Niagara Falls, ON, pp.1–8 (2013).

[12] Wang, Z., Nguyen, K.Q., Thawonmas, R. and Rinaldo, F.: Monte-
Carlo planning for unit control in StarCraft, 2012 IEEE 1st Global
Conference on Consumer Electronics, Tokyo, pp.263–264 (2012).

[13] Stanescu, M., Hernandez, S.P., Erickson, G., Greiner R. and Buro M.:
Predicting Army Combat Outcomes in StarCraft, 9th Artificial Intel-
ligence and Interactive Digital Entertainment, Massachusetts, pp.86–
92 (2013).

[14] Wang, Z. and Klir, G.J.: Fuzzy Measure Theory, Springer (1992).
[15] Lodwick, W.A. and Kacprzyk, J.: Fuzzy Optimization: Recent Ad-

vances and Applications, Springer (2010).
[16] Li, Y.J., Ng, P.H.F., Wang, H.B., Shiu, S.C.K. and Li,Y.: Apply dif-

ferent fuzzy integrals in unit selection problem of real time strategy
game, 2011 IEEE International Conference on Fuzzy Systems, Taipei,
pp.170–177 (2011).

[17] Heinermann, A.: BWAPI—An API for interacting with StarCraft:
BroodWar (online), available from 〈http://code.google.com/p/bwapi/〉
(accessed 2014-02-03).

[18] Mitchell, M.: An Introduction to Genetic Algorithms, MIT Press
(1998).

[19] Churchill, D.: SparCraft—StarCraft Combat Simulation (online),
available from 〈http://code.google.com/p/sparcraft/〉 (accessed 2014-
02-03).

[20] [SSCAI] Student StarCraft AI Tournament (online), available from
〈http://sscaitournament.com/〉 (accessed 2014-02-03).

[21] Nguyen, T.D., Nguyen, K.Q. and Thawonmas, R.: Potential flow for
unit positioning during combat in StarCraft, 2013 IEEE 2nd Global
Conference on Consumer Electronics, Tokyo, pp.10–11 (2013).

Tung Duc Nguyen received his B.Eng.
degree in human and computer intel-
ligence from Ritsumeikan University,
Shiga, in Japan in March 2014. His re-
search interests include machine learning,
game theory and artificial intelligence ap-
plied to computer games. During his
undergraduate study, Mr. Nguyen was a

member of the Intelligent Computer Entertainment Laboratory
and a recipient of the Higher Education Development Support
Project on ICT (HEDSPI) Scholarship as well as that of the IEEE
GCCE 2013 Outstanding Student Paper Award. Since April 2014,
he has joined Framgia Vietnam CO., LTD in Vietnam.

Kien Quang Nguyen received his
B.Eng. degree in human and computer
intelligence from Ritsumeikan Univer-
sity, Shiga, in Japan in March 2012.
After a six-month working experience
in Vietnam, he studied for and received
his M.Eng. degree in human information
science in September 2014 at the same

university. As a member of the Intelligent Computer Entertain-
ment Laboratory, Mr. Nguyen is the principal developer of the
winning ghost team at the 2011 IEEE Congress on Evolutionary
Computation (CEC) Ms. Pac-Man Versus Ghosts Competition
and one of the main developers of the winning StarCraft bot in
2012 Student StarCraft AI Tournament - Mixed Division. He was
a recipient of the Human Higher Education Development Support
Project on ICT (HEDSPI) Scholarship during his undergraduate
study and a recipient of the Japanese Government scholarship
during 2012–2014. His research interests include machine learn-
ing, game theory, neural networks, and evolutionary algorithms.
He is now with Microsoft Development Ltd. in Japan.

Ruck Thawonmas received his B.Eng.
degree in electrical engineering from
Chulalongkorn University, Bangkok, in
Thailand in 1987, M.Eng. degree in in-
formation science from Ibaraki Univer-
sity, Ibaraki, in Japan in 1990, and D.Eng.
degree in information engineering from
Tohoku University, Miyagi, in Japan in

1994. Before joining Ritsumeikan University, Shiga, in Japan
in April 2002, he had worked at various institutions: Hitachi,
Ltd.; RIKEN; University of Aizu; and Kochi University of Tech-
nology. Since April 2004, he has been a Full Professor at
the Department of Human and Computer Intelligence where he
leads the Intelligent Computer Entertainment Laboratory. His
research interests include game AI, automatic comic generation,
and player-behavior analysis. Dr. Thawonmas was a recipient of
the Japanese Government Scholarship during 1987–1993. His
laboratory has won a number of game AI competitions: the
winning controllers at the 2009 IEEE Congress on Evolutionary
Computation (CEC) and the 2009 IEEE Conference on Compu-
tational Intelligence and Games (CIG) Ms. Pac-Man Competi-
tions (screen-capture version), the winning ghost team at the 2011
IEEE CEC Ms. Pac-Man Versus Ghosts Competition, the winning
human bot and judge bot at the 2011 BotPrize (at the 2011 IEEE
CIG), and the winning Ms. Pac-Man controller at the latest Ms.
Pac-Man Versus Ghosts Competition.

c© 2015 Information Processing Society of Japan 8

