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Abstract: Packrat parsing is a linear-time implementation method of recursive descent parsers. The trick is a memo-
ization mechanism, where all parsing results are memorized to avoid redundant parsing in cases of backtracking. An
arising problem is extremely huge heap consumption in memoization, resulting in the fact that the cost of memoization
is likely to outweigh its benefits. In many cases, developers need to make a difficult choice to abandon packrat parsing
despite the possible exponential time parsing. Elastic packrat parsing is developed in order to avoid such a difficult
choice. The heap consumption is upper-bounded since memorized results are stored on a sliding window buffer. In ad-
dition, the buffer capacity is adjusted by tracing each of nonterminal backtracking activities at runtime. Elastic packrat
parsing is implemented in a part of our Nez parser. We demonstrate that the elastic packrat parsing achieves stable and
robust performance against a variety of inputs with different backtracking activities.
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1. Introduction

Packrat parsing is a popular technique for implementing re-
cursive descent parsers with backtracking. The main idea behind
packrat parsing is an incremental memoization that works by stor-
ing all intermediate results parsed at each distinct position in the
input stream. Since each nonterminal is called no more than once,
packrat parsing avoids the potential of exponential costs.

Packrat parsers are widely used with Parsing Expression
Grammars or PEG-extended grammars. A PEG [4] is a syntactic
foundation that can recognize a wide range of formats, not only
programming source code but also data formats such as XML and
computer logs. As practitioner experiences have increased over
such variety, many developers have pointed out that packrat pars-
ing might not fit in its memoization costs, or may be even less ef-
ficient than a plain recursive descent parser. One particular reason
lies in its huge linear memory consumption, requiring up to 100—
400 bytes of memory for every byte of input [3], [5]. In practice,
memory consumption of this scale can cause several other perfor-
mance degradations, such as disk slashing and repeated garbage
collector invocations. That is why not a few developers, despite
admitting the desirable property of linear time guarantee, have
abandoned the benefits of memoization [11].

In our development experience of Nez grammars, or a PEG-
extended grammars [6], we observed no or very little backtrack
activity in parsing data formats, such as XML and JSON. In
such cases, a plain recursive descent parser is extremely supe-
rior, while packrat parsing shows poor performance, especially in
cases of a large-scale input sizes. In cases of parsing C source
code, despite a fact that we can observe significantly increased
backtracking activity, a plain parser still shows very competi-
tive performance compared to a packrat parser. The advantage
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of packrat parsing is still questionable if we take its huge mem-
ory consumption into consideration.

As many researchers have claimed [1], [9], [11], exponential
behavior does not seem to happen in practice. However, our
experience suggested that the claim is not true in some closed
visible examples. For example, parsing a common source of
JavaScript, such as JQuery library, involves a considerable high-
level backtracking. Without any memoization supports, the pars-
ing of JQuery libraries takes a literally exponential time.

The problem is that packrat parsing does not handle well a wide
range of input variations, especially very large-scale files and low
backtracking activity cases. The purpose of this paper is to make
the performance of packrat parsing robust against such input va-
riety in size and underlying backtracking activities.

Our idea behind packrat parsing with elastic sliding window
(or simply elastic packrat parsing) is based on the observation of
the worstlongest backtrack backtrack length. In principle, mem-
oized results are just needed within the range of the longest back-
track from the head position (i.e., the maximum matched length
at each backtracking time). If a small memorization table (called
window) slides and covers the longest backtrack, the space is suf-
ficient enough to keep all results to avoid redundant calls. In
practice, however, it is hard to know the longest backtrack be-
fore parsing. Alternatively, we select an approximated window
size from the empirical investigation and, if necessary, expand it
during the parsing process.

We take a constant-space approach to the expansion of the win-
dow size. First, we trace the utilization of memoization at each
nonterminal call in order to reduce unused memoization space.
Then, we prepare a flexible table structure that could allow re-
duced nonterminal spaces to be available as if the window size
were expanded. Due to this structure, we can achieve the grace-
ful coverage of window size limits while keeping constant heap
consumption.
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Our elastic packrat parsing is implemented in a part of the
Nez dynamic parsing library [6]. Although Nez provides some
extended operators to transform parsed results into an Abstract
Syntax Tree representation, we evaluate the parser performance
without any construction of ASTs. The proposed algorithms and
experimental results can be applied to enhance any existing pack-
rat parsing.

Our experimental study demonstrates very promising results.
In lower backtracking activity cases, although memory pressure
causes considerable slowdown in conventional packrat parsing,
our elastic packrat parser shows a competitive performance com-
pared with a plain recursive descent parser. In higher backtrack-
ing activity cases, although a plain parser hardly ends within an
acceptable time, our elastic packrat parser achieves even better
performance than conventional packrat parsers. These results in-
dicate that the elastic packrat parsing can be the best single choice
when implementing PEG-based parsers.

The remainder of the paper is structured as follows. Section 2
states several performance considerations with our preliminary
empirical analysis. Section 3 presents the idea of packrat pars-
ing with elastic sliding window by extending a tabular recursive
descent parsing. Section 4 demonstrates the experimental results.
Section 5 reviews related work. Section 6 concludes the paper.

2. Preliminary Investigation

Many researchers and developers have made packrat parsers
with a variety of programming languages. As practitioners’ ex-
periences increase, they increasingly question whether the cost of
memorization is justified by its benefits. Supplementally, there
are many claims in the literature [1], [9], [11], such that plain re-
cursive descent parsers are sufficiently competitive, or even faster
than packrat parsers.

More recently, the acceptance of packrat parsing has become
more contraversal to many practitioners. We start by investigating
several factors that impact the performance of packrat parsing.

2.1 Backtrack Activity

Backtrack activity is a major performance factor of top-down
recursive descent parsing [2], including packrat parsing. To be-
gin, we investigate backtracking activity in cases of parsing vari-
ous formats of input sources. Figure 1 sketches the backtracking
activity in a recursive descent parser; if the matching succeeds,
the parser consumes the character stream and then moves its pars-
ing position forward, while it backtracks, or moves the position
backward to alternatives, if the matching fails. The head posi-

current head
backtracking consuming
—1 I

Lorem ipsum dolor sit amet, consectetur adipisicing est...

backtrack length

A ——————

maximum consumed length

Fig. 1 Backtrack activity.
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tion is defined as the maximum consumed length, and the back-
tracking length is measured from the head position at each back-
tracking time, since the occurrences of backtracking are usually
nested.

To assess the backtracking activity, we define the following two
indicators:

e Backtracking ratio — the ratio of the total length of back-
tracking to the input size. In other words, we say the length-
weighted mean of backtracking per one byte. For example,
the ratio 0.0 means no backtracking, and 1.0 means that the
parser backtracks as long as it consumes the characters in
total.

e [Longest backtrack — the maximum length of backtracking
from the head position, observed through the whole parsing
time.

Table 1 shows the summary of our preliminary investigation
on backtracking activity. Input sources that we have investigated
include C, Java, JavaScript, CSV, XML, JSON, and log formats.
The results suggest that backtracking activity depends totally on
the format type of the inputs. In parsing CSV files, for instance,
no backtracking occurs. On the other hand, a higher backtrack-
ing ratio is observed when parsing C and JavaScript sources. In
general, we can say that data syntax implies relatively lower ac-
tivity compared to programming language syntax. This reason is
that data formats likely include distinct key characters, such as <
and [, by which its succeeding sub-elements can be recognized
without backtracking.

Based on our parsing experience, we introduce three levels to
describe backtracking activity. We say that the backtracking ac-
tivity is low if the backtracking ratio is less than 1.0. The moder-
ate activity is between 1.0 and 10.0, and high is more than 10.0.
As we will demonstrate in Section 4.3, high backtracking activity
corresponds to so-called exponential behaviors, in which packrat
parsing is required.

The longest backtrack suggests how long we need to keep
memoized results from the head position at each backtrack time.
Interestingly, most of the data sets showed very short length
compared to their input sizes. As observed in the XMark data
sets [10], ranging from 10 MB up to 1 GB, the longest backtrack
is constant and not linearly scaled to the size of the inputs; a
large scale of data is simply comprised of repeated portion of
smaller sub-elements, as defined in Xml* and Statement*. In
such a structure, backtracking rarely occurs across each of the

Table 1 Backtrack activity observed in various inputs.

Source Format  Rules Size Ratio Worst
NSSCache C 250 260K  1.2461 227
PEG C 250 64K  1.4333 6,482
JQuery JS 326 240K 13.623 247,067
AssureNote JS 326 12M  39.554 70,289
DBLP XML 24 1.4G 0.159 1
XMark XML 24 10M 0.085 1
XMark XML 24 100M 0.085 1
XMark XML 24 1G 0.089 1
Earthquake Atom 24 6.0M 0.398 3
Earthquake JSON 29 6.0M  0.0013 1
Earthquake CSV 3 1.3M 0 0
JPZIP CSV 3 8.8M 0 0
Syslog Log 15 1.3M  0.0412 4
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Fig. 2 Histogram of backtracking length: JQuery (formatted in JavaScript),
NSSCache (in C), and XMark (in XML).

Table 2 Memoization statistics.

Source Format  Rules Memo Used  Ratio
NSSCache C 250 93,169 9,094  0.097
PEG C 250 932,784 156,989  0.168
JQuery JS 326 1,148,621 193,099  0.168
AssureNote JS 326 424,594 63,854  0.150
DBLP XML 24 6,599,423 34,062  0.051
XMark XML 24 2,895,196 166,631  0.057
Earthquake Atom 24 1,718,737 89,444  0.052
Earthquake JSON 29 4,161,232 34,080  0.008
Earthquake CSV 3 0 0 0
JPZIP CSV 3 0 0 0
Syslog Log 15 94,727 8,819  0.093

sub-elements.

Table 1 also suggests that backtracking activity is localized
in most cases. However, a significant exception is observed
in JavaScript cases, such as JQuery and AssureNote. The rea-
son for this is that in order to recognize the semicolon auto-
insertion syntax of JavaScript we need to attempt two different
semicolon patterns for expressions, resulting in inevitable back-
tracking. In addition, JavaScript’s functional programming style
allows blocks and statements to be included in expressions; as a
result, Expression can dominate most portions of the whole in-
put. Therefore, JQuery’s worst activity length almost reaches the
whole size of its input.

To investigate the details of backtracking activity, we focus
on three typical cases of backtracking activity, including JQuery
(high), NSSCache (moderate) and XMark (low). Figure 2 illus-
trates the distribution of backtracking lengths. In all cases, 99.9%
of backtracking occurs within a range of 16-byte length from the
head position, even although the longest backtrack is longer than
the 16-byte length.

2.2 Effectiveness of Memoization

The claim “No Memoization Necessary” comes from the fact
that most memoized results are surprisingly unused. Table 2 il-
lustrates this trend by showing the utilization of memoization,
where the utilization is simply measured by the ratio of used re-
sults to stored ones. Note that these numbers include multiple
counts of the same used results, which can also be regarded as
the caching hit ratio. In even high backtracking activity cases,
such as in JQuery, at most 17% of memoized results are used in
total. This suggests that most of the table lookup attempts will
fail, resulting in overhead cost that yields no benefit.

© 2015 Information Processing Society of Japan

Table 3 Top 10 of 326 nonterminals on memoization utilization.

Nonterminal U/S  Occurrence Mean Max
Spacing 3.25 0.7239065 0.63 330
Expression 1.69 0.1646081 116.63 247,066
DecimalLiteral 0.90 0.0535756 0 0
Catch 0.85 0.0001051 103.58 386
Word 0.64 0.0257852 0 0
ElisionList 0.30 0.0013098 0 0
MemExpression 0.27 0.0778731 0 0
Identifier 0.09 0.0754150 0 0
Digit 0.03 0.0542872 0.11 1
UCHAR 0.02 0.0877174 0 1

Choosing nonterminals to be memoized is a common strategy
in packrat parsing, since the utilization trend varies from non-
terminal to nonterminal. To detail this, we focus on the parsing
statistics of JQuery and then extract the top 10 utilized nontermi-
nals from 326 nonterminals. Table 3 summarizes the top 10 non-
terminals. The column labeled “U/S” stands for the ratio of used
by the stored results. The column labeled “occurrence” indicates
how many nonterminals are called per each byte of input. A lower
occurrence rate means that memorized results are rarely called in
total. The two columns labeled “Mean” and “Max” indicate how
long the memoized results avoid the repeated parsing process.
While the length 0 may seem strange, we count the length as 0
when the nonterminal calls fail. In summary, a very small num-
ber of nonterminals, such as Spacing and Expression, domi-
nate the effective part of the memoization process in the case of
JQuery.

A question arises about how we choose such effective nonter-
minals in advance. In Refs. [1], [5], there is a little confusion on
the choice of nonterminals. For example, the Spacing rule is
regarded as transient, which means no need for memoization in
Ref. [5]. However, as Table 3 indicates, the Spacing rule shows
the second best utilization. The heuristic analysis based on the
properties of a defined grammar is not so easy, and prone to er-
ror [1].

Furthermore, another difficulty comes with the efficient imple-
mentation of the memoization table. In existing packrat parsers,
the memoization table is typically implemented with a two-
dimensional array, an array of linked lists, or a hash table, which
delivers different performance. Indeed, the effectiveness of the
Spacing nonterminal relies on whether the table lookup is faster
than the repeated attempt of lexical matching. The effective pack-
rat parser requires considerable sophistication in implementing its
memoization table.

3. Elastic Packrat Parsing

The purpose of this paper is to extend a conventional packrat
parsing in a way that achieves stable and robust performance in
various parsing contexts, including very large inputs and various
levels of backtracking activity. This section describes its exten-
sion with three stepped approaches: sliding window, tracing non-
terminals, and elastic table structure.

3.1 Packrat Parsing and Memoization Tables

To begin, we revisit how packrat parsing works. As Ford
pointed out [3], packrat parsing is a lazy evaluation version of tab-
ular top-down parsing. The tabular parsing uses a memoization
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Expr = Sum

Sum = Product S* ((’+’ / ’-") S* Product)*
Product = Value S* (C’*” / ’/’) S* Value)*
Value = DIGIT+ S* / '(’ S* Expr S* ’)’ S*
DIGIT = [0-9]

S = [ \t]+

Fig.3 Example of a grammar definition in PEGs.

current 1

Position |0 1 2 3 4 5 6 7

Expr 7 4 4

Sum 7 4 4

Product |7 X 4 7

Value 7 2 4 7

DIGIT X 2 4 7

S X X X X X X

Input ( 1 + 2 ) o 3 / 4.. (end)

table size = the input size

Fig. 4 Memoization table in packrat parsing.

table to avoid redundant nonterminal calls by storing all results of
each nonterminal call at each distinct position in the input charac-
ter. The parsed results are stored in the table, which has one row
for each nonterminal and one column for each position. Packrat
parsing fills out this table incrementally. Figure 3 shows a sample
grammar definition written in PEGs, and Fig. 4 sketches a mem-
oization table for calling the nonterminal Sum at the 6th position
of the input. The numbers filling cells stand for consuming input
characters.

Many packrat parsers have adopted a memory-effective struc-
ture, such as an array of linked lists or a hash table of linked lists,
instead of a two-dimensional array. Despites this struggle, the
space complexity for memoization is O(L X N), where L is the
length of the input and N is the number of nonterminals defined
in a given grammar. Decreasing the size of the memoization table
is a central issue for improving parser performance.

3.2 Sliding Window

The idea of the sliding window comes from the field of net-
working protocols and querying streaming data, for which we
need to be able to handle an unlimited length of incoming data,
such as data streams. A fixed size buffer is allocated as a win-
dow, and we slide the window buffer in such a way that it can
include newly arrived data while old data outside of the window
is expelled from the buffer.

We use the sliding window on a memoization table to reduce
memory consumption. The window slides when the head posi-
tion of the parser moves forward. Figure S sketches a 5-length
sliding window for a memoization table. The rightmost position
of the sliding window is always equal to the head position of the
parser.

An arising problem is how to set an appropriate window size.
Apparently, the longest backtrack, described in Section 2.1, is the
best candidate for that purpose, because all necessary memoized
results can be kept to avoid redundant calls. Unfortunately, it is
impossible to estimate the longest backtrack from a defined set of
grammar rules. This is because the length that will be consumed
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Sum 7 4 4 i

Product |7 X 4 H¥

Value 7 2 4 7

DIGIT X 2 4 7

S X X X X

Input ( 1 + 2 ) & 3 / 4 (end)

window size

Fig.5 Sliding window for memoization table.

in each nonterminal call depends largely on the contents of the
input. In theory, the longest backtrack can be the input size itself,
which means the same as the conventional non-sliding memoiza-
tion table.

As we investigated in Section 2.1, most occurrences of back-
tracking are intensely localized and appear within a very closed
range from the head position. For example, the 16-byte window
size allows to avoid redundant calls when 99.9% of backtracking
occurs. We consider that the shortened window size may yield
measurable benefits.

The clear advantage is that the sliding window can guarantee
the upper limit of heap consumption for memoization. The guar-
antee of linear time parsing is also preserved if the preset win-
dow size is smaller than the longest backtrack. An obvious prob-
lem is that rapid degradations are expected when the backtracking
length exceeds the preset size of sliding window.

3.3 Tracing and Dynamic Deactivation

Choosing nonterminals to be memoized is another common ap-
proach to improving packrat parsing. However, as we described
in Section 2.2, the static analysis is not so easy and is prone to
errors. That is why we attempt the dynamic analysis by tracing
memoization behaviors.

Our idea is straightforward. The parser starts off with acti-
vated memoization for all nonterminal calls. We trace some per-
formance factors of each nonterminal call, and then deactivate
its memoization if the traced factors fall below the expected per-
formance. In this paper, we simply trace the utilization ratio of
nonterminal memoization, described in Section 2.3, although we
have attempted several cost-based metrics. Since an earlier judg-
ment of the deactivation yields bigger benefits, we check whether
the first 32 calls include at least one used result. If not, the mem-
oization is deactivated.

The clear strength of our dynamic analysis is that it is simple
and easier to implement than any static analysis methods. It also
helps avoid heuristic errors. On the other hand, the drawback is
that it requires some dynamic data structure to store a variable
number of nonterminals. This may lead to a slower table lookup
compared to the static removal of ineffective nonterminals.

3.4 Elastic Packrat Parsing

Elastic packrat parsing is a hybrid version of the sliding win-
dow and the dynamic analysis approach, which are orthogonal to
each other. While the combination seems trivial, we have made
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‘ deactivating

‘ deactivating

Fig. 6 Concept of elastic sliding window.

several refinements for a synergetic purpose. Figure 6 illustrates
the concept of elastic sliding window, where the window size is
expanded as the nonterminals are deactivated.

To implement the elastic window, we use a flat-structured array
in Wx N length, where W is the window size and N is the number
of nonterminals. In principle, the structure of the memoization ta-
ble maps from a (position, nonterminal) pair to the result of the
associated nonterminal call at the associated position. Accord-
ingly, the flattened array potentially has the same space capacity
with the W x N table.

Next, we use a hashing-based index to locate where the memo-
ized result can be found on the array. The unique key is generated
from the position and the nonterminal. We reduce the key to an
array index by modulo (W X N). The advantage is that the deacti-
vated space could be used by other nonterminals as if the window
size were expanded. That is, in an extreme case where only one
activated rule remains, the window size is virtually equal to the
W x N length. The drawback is that a collision occurs in two
entries having the same index and different keys. This decreases
the rigid storage guarantee for the given window size. However,
as we demonstrate in the experiments, the length-based guaran-
tee is not so crucial in practice. Rather, we consider that graceful
behaviors against the window size are desirable.

Finally, we abandon the explicit sliding expiration to simplify
its implementation. The older entry is simply replaced when a
newer entry comes. Since new entries are mostly created near the
head position, replaced entries are recorded at relatively previous
position. This approximately emulates the window sliding opera-
tion. The exact emulation costs too much and, furthermore, there
is no need to ensure the expiration of older entries in contexts of
packrat parsing.

Figure 7 shows the memoize/lookup algorithm of elastic pack-
rat parsing. This demonstrates that a very simple modification of
conventional packrat parsing enables our elastic algorithm. Note
that the array size in practice is around to a nearby prime number
for better hashing results.

4. Evaluation

4.1 Parser Implementation

Nez parser is a parsing runtime based on the Nez grammar lan-
guage [6], an extended version of PEGs with trans-parsing capa-
bility that allows the flexible construction of ASTs. All grammars
used in this experiment are written in Nez. However, we turned
off the AST construction because we focus more on the parsing
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//Array: 1-dimensional array for memoized results
//Shift: derived from the binary logarithm of N
def Memoize(Position, NonTerminal, Result):

key = (Position << Shift | NonTerminal )

index = key % (W * N)

array[index].key = key

array[index].result = Result

def Lookup (Position, NonTerminal, Result):
key = (Position << Shift | NonTerminal )
index = key % (W * N)
return (array[index].key == key)
? array[index] : null

Fig.7 Memoization algorithm of elastic packrat parsing.

performance. The reader may read as if the grammars were de-
scribed in plain PEGs.

The Nez parser is designed to work as a dynamic parser — say,
an interpreter-based parser of PEGs. In general, dynamic pars-
ing is usually slower than a statically generated and optimized
parser with C and Java. This is, in part, why we do not perform a
comparative study with other PEG-based parser generators in this
paper.

The Nez parser is written in Java. The experimental elas-
tic packrat parser and other comparative parsers are imple-
mented as the variations of memoization tables. The work-
ing source repository of Nez is on the github site, available at
http://nez-peg.github.io/.

4.2 Experimental Setups

We perform a comparative study with the following set of al-
gorithms. The algorithms are labeled, such as plain and packrat,
for readability.

e plain (none) — a plain recursive descent parser without any

memoization support.

e packrat (hash, linked-list) — a normal packrat parser that
build on a hash table. (Note that we use a hash table because
large data sets cause the allocation problem.)

e sliding (array, linked-list) — a packrat parser memoizing on
a sliding window in a fixed size. The window size is set to
64 bytes.

e dynamic (hash, linked-list) — a packrat parser tracing mem-
oization behaviors to deactivated nonterminals, as described
in Section 3.3.

e combo (array, linked-list) — a packrat parser that combines
the sliding window with the dynamic deactivation.

e clastic (array) — an elastic packrat parser implemented as the
algorithm described in Section 3.4.

Backtracking is a major factor that has a substantial impact
on the performance of packrat parsing [1], [3]. In addition, the
longest backtrack is perhaps a potential factor do argue the win-
dow size. To investigate these factors, we have chosen data sets
from Table 1 to include a variety of backtracking activities. The
data sets investigated are also labeled as follows:

e Earthquake (formatted in CSV) — the open data obtained

from data.gov. In this data sets, no backtracking occurs when
parsing.
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Fig. 8 Latency in various backtracking activities.

e XMark (formatted in XML) — synthetic and scalable XML
files that are provided by XMark benchmark program [10].
The backtrack activity is at the low level (ratio 0.085).

e NSSCache (formatted in C) — a preprocessed C source code
that comes from Google’s NSS Cache project. The back-
tracking activity is at the moderate level (ratio 1.24).

e JQuery (formatted in JavaScript) — a popular JavaScript li-
brary. To analyze some larger backtracking length, we use
an uncompressed version. The backtracking activity is at the
high level (ratio 13.62) and the longest backtrack exceeds
the practical size of the sliding window.

The test environment is an Apple MacBook Air, with 2 GHz
Intel Core i5, 4 MB of L3 Cache, 8 GB of DDR3 RAM, running
Mac OS X 10.8.5 and Oracle Java Development Kit version 1.8.
The initial heap size (-Xms) is set to 2 GB to decrease garbage
collector’s side effects. All measurements represent the best re-
sult of five or more iterations over the same input.

4.3 Performance

Figure 8 shows the effects of a memoization table by com-
paring the latency measured in milliseconds with six different
parsers for each data set. With low backtracking ratios, such as in
Earthquake and XMark, the plain parser is clearly the fastest be-
cause almost all memoization efforts are unnecessary. However,
the combo and elastic parsers show a very competitive perfor-
mance to the plain parser. Note that most of the nonterminals are
deactivated at the earlier position of parsing. Unfortunately, the
dynamic parser does not achieve significant speedups, perhaps
due to the different implantation of its table lookups.

We will turn to the test result NSSCache in the moderate back-
tracking activity case. The plain parser is still faster than the pack-
rat parser, while the other four enhanced packrat parsers achieve
some improved performance. This suggests that the memoization
support is effective, but not mandatory at this level of backtrack-
ing activity. We confirm that this is the same situation in which
developers have faced the traditional algorithm choice. In the
high backtracking activity case shown in JQuery, the plain parser
is several orders of magnitude slower than the packrat parser.
More than 10-minute latency would be unacceptable in any prac-
tical parsers.
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Fig. 9 Latency in scalable XMark files (10-80M).
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Fig. 10 Heap consumption in scalable XMark files (10-80M).

The elastic packrat parser demonstrates the best performance
at all backtracking levels. Compared to the combo parser, our
refinements on the elastic table create measurable improvements.

Next, we will focus on memory pressure when parsing the
megabyte order of inputs. Figure 9 shows the latency in various
sizes of XMark-generated files, scaling from 10MB up to 80 MB.
Figure 10 shows the corresponding heap consumption. In the-
ory, the normal packrat parser requires linear heap consumption
in relation to the input size and Fig. 10 confirms such heap con-
sumption in reality. More importantly, we found the super-linear
time behavior in over 30 MB files. This indicates that the mem-
ory pressure invalidates the packrat parsing’s linear time perfor-
mance. The dynamic parser decreases the effects of memory pres-
sure, but does not solve the problem. The three window-based
packrat parsers successfully keep the constant heap consumption
and show no significant performance degradation.

We have concluded that the elastic packrat parsing main-
tains robust and competitive performance in various parsing con-
texts, including high backtracking activity and large-scale input
sources.

4.4 Memoization Effects with Various Window Sizes

As we have predicated in Section 3, a small window size can
cause invalidated memorization. We investigate the impact of the
window size by scaling it up to a 1,024-byte length, where the
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effect seems stable. The data set that we investigated is JQuery,
simply because its longest backtrack (247,067 bytes) exceeds the
window size to store all memoized results. Figure 11 shows the
latency in each experimental window size and Fig. 12 illustrates
the corresponding heap consumption. In this examination, we
compared three window-based parsers (labeled sliding, combo,
and elastic) with packrat parsers. Note that the packrat parser
causes no invalidated memoization in either theory or practice.

As we expected, both sliding and combo parsers show signifi-
cant performance degradations, especially in under 16-byte win-
dow sizes. Note that we omit data points for 1 and 2 that take
too much time to parse. The performance, however, is rapidly
improved at the data point of window sizes over 32-bytes, which
is even smaller than the longest backtrack.

The elastic parser, on the other hand, can achieve a stable per-
formance even at 1-byte window size. In fact, the larger win-
dow sizes result in minor performance degradation (from the best,
91 ms in 8-byte length, to the worst, 113 ms in 1,024-byte length),
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probably due to the L2 cache efficiency. Soaring memory con-
sumption have found only in elastic packrat parsing. This is be-
cause that sliding and combo use a linked list to store nonterminal
results, allowing a sparse table. In either case, the total heap con-
sumption can remain at considerably lower levels compared to
the packrat parser.

This experiment result leads to the conclusion that the longest
backtrack is not required to set the window size. Perhaps, a win-
dow size that can cover 99% of backtracks is long enough in prac-
tice. As long as we have performed the empirical study (as shown
in Section 2), backtracking activities are usually localized, which
makes it easier to choose a practical window size. Indeed, our
Nez parser is set to a 64-byte length by default.

4.5 On Complexity

The strength of packrat parsing is its linear parsing time guar-
antee, based on the ground that all intermediate results are mem-
oized to avoid redundant calls. In turn, the elastic packrat parsing
may expire memorized results that are stored outside the slid-
ing window. However, it still ensures a linear time parsing if the
longest backtrack is smaller than the window size. Since back-
tracking out of the window rarely happens, we say that elastic
packrat parsing is a mostly linear time parsing algorithm.

The performance impact of “out of the window”” backtracking
is still unfamiliar. Intuitively, backtracking that reaches nearly
the input size would double the total parsing length, and prob-
ably leads to a significantly increased parsing time compared to
conventional packrat parsing. However, no such an increase is
observed in the JQuery case, although several times of “out of
the window” backtracking are included. We have no idea for the
exact reason, but the impact of “out of the window” backtracking
is immeasurable in practice.

Expanding an window size at runtime can be a reasonable at-
tempt for better time guarantee. However, we abandoned this
attempt, because of the possible loss of the constant space guar-
antee. As the JQuery cases indicates, the longest backtrack may
reach the input size itself. The constant space guarantee is another
desirable property in parsing. In conclusion, the elastic packrat
parsing archives the best balance between time and space com-
plexity.

5. Related Work

Packrat parsing is a popular technique for implementing re-
cursive descent parsers with backtracking. Two seminal pack-
rat parsers, Ford’s Pappy [3] and Grimm’s Rats! [5], have been
successfully developed and shown the technique’s linear parsing
time. Unfortunately, they did not perform comparative studies
with a plain recursive descent parser, perhaps due to the fact that
the superiority of packrat parsing seemed trivial in their experi-
ments. However, as practical experiences have increased in vari-
ous parsing contexts, it is no longer so trivial.

In Refs. [1], [9], [11], many researchers doubted the effective-
ness of memoization in practice. Warth et al., the developers of
OMeta[11], pointed out that the overhead of memoization may
outweigh its benefits for the common case. In addition, Becket
et al., based on their definite clause grammars (DCGs) analy-
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sis, concluded that packrat parsing might actually be significantly
less efficient than plain recursive descent parsers with backtrack-
ing [1]. Medeiros et al. proposed an alternative method to packrat
parsing [7]. Their claims are based on the assumption that ex-
ponential behavior does not happen in practice. However, as we
have shown before, the parsing of a JQuery library rebuts this
assumption.

The huge heap consumption in memoization has been recog-
nized as the crucial problem with packrat parsing. Mizushima
et al. extended some PEG notion with a cut operator in order to
directly limit the backtracking region, and presented mostly con-
stant heap consumption with their parser generator, Yapp [8]. In-
terestingly, as the paper presented the automatic insertion of cut
operations, packrat parsing can perhaps adopt their idea as a part
of its optimization process. However, they have not argued for
the applicability of cut operations in high backtracking activity
cases.

Redziejowski, the author of Mouse, focused on the number
of nonterminal calls instead of the input size, and concluded
that memoizing the two most recent results succeeded in signif-
icantly reducing heap consumption [9]. This approach is simi-
lar in terms of expiring older memoized results, while Mouse’s
approach abandons the linear time parsing property. In our ap-
proach, we demonstrate that elastic packrat parsing can handle
potential exponential cases.

Choosing nonterminals to be memoized was first attempted as
a part of Rats! optimization [5]. The grammar developers can
specify the transient attribute to apply their heuristics to con-
trol whether nonterminals will be memoized or not. Becket et
al. pointed out the heuristic analysis of grammatical properties
resulted in very limited improvement [1]. Our dynamic analysis
approach, on the contrary, avoids such difficulties and yields clear
effects for improved performance.

6. Conclusion

Packrat parsing is a popular technique for implementing re-
cursive descent parsers with backtracking. However, many prac-
titioners have found the total performance of packrat parsing is
questionable in comparison to plain recursive descent parsers.
Some of them have even abandoned memoization and its poten-
tial benefit: the linear time parsing guarantee. This hard choice is
mainly due to the unstable performance of packrat parsing in re-
lation to the size of the input source and its underlying backtrack
activity.

This paper showed that the simple modification of packrat
parsing makes it more stable in terms of input variety and
achieves competitive performance compared to both conventional
packrat parsers in exponential cases and plain parsers in very low
backtrack activity cases. Accordingly, we provide the best single
choice for practitioners who attempt PEG-based parsing.
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