
Journal of Information Processing Vol.23 No.5 542–552 (Sep. 2015)

[DOI: 10.2197/ipsjjip.23.542]

Regular Paper

Real-Time Scheduling for Reducing Jitters of
Periodic Tasks

Kiyofumi Tanaka1,a)

Received: November 21, 2014, Accepted: May 9, 2015

Abstract: For control applications implemented with periodic tasks, fluctuations in start or response timing cause jit-
ters which may disturb periodicity and result in performance degradation or instability. This study proposes real-time
scheduling techniques that reduce jitters and average response times of periodic tasks. In the proposed scheduling, two
techniques are employed: one which adaptively extends deadlines according to varying execution times, and the other
which further obtains short deadlines by virtually advancing release times. These two techniques aim at scheduling
target tasks as early as possible by giving them short enough deadlines. The evaluation shows that the former shortens
average response times of the target tasks by up to 20.5% and the latter mitigates jitters by up to 35.4%, compared to
the existing scheduling algorithm, Total Bandwidth Server.

Keywords: Real-time scheduling, jitter, response time, periodic tasks, deadline

1. Introduction

In various computer-controlled systems, it is common for sam-
pling/sensing and actuating to be done periodically [1]. Espe-
cially in closed-loop control systems where tasks are required
to be executed at a constant interval, jitters, which is defined as
the fluctuation in response times, may influence periodicity and
cause performance degradation or instability [2], [3]. While small
jitters can be expected in systems with a single controlled ob-
ject, unpredicted and unacceptable delays or jitters can occur in
multitask/mixed-criticality systems [4], [5], which results in fail-
ure in periodical control [6].

Not only jitters, but response times are important for some ap-
plications. For example, if a task that occupies many resources
has long response times, conflicts would often occur for the re-
sources, and other tasks would have to wait long for the resources
to be released. To alleviate this kind of conflict, techniques that
can shorten response times of particular tasks are desired.

For hard real-time systems, in addition to reducing jitters and
response times, satisfying deadline requirements is most impor-
tant. There are representative scheduling algorithms, Rate Mono-
tonic (RM) and Earliest Deadline First (EDF), that can guarantee
the schedulability of periodic tasks where all deadline constraints
are satisfied [7]. RM is one of the fixed-priority algorithms which
always gives higher priorities to tasks with shorter periods. Al-
though it exhibits small jitters and short response times for high-
priority (short-period) tasks, it cannot utilize 100% of a process-
ing resource while keeping the schedulability*1. EDF is one of the
dynamic-priority algorithms which gives preference to tasks with
earliest absolute deadlines. While it guarantees the schedulability

1 Japan Advanced Institute of Science and Technology, Nomi, Ishikawa
923–1292, Japan

a) kiyofumi@jaist.ac.jp

for the processor utilization of up to 100%, it cannot assign fixed-
priorities to particular (important) tasks for which small jitters or
short response times are preferable.

The scheduling method proposed in this paper aims to shorten
jitters and response times of particular periodic tasks that are im-
portant for the systems, independent of their periods, while main-
taining schedulability with up to 100% utilization. This method
consists of two techniques to make deadlines as early as possi-
ble: applying adaptive total bandwidth server [9], [10] to peri-
odic tasks, which adaptively extends deadlines according to vary-
ing execution times, and virtual release advancing, which obtains
short deadlines by virtually assuming retroactive release times.

This paper consists of five sections. Section 2 describes re-
lated works for mitigating jitters. Then, Section 3 proposes two
scheduling techniques that obtain short deadlines for the target
tasks and reduce jitters for them. Evaluation of the proposed
method is shown in Section 4. Finally, Section 5 concludes the
paper with a summary and future directions.

2. Related Works

2.1 Mitigation of Jitters
There are various researches which aim to mitigate jitters.

They are divided into three types according to the policies [11].
The first policy is to divide tasks’ codes into three phases and
reduce jitters by executing them as subtasks. The second is to
obtain small jitters by making deadlines early and scheduling by
EDF. The last one is to try to make execution times constant by
prohibiting preemption.

As one belonging to the first policy, Balbastre, et al. proposed a
task set model which divides a task’s code into three phases: data
acquisition (input), computation of the control action, and output

*1 The sufficient condition for the schedulability is that the processor uti-
lization should be less than 69% [8].

c© 2015 Information Processing Society of Japan 542

Journal of Information Processing Vol.23 No.5 542–552 (Sep. 2015)

of the control action [12]. Jitters can be reduced by giving short
deadlines to the input and output subtasks to raise their priorities.
However, this method forces application designers to divide the
task codes into three types of sub codes. In addition, the schedula-
bility analysis requires high complexity of computation based on
processor demands/response times, instead of simple estimation
based on processor utilization, since the deadlines of the subtasks
would become earlier than the next release times [8].

As a similar technique, Buttazzo, et al. proposed to implement
input and output phases as low-level handlers and execute them
just at period timing, drastically reducing jitters [11]. To be more
precise, the output phase of the previous job and the input phase
of the current job are processed at every period timing, so that jit-
ters become almost zero. This technique needs explicit division
of task codes and implementation of input/output subtasks as OS
handlers. In addition, the processing of the handlers is regarded
as fixed(highest)-priority execution, which means pure EDF can-
not be employed and therefore the processor utilization has to be
low enough. Moreover, when different tasks have the same period
timing (which is a kind of hyper-period timing), processing two
or more handlers of their subtasks would cause large overheads.
Because of these problems, this paper does not target this kind of
static phase-division technique.

As the second policy, Baruah, et al. proposed a deadline cal-
culation to keep the worst jitter smallest across all periodic
tasks [13]. In this method, each task (τi) is supposed to originally
have a deadline equal to its period timing. Given that Ci and Ti

are the task’s worst-case execution time and length of period, re-
spectively, its processor utilization factor becomes Ci/Ti. This
proposal tries to give τi a bandwidth, θi, which is larger than their
processor utilization (i.e. θi > Ci/Ti), and assign a new relative
deadline, Di, shorter than the period length (i.e. Di = Ci/θi). This
technique can be regarded as applying Total Bandwidth Server
(TBS) [14] to periodic tasks (although this fact is not explicitly
described in Ref. [13]). This is effective when the total utiliza-
tion, Up, is relatively small and the residual bandwidth (1 − Up)
can be distributed among tasks for large θi values. However, when
Up is near 100%, enough effect cannot be expected. In addition,
this technique supposes each job to always spend the worst-case
execution time and therefore the calculated deadlines are fixed,
which might not fit the actual execution time of each job. (On
the other hand, the technique proposed in Section 3.2 tries to cal-
culate deadlines appropriate for each job the execution time of
which can vary). Moreover, relative deadlines shorter than the pe-
riods’ lengths makes it necessary to perform an elaborate schedu-
lability analysis based on processor demands/response times. The
aim of this technique is to shorten the worst jitter over the task
set, while this paper tries to reduce jitters of particular (impor-
tant) tasks. Although the aims are different, the basic policy of
applying TBS is the same.

The third policy is to prohibit preemption to reduce jitters
where jobs are not interrupted from the beginning to the end. The
most serious problem with this policy is that it is impossible to
ensure schedulability [11]. Since this paper puts importance on
schedulability, this policy is left outside the scope.

This paper proposes solutions to the problems above. That is,

the proposed method achieves the following while keeping small
jitters and short response times: designing tasks with divided
phases is not required, 100% of processor utilization is allowed,
simple schedulability analysis based on processor utilization is
applicable, and deadlines tailored for tasks with varying execu-
tion times are given.

2.2 Applying Total Bandwidth Server
Total Bandwidth Server (TBS) [14] is a scheduling algorithm

that takes charge of aperiodic tasks’ execution in a task set con-
sisting of hard periodic tasks and soft or non real-time aperiodic
tasks. TBS has characteristics of achieving low cost/overhead
implementation, guaranteeing schedulability of hard tasks, and
keeping reasonably short response times for aperiodic tasks.

TBS assigns a tentative absolute deadline, dk, to the k-th aperi-
odic job that arrives at t = rk as follows:

dk = max(rk, dk−1) +
CWCET

k

Us
. (1)

Here, dk−1 is the absolute deadline of the previous (k − 1-th) job,
CWCET

k is the worst-case execution time of the k-th job, and Us is
the server bandwidth (or processor utilization allowed for aperi-
odic jobs). The max term prevents bandwidths of two consecutive
jobs from overlapping each other.

TBS calculates the deadlines depending on the jobs’ worst-case
execution times. Hence, if a job finishes earlier than its worst-
case execution time, it turns out that the deadline was later than
necessary. As seen in Eq. (1), this overestimated deadline influ-
ences the succeeding jobs’ deadline calculations by the max term.
To avoid this, Ref. [15] proposed a resource reclaiming technique.

With resource reclaiming, the k-th aperiodic job is given the
following deadline, d′k:

d′k = rk +
CWCET

k

Us
. (2)

In the above formula, rk is decided as follows:

rk = max(rk, dk−1, fk−1). (3)

That is, the maximum value among the release time (rk), the re-
calculated deadline of the previous (k − 1-th) job (dk−1, described
later), and the finishing time of the previous job is regarded as the
representative release time. When the k − 1-th aperiodic job fin-
ishes, its deadline is recalculated with the execution time actually
spent (Ck−1) as Eq. (4):

dk−1 = rk−1 +
Ck−1

Us
. (4)

This dk−1 is reflected in Eq. (3), and then the deadline of the suc-
ceeding job is obtained by Eq. (2). This technique can take the
slack time left by earlier completion of a job into account for the
next job’s deadline calculation. (On the other hand, the technique
described in Section 3.2 predicts earlier completion of a job and
utilizes the slack time for its own deadline calculation.) The tech-
nique, virtual release advancing, proposed in Section 3.3 makes
use of this resource reclaiming.

Periodic tasks are a special case of aperiodic tasks. Therefore,

c© 2015 Information Processing Society of Japan 543

Journal of Information Processing Vol.23 No.5 542–552 (Sep. 2015)

TBS can be applied to periodic tasks. As described in Section 2.1,
Baruah, et al. adopted the use of TBS to reduce the worst jitter by
giving an earlier deadline than the period timing [13].

When TBS is applied to a periodic task τi with a period Ti and
a worst-case execution time CWCET

i , the k-th job is assigned the
following absolute deadline:

di,k = φi + k × Ti +
CWCET

i

θi
(k ≥ 0). (5)

Here, φi is the phase of τi, that is the release time of the first job
of τi. θi is the bandwidth for the task. When θi is equal to τi’s
processor utilization factor (Ui = CWCET

i /Ti), the deadline coin-
cides with the period timing, that is di,k = φi + (k + 1)× Ti. When
the total processor utilization by a task set is less than 100%, the
residual bandwidth can be added to θi, which leads to an earlier
deadline according to Formula 5 since θi becomes larger than Ui.
An earlier deadline can make EDF schedule this task more prefer-
entially and result in shorter response times or jitters. It is noted
that the necessary condition for a task set with n periodic tasks
to be schedulable by this method is

∑n
i=1 θi ≤ 1. (The sufficient

condition is given by schedulability analysis based on processor
demands/response times [8].)

3. Proposed Techniques

3.1 Target Task Model and Jitters
A task, τi (i = 1, 2, . . .), in a task set has its period, Ti, and

worst-case execution time, CWCET
i . Its relative deadline, Di, is

equal to the period, that is Di = Ti. In this task model, an abso-
lute deadline coincides with the period timing.

A relative jitter, RJi, and an absolute jitter, AJi, of a periodic
task τi are defined as follows:

RJi = max
k
|(fi,k − ri,k) − (fi,k−1 − ri,k−1)| (6)

AJi = max
k

(fi,k − ri,k) −min
k

(fi,k − ri,k). (7)

In these definitions, ri,k and fi,k are the release time and the fin-
ishing time of τi’s k-th job, respectively. The relative jitter is
the difference between response times of two successive jobs of
the same task, and the absolute jitter is the difference between
the longest and the shortest response times among all jobs of the
same task.

3.2 Applying Adaptive Total Bandwidth Server
It has been proposed that adaptive TBS can reduce response

times of aperiodic tasks by giving deadlines to jobs in a stepwise
fashion [9], [10]. This section describes how to apply adaptive
TBS to periodic tasks.

Suppose τi is a target task for which response times and jit-
ters should be reduced and τi is served by adaptive TBS. The
bandwidth of the adaptive TBS is θi which is the same as the
one in Section 2.2. For example, when there is one target task,
θi becomes 1 − (Up − Ui), where Ui is τi’s processor utilization
factor (CWCET

i /Ti) and Up is the total processor utilization by all
periodic tasks. Using θi, the k-th job of τi is given the stepwise
deadlines as follows:

d0
i,k = φi + k × Ti +

C0
i

θi
(8)

d j
i,k = d j−1

i,k +
C j

i

θi
(j > 0). (9)

In the above calculations, C j
i is the supposed (or predicted) ex-

ecution time spent by the j-th step of τi’s k-th job. That is, this
job is first predicted to finish in C0

i . When it does not finish in
C0

i , the remaining execution is predicted to finish in C1
i . This is

repeated until the job finally finishes. This technique has the ef-
fect of obtaining early deadlines by predicting early finishing. (In
the evaluation in this paper, C j

i = 1 is assumed for all js.) For
schedulability issue and implementation complexity of the adap-
tive TBS, see Ref. [10].

3.3 Virtual Release Advancing
In this section, the technique, virtual release advancing, is pro-

posed to further bring deadlines backward, which is used to-
gether with TBS or the adaptive TBS. In TBS, an absolute
deadline is calculated by basically originating in a release (or ar-
rival/invocation) time of a job. This means that an earlier deadline
would be obtained if the release time was advanced. However,
since the release times of periodic tasks are fixed at their period
timing, they would not be actually advanced. Instead, with virtual
release advancing, an earlier release time is assumed and then the
corresponding earlier deadline is calculated.

The basic policy of virtual release advancing is that it moves a
release time backward without changing past schedules. That is,
even if it is supposed that τi’s k-th release time, ri,k, is virtually
moved to a past time, vri,k, and the corresponding deadline is ad-
vanced, other jobs with even earlier deadlines have to spend the
interval between vri,k and ri,k. Otherwise, τi must have been exe-
cuted in the interval, which leads to changing the past schedule.
The point is that a release time can be advanced as long as it does
not influence past schedules.

This technique supposes to be used with TBS (or the adap-
tive TBS). The max term in Eq. (1) indicates that it is useless to
advance a release time over the previous deadline, di,k−1, which
leads to a fact that this technique cannot be applied to a peri-
odic task since its release time is the same timing as the previous
deadline due to Di = Ti. However, the resource reclaiming in
Section 2.2 or the adaptive TBS in Section 3.2 can provide an
earlier deadline than the next release time. That is, di,k−1 < ri,k

(di,k−1 < ri,k in the case of the resource reclaiming, or d j
i,k−1 < ri,k

in the case of the adaptive TBS), which enables the virtual release
advancing to utilize the room of ri,k − di,k−1.
3.3.1 Example of Virtual Release Advancing

Figure 1 shows an example of the virtual release advancing.
In the figure, three periodic tasks, τ1, τ2, and τ3, have periods,
T1 = 10, T2 = 9, and T3 = 6, worst-case execution times, C1 = 2,
C2 = 2, and C3 = 3, and phases (or a release time of the first job),
φ1 = 0, φ2 = 1, and φ3 = 1. In this example, τ1 is regarded as a
target task (with the highest importance) and its jitter is focused
on. The upper figure is the schedule result by the original EDF
and the lower one is by TBS plus the virtual release advancing
for τ1. Note that, although the worst-case execution time of τ1 is
two units of time, the actual execution time of its first job is one
unit of time and that for the second is two. By the original EDF,

c© 2015 Information Processing Society of Japan 544

Journal of Information Processing Vol.23 No.5 542–552 (Sep. 2015)

Fig. 1 Example of virtual release advancing (Limit by empty slot).

the response times of the first and the second jobs become one
and seven, respectively. Hence it follows that the relative jitter
between the two jobs becomes 7 − 1 = 6.

On the other hand, in the TBS with the virtual release advanc-
ing, when the first job of τ1 finishes, the resource reclaiming
mechanism resets the corresponding deadline to t = 5 as desig-
nated by the downward broken arrow, which enables the release
time of the next job to be advanced. In the figure, the virtual
release time is set to t = 7 as designated by the upward broken
arrow. Correspondingly, the deadline becomes t = 17. In the
time period from t = 7 to t = 10, τ3’s job was scheduled. The
deadline of this job was t = 13, and therefore this virtual release
advancing never changes the past schedule (since 13 < 17). As a
result, the second job of τ1 is scheduled prior to the second job of
τ2 with the deadline of t = 19, the response time is two, and then
the relative jitter becomes 2 − 1 = 1.

In this example, it is impossible to further advance the release
time. If the release time were reset to t = 6, the time slot between
t = 6 and t = 7 must have been occupied by this job’s execution
since the slot was actually empty. This leads to changing the past
schedule.
3.3.2 Definition of Virtual Release Advancing

In this section, how long the release time can be advanced is
discussed and defined. There are three factors that become lim-
its of advancing: deadline of the previous job, empty slot, and
maximum used deadline.
(1) Deadline of the previous job: Moving the release time to the

past over the deadline of the previous job is ineffective since,
as confirmed in Eq. (1), TBS chooses a larger value between
the release time and the previous deadline as an originating
point in order to maintain the schedulability. This becomes

one of the limiting factors. To implement this, recording
the deadline of the previous job is needed, which is already
achieved in TBS.

(2) Empty slot: An empty slot is a time slot during which no
task is executed and becomes the second limit of advancing.
As shown in Section 3.3.1 and Fig. 1, the empty slot must
not be overtaken by the virtual release time since it would
change the past schedule. To implement this limit, the last
empty slot needs to be recorded.

(3) Maxmum used deadline: Slots that were not empty must
have been spent by the tasks’ execution. Each slot can be
associated with the deadline of a job executed in the slot.
The associated deadline is called a “used deadline” for the
slot in this paper. Let’s consider whether a release time of a
job can be advanced over some past slot. If a deadline calcu-
lated according to the advanced release time gets earlier than
the used deadline of the slot, the slot must have been spent by
this job’s execution. This means that the past situation would
change. Therefore, this condition becomes a limit. To be
more exact, a calculated (advanced) deadline must be later
than all the used deadlines of slots that have been overtaken.
To achieve this limit, it is necessary to record used deadlines
for the past slots and then manage a maximum value among
them in the process of advancing.

Figure 2 shows an example of a limit by a maximum used
deadline. This example assumes the target task for jitter reduc-
tion is τ1. When τ1’s job is released at t = 5, a scheduler starts
processing the virtual release advancing. Slot 4 (between t = 4
and t = 5) was already spent by τ3’s second job, and the used
deadline for this slot is t = 8. (The array dl[] records the used
deadlines for past slots.) Assuming that the release time were ad-

c© 2015 Information Processing Society of Japan 545

Journal of Information Processing Vol.23 No.5 542–552 (Sep. 2015)

Fig. 2 Example of virtual release advancing (Limit by maxmum used dead-
line).

vanced by one slot, the corresponding deadline would be t = 10.
This deadline is no earlier than the used deadline of t = 8. Hence,
this advancing is allowed and performed. At the same time, the
value of 8 is stored in the variable for the maximum used deadline
(max dl).

Then, the virtual release time is supposed to be advanced by
one slot again and the corresponding deadline would be t = 9.
The overtaken slot 3 was used by τ2’s job and the used deadline
was t = 6. This used deadline is smaller than max dl and there-
fore max dl is not updated and remains 8. This advancement is al-
lowed since the advanced deadline is still later than max dl. Simi-
larly, the next advancement for slot 2 can be achieved and then the
virtual release time and the deadline get t = 2 and t = 8, respec-
tively. If further advancement by one slot was attempted, the re-
sulting deadline would be t = 7 and become earlier than max dl,
which means this advancement cannot be allowed. Therefore, the
net virtual release time is t = 2, the deadline is t = 8, and the
advancing process finishes. In this example, the third job of τ2 is
overtaken, so that the response time of the target task is shortened
by one unit of time.
3.3.3 Algorithm of Virtual Release Advancing

Algorithm 1 shows the procedure of the virtual release advanc-
ing. This algorithm is for one target periodic task and is applied
when the task is released. In the algorithm, a task ID is omitted
for brevity. rk is the actual release time of the k-th job of the target
task, and vrk is the virtual release time of the job. dk−1 and dk are
absolute deadlines of the previous and current jobs, respectively,
of the same task. C is the worst-case execution time of the task.
Us is the server bandwidth for TBS that takes charge of the target
task. If this algorithm is combined with the adaptive TBS, C is
replaced by C0

i , as described in Section 3.2. As for the other vari-
ables, last empty records the last empty slot number and dl is an
array such that each element corresponds to a time slot and holds
the used deadline for the slot. In addition, max dl is a variable for
keeping the maximum used deadline.

In lines 1 and 2 of the algorithm, max dl and vrk are initial-
ized with zero and rk, respectively. Then, the loop execution for
the advancing process starts at line 3. In the loop, the deadline
calculation for TBS is performed originating in the current vir-
tual release time at line 4. In lines 6 to 8, the limit of the previous
job’s deadline is checked; if the virtual release time, vrk, coincides

Algorithm 1 Virtual Release Advancing
1: max dl⇐ 0 /* Initializing the maximum used deadline */

2: vrk ⇐ rk /* Initializing the virtual release time */

3: while TRUE do

4: dk ⇐ vrk +C/Us

5: /* Limit factor by the previous job’s deadline (dk−1) */

6: if vrk = dk−1 then

7: break

8: end if

9: /* Limit factor by empty slot */

10: if vrk = last empty + 1 then

11: break

12: end if

13: if max dl < dl[vrk − 1] then

14: max dl⇐ dl[vrk − 1]

15: end if

16: /* Limit factor by the maximum used deadline */

17: if dk ≤ max dl then

18: break

19: else

20: vrk ⇐ vrk − 1 /* Advancing by one slot */

21: end if

22: end while

with the previous job’s deadline, dk−1, the algorithm finishes.
If the check is passed, the second limit factor (by empty slot)

is considered in lines 10 to 12; if the virtual release time is next
to an empty slot, further advancing cannot be done. If so, the
algorithm finishes.

Then, the limit by the maximum used deadline is checked. As
preparation, in lines 13 to 15, max dl is compared with the dead-
line of the previous slot, and if max dl is smaller, it is updated to
maintain the maximum value. In lines 17 to 18, the current calcu-
lated deadline is compared with the maximum used deadline. If
the deadline is equal to or earlier than max dl, the advancing of
the deadline cannot be done and the algorithm finishes.

When all the above limit conditions are passed, the virtual re-
lease time is advanced by one slot at line 20, and then the loop
execution continues.
3.3.4 Schedulability of Virtual Release Advancing

With the virtual release advancing technique, although the tar-
get job was supposed to be released at the virtual release time,
the virtually advanced release time never influences past sched-
ules. In other words, even if the job had been actually released
at the virtual release time, TBS would have resulted in the same
schedule before the actual release time. Especially with the limit
checking for the previous job’s deadline, this technique com-
pletely follows the deadline calculation rule in TBS. Therefore,
the schedulability feature of TBS is maintained; if and only if the
total processor utilization is equal to or less than 100%, the task
set is schedulable.
3.3.5 Implementation Complexity and Runtime Overhead

of Virtual Release Advancing
In Algorithm 1, division (C/Us) is performed at line 4 of every

loop iteration. To mitigate execution overheads of the algorithm,
this division should be done beforehand (statically) and the static
result can be used at runtime.

In terms of storage overheads, last empty and max dl are sin-

c© 2015 Information Processing Society of Japan 546

Journal of Information Processing Vol.23 No.5 542–552 (Sep. 2015)

Fig. 3 Average response times (Shortest-period task).

gle data and do not become a problem. On the other hand, the size
of the dl array must be considered. It is not realistic to provide
an array that covers all time slots for the operating time. There-
fore, the size should be reduced by limiting the number of slots
to be advanced; that is, the number of loop iterations in the al-
gorithm. The effects from the limitation on response times/jitters
are evaluated in Section 4.

4. Evaluation

4.1 Evaluation Methodology
Effects on response times and jitters by the proposed tech-

niques are evaluated by simulations with modeled task sets. In the
evaluation, the proposed techniques are compared with RM, EDF,
Deadline Monotonic (DM) [16], and the application of TBS [13]
as described in Section 2. Although the aim of the application
of TBS in Ref. [13] is to minimize jitters over a task set by dis-
tributing residual bandwidth to all tasks, the residual bandwidth
is given only to the target (important) tasks in this evaluation.

DM [16] is one of the fixed-priority algorithms that weakens
the condition in RM, “deadline is equal to its period.” The
scheduling rule is that shorter relative deadlines have higher pri-
orities. By exploiting this relaxed condition, the same idea as
Eq. (5) can be applied to DM; a relative deadline shorter than
its period can be assigned to an important task by utilizing extra
bandwidth. However, θi (in Eq. (5)) is derived based on the upper
bound of processor utilization for RM and DM, Ulub = n(21/n−1)
(n is the number of tasks), while that for EDF and TBS is based
on 100% [8].

Constant Bandwidth Server (CBS) [17] is one of the dynamic
priority servers for aperiodic tasks and can cope with tasks which
take varying execution times. When an aperiodic job finishes
early, CBS reduces the response time of the next job by utilizing
the budget (slack) left by the former job and its (early) deadline.
To benefit from this mechanism, the next job has to be released

before the deadline of the former (or the server’s period timing).
This means that CBS has no direct effect on periodic tasks the
jobs of which are periodically released. Therefore, this paper ex-
cludes CBS from the methods to be compared.

For each total processor utilization (Up) from 70% to 90% at
intervals of 5%, thirty task sets consisting of periodic tasks are
prepared. The utilization is based on the tasks’ worst-case execu-
tion times. In this section, the average values of the results of the
thirty simulations are shown. For each task, its period is decided
by uniform distribution between 1 and 100 ticks. Its worst-case
execution time is decided by uniform distribution between 1/10
and 1/3 of the period. Actual execution times of jobs of the tar-
get task is decided by uniform distribution between 1/3 and 1/1
of the worst-case execution time. (Jobs from the target task have
different execution times.) As a result of using the above condi-
tions, most task sets include three to five tasks. (Only a few sets
included more tasks.) The observation period is 100,000 ticks.
When Up = 85% and Up = 90%, a few deadline misses were ob-
served for RM and DM. This fact is not considered in particular
in this paper.

4.2 Response Times of a Target Task
First, a task with the shortest period is regarded as the target

task. Average response times of the target task are shown in
Fig. 3. In the figure, the horizontal axis indicates Up, and the
vertical axis indicates average response times normalized to the
results of RM. In the legend, “+VRA” means that the virtual re-
lease advancing is used together. The number in parentheses is
the limit on the number of times the loop iteration is executed in
the algorithm. “Inf” means the limit is infinity. “ATBS” is the
adaptive TBS.

In the figure, all techniques except EDF overlap with each
other. RM and DM have good reason to achieve the best re-
sults since they always give the highest priority to the target task

c© 2015 Information Processing Society of Japan 547

Journal of Information Processing Vol.23 No.5 542–552 (Sep. 2015)

Fig. 4 Average response times (Longest-period task).

that has the shortest period. However, TBS and ATBS (with and
without the virtual release advancing) can achieve the same per-
formance although they are based on dynamic priorities. This is
mainly because the residual bandwidth is well utilized.

Figure 4 shows average response times when a task with the
longest period is regarded as the target. The results of RM are
worst since it gives the lowest priority to the target with the
longest period. DM can exhibit shorter response times by uti-
lizing the extra bandwidth when Up is low, while it is the same as
RM when Up is 80% or higher since high Up implies no residual
bandwidth exploited. EDF is better than RM in this case where
the priority of the target task is not fixed at the lowest priority or
it dynamically changes.

In the figure, the application of TBS shows large improvement
in average response times. Adding the virtual release advancing,
the response times are further improved depending on the limit of
loop iterations. Among all techniques, adaptive TBS exhibits the
best results. When Up is 90%, the adaptive TBS improves the av-
erage response times by 20.5% compared to TBS. Consequently,
it can be said that stepwise deadline updating for a target task is
effective in reducing response times.

In addition, adaptive TBS is not required to come with the vir-
tual release advancing. (The results of ATBS and ATBS+VRA
completely overlap with each other in the figure.) This is because
the amount of advancing tends to zero in most cases since the
initial deadline based on C0

i is so early that it is rare to pass the
condition for the maximum used deadline. (The only chance to
apply the virtual release advancing is when the target job is re-
leased, since the later deadline updates cannot pass the first con-
dition of deadline of the (its own) previous job.)

4.3 Jitters of a Target Task
Figures 5 and 6 show relative jitters and absolute jitters, re-

spectively, normalized to the results of RM. The target task is one

with the longest period. (The case of the shortest period is omitted
since the differences between methods were not confirmed just as
the case for response times in Section 4.2.) From these figures,
relative jitters and absolute jitters have a similar trend.

The relationship among RM, DM, and EDF is similar to the
results of response times. In addition, TBS and the virtual re-
lease advancing significantly improve jitters similarly to Fig. 4.
However, there are two differences compared to the case of av-
erage response times. The first difference is that the amount of
improvement by the virtual release advancing for TBS is larger in
jitters than in response times. This is discussed as follows. Jitters
are directly influenced by reduction in the longest response time
as shown in Eqs. (6) and (7). The task’s execution tends to exhibit
the longest response time when it’s execution time is close to its
WCET. When the execution time is long, it has a high possibility
of being preempted by later-requested jobs. Advancing deadlines
by the virtual release advancing has the effect of not only overtak-
ing previously-requested jobs but reducing the possibility of pre-
emption by later-requested ones. Therefore, long response times
can be expected to be shortened and jitters are mitigated. On the
ohter hand, when the execution time is short, it experiences less
preemption even in the case without the virtual release advanc-
ing. Therefore, the effects of the advancing technique are limited
and the response time is not much shortened. Since the average
response time is influenced by all the jobs’ response times, not
only by the longest response time, its effects seem lower then that
of jitters.

The second difference with the case of response times is that
TBS plus the virtual release advancing is more effective than
the adaptive TBS (with or without the virtual release advancing).
This is discussed as follows.

Average response times can be reduced by shortening the re-
sponse time of each job. Adaptive TBS achieves this by giving
each job an appropriate deadline according to its actual execu-

c© 2015 Information Processing Society of Japan 548

Journal of Information Processing Vol.23 No.5 542–552 (Sep. 2015)

Fig. 5 Relative jitters (Longest-period task).

Fig. 6 Absolute jitters (Longest-period task).

tion time. On the other hand, to improve jitters, it is important to
shorten the longest response time of the target task as described
above. If a job spent its worst-case execution time, the adaptive
TBS, having experienced stepwise deadline calculations repeat-
edly, would finally give the same deadline as that by TBS. Even-
tually, the adaptive TBS does not have superiority over TBS when
a job’s execution time is as long as the worst-case execution time.
However, a job spending its worst-case execution time does not
always exhibit the longest response time. Thus, adaptive TBS,
which can reduce response times on average, shows slightly bet-
ter jitters than TBS.

Combined with TBS, the virtual release advancing reduces jit-
ters. This is because it possesses certain properties of shortening

response times by advancing release times/deadlines even when
it is applied to a job spending its worst-case execution time. It
is confirmed that the effects depend on the number of iterations
executed in the algorithm and that execution of twenty iterations
(TBS+VRA(20)) approaches the results of that without the lim-
itation on the iteration count (TBS+VRA(Inf)). Therefore, the
effects can be obtained with a practical number of dl elements in
Section 3.3.3. From the results, TBS combined with the virtual
release advancing with the loop count of 20 reduced relative jit-
ters by 35.4% for Up = 90% compared to TBS without the virtual
release advancing.

Similar to the cases of average response times, virtual release
advancing could not yield gains when used in the adaptive TBS.

c© 2015 Information Processing Society of Japan 549

Journal of Information Processing Vol.23 No.5 542–552 (Sep. 2015)

Fig. 7 Average response times (Two longest-period tasks).

Fig. 8 Relative jitters (Two longest-period tasks).

The reason is the same as in Section 4.2.

4.4 Response Times and Jitters of Two Target Tasks
In Sections 4.2 and 4.3, a single task in the task sets was the

target of reducing response times/jitters. In this section, two tasks
that have the longest and second longest periods are the targets.
Since most task sets consist of three to five tasks, two target tasks
turn out to occupy 40% to 67% of all tasks. The residual band-
width is split in half and then distributed to the two tasks, except
in RM and EDF which do not utilize the residual bandwidth. The
average values of the results for the two tasks are shown in Figs. 7
and 8, which correspond to average response times and relative
jitters, respectively. (The results of absolute jitters are omitted

due to limitations of space.)
As for average response times, although the trends similar to

Fig. 4 can be seen, the improvement gets lower since the resid-
ual bandwidth utilized by each target task is halved. In addition,
adaptive TBS does not achieve better results than TBS when Up

is not high. This is because two target jobs preempt each other
repeatedly through multiple times of deadline recalculations and
therefore jobs, especially with long execution times, tend to expe-
rience long response times. On the other hand, in TBS, a deadline
for each job is calculated only once and the priority order be-
tween the two jobs does not change, which does not bring about
the above preemption.

Similarly, in Fig. 8, the improvement for relative jitters is lower

c© 2015 Information Processing Society of Japan 550

Journal of Information Processing Vol.23 No.5 542–552 (Sep. 2015)

than in Fig. 5. Moreover, jitters in the adaptive TBS are always
worse than in TBS since the preemption mentioned above pro-
longs the response time of a job spending a long execution time,
which has a higher impact on jitters than on “average” response
times. On the other hand, it can be confirmed that TBS with the
virtual release advancing can substantially alleviate jitters even
when the number of target tasks is increased.

4.5 Additional Overheads
The maximum number of iterations executed in Algorithm 1

was obtained from the simulation corresponding to Sections 4.2
and 4.3. The maximum number throughout the simulations was
39. In Algorithm 1, each iteration consists of five addition opera-
tions, four comparisons, three assignments, and two references to
the array element. Therefore, the estimated number of steps (or
cycles) of the additional operations is 39 × (5 + 4 + 3 + 2) = 546.

Suppose the processor’s clock frequency is 100 MHz and the
tick length is 1 millisecond. Then, the maximum additional over-
head from 546 cycles per tick leads to 546/100,000 = 0.55%.
Considering the maximum number of iterations executed (39),
this amount can be expected to be further reduced to a half by
limiting the iteration count to 20 without large degradation in jit-
ters, as seen in Figs. 3 and 4.

4.6 Discussion
From the results of Section 4.2 to Section 4.4, the following

points can be deduced in terms of the number of target tasks, the
purposes of scheduling (reducing response times or jitters), pro-
cessor utilization, and the scheduling algorithms.
• When the purpose is to shorten response times and a single

task is the target, adaptive TBS is the best choice, where it
does not need to be accompanied by the virtual release ad-
vancing.

• When the purpose is to shorten response times and two or
more tasks (to around half the total number of tasks) are the
targets, the choice of an appropriate scheduling scheme de-
pends on the processor utilization. TBS with virtual release
advancing is a potential candidate if the utilization is low,
while adaptive TBS (without the virtual release advancing)
would be promising during high utilization.

• To mitigate jitters, TBS with virtual release advancing is a
convincing technique regardless of the number of the target
tasks or processor utilization.

In addition, it turns out that virtual release advancing needs a
practical iteration count to be as effective as the case with infinite
iterations, for example, twenty times as shown in the evaluation.

The evaluation in this section targets tasks with longest (or
shortest) periods. Even when tasks with medium periods were
targets, similar trends could be confirmed except that the im-
provements are slightly lowered compared to the cases for longest
periods. The results are left out due to limitations of space.

5. Concluding Remarks

In this paper, application of adaptive TBS and virtual release
advancing are proposed to shorten response times and mitigate
jitters of particular, important periodic tasks. Adaptive TBS is

a technique that gives deadlines in a stepwise/adaptive fashion
according to the actual execution times, and virtual release ad-
vancing is a technique to virtually move release times to the past
without influencing past schedules, leading to earlier deadlines.
In the evaluation, compared to the existing technique of applying
TBS to periodic tasks, the application of adaptive TBS shortened
average response times of important tasks by up to 20.5% and
virtual release advancing reduced relative jitters by up to 35.4%.

With the growing diversity and mixed-criticality, various kinds
of tasks would coexist in a real-time embedded system. From the
results obtained in this paper, it can be said that it is effective to
select appropriate scheduling strategies according to each task’s
performance to be improved.

The evaluation in this paper used task sets with randomly-
generated parameter values. To reflect actual behavior of ap-
plications and systems, evaluation with real program codes and
scheduling overheads should be performed. In addition, actual
systems can experience transition in processor utilization as a re-
sult of creation and deletion of tasks. Therefore, how to dynami-
cally change the scheduling mechanisms according to the utiliza-
tion should be investigated.

References

[1] Åström, K.J. and Wittenmark, B.: Computer-Controlled Systems:
Theory and Design, 3rd ed., Prentice Hall (1997).

[2] Martı́, P., Fuertes, J.M., Fohler, G. and Ramamritham, K.: Jitter Com-
pensation for Real-Tiime Control Systems, Proc. IEEE Real-Time Sys-
tems Symposium, pp.39–48 (2001).

[3] Buttazzo, G.C.: Rate Monotonic vs. EDF: Judgment Day, Journal of
Real-Time Systems, Vol.29, No.1, pp.5–26 (2005).

[4] de Niz, D. Lakshmanan, K. and Rajkumar, R.: On the Scheduling of
Mixed-Criticality Real-Time Task Sets, Proc. IEEE Real-Time Systems
Symposium, pp.291–300 (2009).

[5] Baruah, S., Li, H. and Stougie, L.: Towards the Design of Certifi-
able Mixed-Criticality Systems, Proc. IEEE Real-Time and Embedded
Technology and Application Symposium, pp.13–22 (2010).

[6] Lluesma, M., Cervin, A., Balbastre, P., Ripoll, I. and Crespo, A.: Jit-
ter Evaluation of Real-Time Control Systems, Proc. IEEE Intl. Conf.
on Embedded and Real-Time Computing Systems and Applications,
pp.257–260 (2006).

[7] Liu, C.L. and Layland, J.W.: Scheduling Algorithms for Multipro-
gramming in a Hard-Real-Time Environment, Journal of the Associa-
tion for Computing Machinery, Vol.20, No.1, pp.46–61 (1973).

[8] Buttazzo, G.C.: Hard Real-Time Computing Systems: Predictable
Scheduling Algorithms and Applications, 3rd Edition, Springer
(2011).

[9] Tanaka, K.: Adaptive Total Bandwidth Server: Using Predictive Ex-
ecution Time, Proc. Intl. Embedded Systems Symposium, pp.250–261
(2013).

[10] Tanaka, K.: A Method of Shortening Average Response Times by
Adaptive Scheduling–Effects of Estimating Execution Times, IPSJ
Journal, Vol.55, No.8, pp.1856–1865 (2014). (in Japanese).

[11] Buttazzo, G. and Cervin, A.: Comparative Assessment and Evaluation
of Jitter Control Methods, Proc. Intl. Conf. on Real-Time and Network
Systems, pp.137–144 (2007).

[12] Balbastre, P., Ripoll, I., Vidal, J. and Crespo, A.: A Task Model to
Reduce Control Delays, Journal of Real-Time Systems, Vol.27, No.3,
pp.215–236 (2004).

[13] Baruah, S., Buttazzo, G., Gorinsky, S. and Lipari, G.: Scheduling Pe-
riodic Task Systems to Minimize Output Jitter, Proc. IEEE Intl. Conf.
on Embedded and Real-Time Computing Systems and Applications,
pp.62–69 (1999).

[14] Spuri, M. and Buttazzo, G.C.: Efficient Aperiodic Service under Ear-
liest Deadline First Scheduling, Proc. IEEE Real-Time Systems Sym-
posium, pp.2–11 (1994).

[15] Spuri, M., Buttazzo, G. and Sensini, F.: Robust Aperiodic Schedul-
ing under Dynamic Priority Systems, Proc. IEEE Real-Time Systems
Symposium, pp.210–219 (1995).

[16] Leung, J. and Whitehead, J.: On the Complexity of Fixed-Priority
Scheduling of Periodic Real-Time Tasks, Performance Evaluation,

c© 2015 Information Processing Society of Japan 551

Journal of Information Processing Vol.23 No.5 542–552 (Sep. 2015)

Vol.2, No.4, pp.237–250 (1982).
[17] Abeni, L. and Buttazzo, G.: Integrating Multimedia Applications in

Hard Real-Time Systems, Proc. IEEE Real-Time Systems Symposium,
pp.4–13 (1998).

Kiyofumi Tanaka received his B.S.,
M.S., and Ph.D. degrees from the Univer-
sity of Tokyo in 1995, 1997, and 2000,
respectively. His research interests are
computer architecture, operating systems,
and real-time embedded systems. He is a
member of IEEE, ACM, and IEICE.

c© 2015 Information Processing Society of Japan 552

