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Abstract: We propose new secret sharing schemes realizing general access structures. Our proposed schemes are
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1. Introduction

In Shamir’s (k, n)-threshold scheme [1], every k participants
can recover the secret K, but no group of less than k participants
can get any information about the secret from their shares. The
collection of all authorized subsets of participants is called the
access structure. A (k, n)-threshold scheme can only realize par-
ticular access structures that contain all subsets of k or more par-
ticipants.

Secret sharing schemes realizing more general access struc-
tures than that of a threshold scheme were studied by numerous
authors. Koyama proposed secret sharing schemes for multi-
groups [2], [3]. In his schemes, a secret K is divided twice
by using (k, n)-threshold schemes. In 1987, Ito, Saito and
Nishizeki proposed a secret sharing scheme for general access
structures [4]. Their scheme can realize an arbitrary access struc-
ture by assigning one or more shares to each participant. In
1988, Benaloh and Leichter proposed a secret sharing scheme
for general access structures based on a monotone-circuit [5]. In
the implementation of secret sharing schemes for general access
structures, an important issue is the number of shares distributed
to each participant. Obviously, a scheme constructed by small
shares is desirable. However, Ito, Saito and Nishizeki’s scheme
and Benaloh and Leichter’s scheme are impractical in this respect
when the size of the access structure is very large. For example,
when we use these schemes to implement the access structure of
a (k, n)-threshold scheme, each of n participants has to hold

(
n−1
k−1

)

shares. On the other hand, only one share is distributed to each
participant if we employ Shamir’s (k, n)-threshold scheme.

Secret sharing schemes based on unauthorized subsets have
also been proposed [6], [7]. These schemes can realize any access
structures by using two or more threshold schemes and are more
efficient than Ito, Saito and Nishizeki’s scheme. A secret sharing
scheme based on authorized subsets was proposed (TUM05) [8].
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This scheme is always more efficient than Benaloh and Leichter’s
scheme. Iwamoto, Yamamoto and Ogawa proposed a secret shar-
ing by integer programming [9]. Their scheme is optimal from the
viewpoint of the number of shares distributed to each participant
when only one threshold scheme is used.

Suppose that we want to apply secret sharing schemes to a
company in order to prevent the client information from leak-
ing out. The client information is encrypted with a key. And the
key is divided into shares. Because of the hierarchy structure of
the company, some managers may belong to a lot of authorized
subsets and unauthorized subsets. As a result, the managers have
to hold a lot of shares. Here, we consider a section which con-
sists of two managers and 20 staff members. The secret key can
be recovered by a group of two managers or groups of one man-
ager and two staff members. In this case, every manager belongs
to 191 minimal authorized subsets and 20 maximal unauthorized
subsets. On the other hand, every staff member belongs to 38
minimal authorized subsets and 3 maximal unauthorized subsets.
We shall realize this access structure by Benaloh and Leichter’s
scheme. Then, each manager has to hold 191 shares and each
staff member has to hold 38 shares. By contrast, we can reduce
the number of shares distributed to each manager to 2 if we em-
ploy one of our proposed schemes. Thus, secret sharing schemes
reducing the numbers of shares distributed to specified partici-
pants are quite useful.

In this paper, we modify Benaloh and Leichter’s scheme [5]
and the scheme I of TUM05 [8] and propose new secret sharing
schemes realizing general access structures, which are perfect and
can reduce the number of shares distributed to specified partici-
pants. The proposed schemes are more efficient than Benaloh and
Leichter’s scheme [5] and the scheme I of TUM05 [8] from the
viewpoint of the number of shares distributed to each participant.

2. Preliminaries

2.1 Secret Sharing Scheme
Let P = {P1, P2, · · · , Pn} be a set of n participants. LetD(� P)

denote a dealer who selects a secret and distributes a share to each
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participant. Let K and S denote a secret set and a share set, re-
spectively. The access structure Γ(⊂ 2P) is the family of subsets
of P which contains the sets of participants qualified to recover
the secret. For any authorized subset A ∈ Γ, any superset of A

is also an authorized subset. Hence, the access structure should
satisfy the monotone property:

A ∈ Γ, A ⊂ A′ ⊂ P ⇒ A′ ∈ Γ.
Let Γ0 be a family of the minimal sets in Γ, called the minimal
access structure. Γ0 is denoted by

Γ0 = {A ∈ Γ : A′ � A for all A′ ∈ Γ − {A}}.
For any access structure Γ, there is a family of sets Γ̄ = 2P − Γ. Γ̄
contains the sets of participants unqualified to recover the secret.
The family of maximal sets in Γ̄ is denoted by Γ̄1. That is,

Γ̄1 = {B ∈ Γ̄ : B � B′ for all B′ ∈ Γ̄ − {B}}.
Let pK be a probability distribution on K . Let pS(A) be a prob-

ability distribution on the shares S(A) given to a subset A ⊂ P.
Usually a secret K is chosen from K with the uniform distribu-
tion. A secret sharing scheme is perfect if

H(K|A) =

⎧⎪⎪⎨⎪⎪⎩
0 (if A ∈ Γ)
H(K) (if A � Γ),

where H(K) and H(K|A) denote the entropy of pK and the
conditional entropy defined by the joint probability distribution
pK×S(A), respectively.

In general, the efficiency of a perfect secret sharing scheme is
measured by the information rate ρ [10] defined as

ρ = min{ρi : 1 ≤ i ≤ n}, ρi = log |K|/ log |S(Pi)|
where S(Pi) denotes the set of possible shares that Pi might re-
ceive. Obviously, a high information rate is desirable. A perfect
secret sharing scheme is ideal if ρ = 1.

2.2 Shamir’s (k, n)-threshold Scheme
Throughout the paper, p is a large prime, and let Zp be a fi-

nite field with p elements. Shamir’s (k, n)-threshold scheme is
described as follows [1]:
( 1 ) A dealer D chooses n distinct nonzero elements of Zp, de-

noted by x1, x2, · · · , xn. The values xi are public.
( 2 ) Suppose D wants to share a secret K ∈ Zp, D chooses k − 1

elements a1, a2, · · · ak−1 from Zp independently with the uni-
form distribution.

( 3 ) D distributes the share si = f (xi) to Pi (1 ≤ i ≤ n), where

f (x) = K + a1x + a2x2 + · · · + ak−1xk−1

is a polynomial over Zp.
It is known that Shamir’s (k, n)-threshold scheme is perfect and

ideal [10], [11]. This implies that every k participants can recover
the secret K, but no group of less than k participants can get any
information about the secret.

The access structure of (k, n)-threshold scheme is described as
follows:

Γ = {A ∈ 2P : |A| ≥ k}.

In this paper, every share is computed by using Shamir’s (k, n)-
threshold scheme *1. Therefore, we assume K = S = Zp.

2.3 Secret Sharing Schemes Based on Authorized Subsets
ForP = {P1, P2, · · · , Pn}, K ∈ K and Γ, Benaloh and Leichter’s

scheme [5] is described as follows.
Benaloh and Leichter’s scheme:
( 1 ) Let Γ0 = {A1, A2, · · · , Am}. For Ai ∈ Γ0, compute |Ai| shares

si,1, si,2, · · · , si,|Ai |

by using an (|Ai|, |Ai|)-threshold scheme with K as a secret
independently for 1 ≤ i ≤ m.

( 2 ) One distinct share from

si,1, si,2, · · · , si,|Ai |

is assigned to each P ∈ Ai (1 ≤ i ≤ m).
Example 1: For P = {P1, P2, P3, P4, P5, P6}, consider the follow-
ing access structure

Γ0 = {A1, A2, · · · , A6}

where

A1 = {P1, P2, P5, P6},
A2 = {P2, P3, P5, P6},
A3 = {P2, P4, P5, P6},
A4 = {P3, P4, P5, P6},
A5 = {P1, P2, P3, P4, P5},
A6 = {P1, P2, P3, P4, P6}.

We shall realize this access structure by Benaloh and Leichter’s
scheme. In this case, shares are distributed as follows:

P1 : s1,1, s5,1, s6,1

P2 : s1,2, s2,1, s3,1, s5,2, s6,2

P3 : s2,2, s4,1, s5,3, s6,3

P4 : s3,2, s4,2, s5,4, s6,4

P5 : s1,3, s2,3, s3,3, s4,3, s5,5

P6 : s1,4, s2,4, s3,4, s4,4, s6,5

where si, j is computed by using Shamir’s (|Ai|, |Ai|)-threshold
scheme with K as a secret (1 ≤ i ≤ 6, 1 ≤ j ≤ |Ai|).

For P = {P1, P2, · · · , Pn}, K ∈ K and Γ, the scheme I of
TUM05 [8] is described as follows.
Scheme I of TUM05:
( 1 ) Let Γ0− = {A ∈ Γ0 : |A| ≤ l}, where l = maxB∈Γ̄ |B| and

represent it as

Γ0− = {A1, A2, · · · , Ad}

with d = |Γ0−|.
( 2 ) Let P′ = {P ∈ X : X ∈ Γ0 and |X| > l} and n′ = |P′|.
*1 The shares of the proposed schemes do not depend on the mechanism of

Shamir’s (k, n)-threshold scheme. Any ideal threshold schemes can be
used instead of Shamir’s (k, n)-threshold scheme with k � n, and more
simple schemes can be used instead of Shamir’s (n, n)-threshold scheme.
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Compute n′ shares

S = {s1, s2, · · · , sn′ }
for the secret K by using Shamir’s (l + 1, n′)-threshold
scheme. Then, one distinct share in S is assigned to each
P ∈ P′.

( 3 ) For every Ai ∈ Γ0− , compute |Ai| shares

S i = {sn′+i,1, sn′+i,2, · · · , sn′+i,|Ai |}
by using Shamir’s (|Ai|, |Ai|)-threshold scheme with K as a
secret independently for 1 ≤ i ≤ d. One distinct share in S i

is assigned to each P ∈ Ai (1 ≤ i ≤ d).
Example 2: We shall realize the access structure of Example 1
by the the scheme I of TUM05. For this access structure, Γ̄1 is
given by

Γ̄1 = {{P2, P5, P6}, {P1, P2, P3, P4}, {P1, P2, P3, P5},
{P1, P2, P4, P5}, {P1, P3, P4, P5}, {P2, P3, P4, P5},
{P1, P2, P3, P6}, {P1, P2, P4, P6}, {P1, P3, P4, P6},
{P2, P3, P4, P6}, {P1, P3, P5, P6}, {P1, P4, P5, P6}}.

Since l = maxB∈Γ̄ |B| = maxB∈Γ̄1
|B| = 4, we have

Γ0− = {A1, A2, A3, A4}.
In this case, we have P = P′. Compute 6 shares

S = {s1, s2, · · · , s6}
for the secret K by using Shamir’s (5, 6)-threshold scheme. For
A1, A2, A3 and A4, compute shares as follows:

S 1 = {s7,1, s7,2, s7,3, s7,4},
S 2 = {s8,1, s8,2, s8,3, s8,4},
S 3 = {s9,1, s9,2, s9,3, s9,4},
S 4 = {s10,1, s10,2, s10,3, s10,4},

where s6+i, j is computed by using Shamir’s (|Ai|, |Ai|)-threshold
scheme with K as a secret (1 ≤ i ≤ 4, 1 ≤ j ≤ |Ai|). In this case,
shares are distributed as follows:

P1 : s1, s7,1

P2 : s2, s7,2, s8,1, s9,1

P3 : s3, s8,2, s10,1

P4 : s4, s9,2, s10,2

P5 : s5, s7,3, s8,3, s9,3, s10,3

P6 : s6, s7,4, s8,4, s9,4, s10,4.

The scheme I of TUM05 does not need to generate shares cor-
responding to the minimal authorized subsets whose sizes are
more than l+1, where l is the largest size of unauthorized subsets,
though it needs an additional share for each participant in P′.
3. Proposed Scheme A

Here, we modify Benaloh and Leichter’s scheme [5] and pro-
pose a new secret sharing scheme realizing general access struc-
tures. The proposed scheme can reduce the number of shares

distributed to P ∈ Q(⊂ P) by dividing into Γ0 according to the
subsets of Q. On the other hand, the number of shares distributed
to P ∈ P − Q is equal to that of Benaloh and Leichter’s scheme.

For P = {P1, P2, · · · , Pn},Q(⊂ P), K ∈ K and Γ, the proposed
scheme A is described as follows.
Proposed Scheme A:
( 1 ) Let A′ = {C ⊂ Q : Q ∩ A = C for some A ∈ Γ0} and

represent it as

A′ = {C′1,C′2, · · · ,C′m}.
( 2 ) For C′i ∈ A′, let

Ai = {B ⊂ P − Q : B ∩C′i = φ

and B ∪C′i = A for some A ∈ Γ0}
and represent it as

Ai = {Ci1,Ci2, · · · ,Ci|Ai |}.
( 3 ) For C′i ∈ A′,

(i) if C′i = φ then

S i = {wi} and wi = K,

(ii) if C′i � φ andAi = {φ} then

S i = {w′i } and w′i = K,

(iii) if C′i � φ andAi � {φ} then compute 2 shares

S i = {wi, w
′
i }

by using Shamir’s (2, 2)-threshold scheme with K as a
secret independently for 1 ≤ i ≤ m.

( 4 ) For C′i ∈ A′, if C′i = φ then

S 1,i = φ,

else compute |C′i | shares

S 1,i = {s′i,1, s′i,2, · · · , s′i,|C′i |}
by using Shamir’s (|C′i |, |C′i |)-threshold scheme with w′i as a
secret independently for 1 ≤ i ≤ m. One distinct share in S 1,i

is assigned to each P ∈ C′i (1 ≤ i ≤ m).

( 5 ) For Ci j ∈ Ai , if Ci j = φ then

S 2,i, j = φ,

else compute |Ci j| shares

S 2,i, j = {si, j,1, si, j,2, · · · , si, j,|Ci j |}
by using Shamir’s (|Ci j|, |Ci j|)-threshold scheme with wi as
a secret independently for 1 ≤ i ≤ m, 1 ≤ j ≤ |Ai|. One
distinct share in S 2,i, j is assigned to each P ∈ Ci j (1 ≤ i ≤
m, 1 ≤ j ≤ |Ai|).

Example 3: Let Q = {P1, P2}. We shall realize the access struc-
ture of Example 1 by the proposed scheme A.
• Since Q = {P1, P2},A′ is defined by

A′ = {C′1,C′2,C′3}
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where

C′1 = {P1, P2},
C′2 = {P2},
C′3 = φ.

• A1,A2 andA3 are defined by

A1 = {{P5, P6}, {P3, P4, P5}, {P3, P4, P6}},
A2 = {{P3, P5, P6}, {P4, P5, P6}},
A3 = {{P3, P4, P5, P6}}.

• For C′1,C
′
2 ∈ A′, compute 2 shares

S 1 = {w1, w
′
1},

S 2 = {w2, w
′
2}

by using Shamir’s (2, 2)-threshold scheme with K as a secret.
Since C′3 = φ, we set

S 3 = {w3} and w3 = K.

• For C′1,C
′
2 ∈ A′, compute |C′i | shares

S 1,1 = {s′1,1, s′1,2},
S 1,2 = {s′2,1}

by using (|C′i |, |C′i |)-threshold scheme with w′i as a secret in-
dependently for 1 ≤ i ≤ 2. Since C′3 = φ, we set

S 1,3 = φ.

• For Ci j ∈ Ai , compute |Ci j| shares

S 2,1,1 = {s1,1,1, s1,1,2},
S 2,1,2 = {s1,2,1, s1,2,2, s1,2,3},
S 2,1,3 = {s1,3,1, s1,3,2, s1,3,3},
S 2,2,1 = {s2,1,1, s2,1,2, s2,1,3},
S 2,2,2 = {s2,2,1, s2,2,2, s2,2,3},
S 2,3,1 = {s3,1,1, s3,1,2, s3,1,3, s3,1,4}

by using Shamir’s (|Ci j|, |Ci j|)-threshold scheme with wi as a
secret independently for 1 ≤ i ≤ 3, 1 ≤ j ≤ |Ai|.

• In this case, shares are distributed as follows:

P1 : s′1,1
P2 : s′1,2, s

′
2,1

P3 : s1,2,1, s1,3,1, s2,1,1, s3,1,1

P4 : s1,2,2, s1,3,2, s2,2,1, s3,1,2

P5 : s1,1,1, s1,2,3, s2,1,2, s2,2,2, s3,1,3

P6 : s1,1,2, s1,3,3, s2,1,3, s2,2,3, s3,1,4.

The proposed scheme A can reduce the number of shares dis-
tributed to each participant P ∈ Q(⊂ P). On the other hand, for
any P ∈ P − Q, the number of shares distributed to P is equal
to that of Benaloh and Leichter’s scheme. Here, we show some
properties of the proposed scheme A.

Theorem 1 Let P = {P1, P2, · · · , Pn} be a set of n partici-
pants. For any Q(⊂ P) and any access structure Γ(⊂ 2P), dis-
tribute shares for a secret K by using the proposed scheme A.
Then, for any subset X ⊂ P,
(a) X ∈ Γ⇒ H(K|X) = 0,
(b) X � Γ⇒ H(K|X) = H(K).
Proof: Let XS 1,i and XS 2,i, j denote the shares in S 1,i and S 2,i, j as-
signed to X, respectively(1 ≤ i ≤ m, 1 ≤ j ≤ |Ai|). At first, we
show H(K|X) = 0 for any X ∈ Γ. From the property of the access
structure and the definition of A1, · · · ,Am and A′, there exists
A ∈ Γ0 such that

C′i ∪Ci j = A ⊂ X.

In this case, we have

|XS 1 ,i| = |C′i | and |XS 2 ,i, j| = |Ci j|.

X can recover wi since si, j,1, si, j,2, · · · , si, j,|Ci j | are shares computed
by Shamir’s (|Ci j|, |Ci j|)-threshold scheme with wi as a secret.
Similarly, If C′i � φ, X can recover w′i since s′i,1, s

′
i,2, · · · , s′i,|C′i | are

shares computed by Shamir’s (|C′i |, |C′i |)-threshold scheme with
w′i as a secret. From the definition of S i, we immediately obtain

H(K|X)

= H(K|XS 1,1 , · · · , XS 1,m , XS 2,1,1 , · · · , XS 2,m,|Am | )

≤ H(K|XS 1,i , XS 2,i, j )

= 0.

Since H(K|X) ≥ 0 is obvious, we have H(K|X) = 0 for any X ∈ Γ.
Next we show H(K|X) = H(K) for any X � Γ. From the prop-

erty of the access structure and the definition of Ai, · · · ,Am and
A′, for any Ai ∈ Γ0, we have

C′i � X or Ci j � X (1 ≤ j ≤ |Ai|).

This implies

H(K|XS 1,i , XS 2,i, j ) = H(K).

for 1 ≤ i ≤ m, 1 ≤ j ≤ |Ai|. From the definition of S i, we have

H(K|XS 1,i , XS 2,i,1 , · · · , XS 2,i,|Ai | ) = H(K)

for 1 ≤ i ≤ m. This implies

H(XS 1,i , XS 2,i,1 , · · · , XS 2,i,|Ai | |K)

= H(XS 1,i , XS 2,i,1 , · · · , XS 2,i,|Ai | ). (1)

In order to show H(K|X) = H(K), we expand H(K|X) as follows:

H(K|X)

= H(K|XS 1,1 , · · · , XS 1,m , XS 2,1,1 , · · · , XS 2,m,|Am | )

= H(K)

+H(XS 1,1 , · · · , XS 1,m , XS 2,1,1 , · · · , XS 2,m,|Am | |K)

−H(XS 1,1 , · · · , XS 1,m , XS 2,1,1 , · · · , XS 2,m,|Am | ). (2)

From the chain rule for entropy, we have

H(XS 1,1 , · · · , XS 1,m , XS 2,1,1 , · · · , XS 2,m,|Am | |K)
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=

m∑

t=1

H(XS 1,t , XS 2,t,1 , · · · , XS 2,t,|At | |K, XS 1,1 , · · ·

· · · , XS 1,t−1 , XS 2,1,1 , · · · , XS 2,t−1,|At−1 | )

(∗)
=

m∑

t=1

H(XS 1,t , XS 2,t,1 , · · · , XS 2,t,|At | |K)

=

m∑

t=1

H(XS 1,t , XS 2,t,1 , · · · , XS 2,t,|At | ). (3)

Here, (∗) comes from the fact that XS 1,1 , · · · , XS 1,m and
XS 2,1,1 , · · · , XS 2,m,|Am | are mutually independent and the last
equality comes from Eq. (1). On the other hand, we have

H(XS 1,1 , · · · , XS 1,m , XS 2,1,1 , · · · , XS 2,m,|Am | )

=

m∑

t=1

H(XS 1,t , XS 2,t,1 , · · · , XS 2,t,|At | |XS 1,1 , · · ·

· · · , XS 1,t−1 , XS 2,1,1 , · · · , XS 2,t−1,|At−1 | )

≤
m∑

t=1

H(XS 1,t , XS 2,t,1 , · · · , XS 2,t,|At | ). (4)

Substituting Eqs. (3) and (4) into Eq. (2), we obtain H(K|X) ≥
H(K). Since H(K|X) ≤ H(K) is obvious, we have H(K|X) =
H(K). �

The next theorem shows that the proposed scheme A includes
Benaloh and Leichter’s scheme as a special case.

Theorem 2 If Q = φ, then the proposed scheme A coincides
with Benaloh and Leichter’s scheme.
Proof: Since Q = φ, we have

A′ = {C′1},C′1 = φ
and

A1 = Γ0.

Thus, the proposed scheme A coincides with Benaloh and Le-
ichter’s scheme. �

Let NA(P) be the number of shares distributed to P ∈ P by us-
ing the proposed scheme A. Similarly, let NBL(P) be the number
of shares distributed to P ∈ P by using Benaloh and Leichter’s
scheme. The next theorem shows the proposed scheme A is more
efficient than Benaloh and Leichter’s scheme from the viewpoint
of the number of shares distributed to each participant in Q(⊂ P).

Theorem 3 For any P ∈ P, the number of shares distributed
to P is evaluated as follows:

NA(P) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

NBL(P) −
m∑

i=1

|{P} ∩C′i |(|Ai| − 1) ( P ∈ Q)

NBL(P) ( P � Q).

Proof: From the definition of A1, · · · ,Am and A′, NA(P) is ob-
tained by

NA(P) = |{C′ ∈ A′ : P ∈ C′}|
=

m∑

i=1

|{P} ∩C′i | (5)

for P ∈ Q. On the other hand, NBL(P) is obtained by

NBL(P) = |{X ∈ Γ0 : P ∈ X}|. (6)

From the definition ofA1, · · · ,Am andA′, we have

{X ∈ Γ0 : P ∈ X} =
m⋃

i=1

{C′i ∪C : P ∈ C′i ,C ∈ Ai} (7)

for P ∈ Q. From Eqs. (6) and (7), we have

NBL(P) =
m∑

i=1

|{C′i ∪C : P ∈ C′i ,C ∈ Ai}|

=

m∑

i=1

|{P} ∩C′i | · |Ai| (8)

for P ∈ Q.
Similarly, NA(P) is obtained by

NA(P) =
m∑

i=1

|{C ∈ Ai : P ∈ C}| (9)

for P � Q. From the definition ofA1, · · · ,Am andA′, we have

{X ∈ Γ0 : P ∈ X} =
m⋃

i=1

{C′i ∪C : P ∈ C ∈ Ai} (10)

for P � Q. From Eqs. (6) and (10), we have

NBL(P) =
m∑

i=1

|{C′i ∪C : P ∈ C ∈ Ai}|

=

m∑

i=1

|{C ∈ Ai : P ∈ C}| (11)

for P � Q. Theorem 3 is easily obtained by Eqs. (5), (8), (9) and
(11). �

4. Proposed Scheme B

The proposed scheme A can reduce the number of shares
distributed to P ∈ Q, but the number of shares distributed to
P ∈ P − Q is equal to that of Benaloh and Leichter’s scheme.
Here, we apply Γ0− of the scheme I of TUM05 [8] to the pro-
posed scheme A and propose a new secret sharing scheme real-
izing general access structures. Since the scheme I of TUM05
is more efficient than Benaloh and Leichter’s scheme, the pro-
posed scheme B can also reduce the number of shares distributed
to P ∈ P − Q.

For P = {P1, P2, · · · , Pn},Q(⊂ P), K ∈ K and Γ, the proposed
scheme B is described as follows.
Proposed Scheme B:
( 1 ) Let Γ0− = {A ∈ Γ0 : |A| ≤ l}, where l = maxB∈Γ̄ |B|. Let
P′ = {P ∈ X : X ∈ Γ0 and |X| > l} and n′ = |P′|. Compute n′

shares

S = {s1, s2, · · · , sn′ }

for the secret K by using Shamir’s (l + 1, n′)-threshold
scheme. Then, one distinct share in S is assigned to each
P ∈ P′.

( 2 ) Let A′ = {C ⊂ Q : Q ∩ A = C for some A ∈ Γ0−} and
represent it as

A′ = {C′1,C′2, · · · ,C′d}.
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( 3 ) For C′i ∈ A′, let

Ai = {B ⊂ P − Q : B ∩C′i = φ

and B ∪C′i = A for some A ∈ Γ0−}
and represent it as

Ai = {Ci1,Ci2, · · · ,Ci|Ai |}.
( 4 ) For C′i ∈ A′,

(i) if C′i = φ then

S i = {wi} and wi = K,

(ii) if C′i � φ andAi = {φ} then

S i = {w′i } and w′i = K,

(iii) if C′i � φ andAi � {φ} then compute 2 shares

S i = {wi, w
′
i }

by using Shamir’s (2, 2)-threshold scheme with K as a
secret independently for 1 ≤ i ≤ d.

( 5 ) For C′i ∈ A′, if C′i = φ then

S 1,i = φ,

else compute |C′i | shares

S 1,i = {s′i,1, s′i,2, · · · , s′i,|C′i |}
by using Shamir’s (|C′i |, |C′i |)-threshold scheme with w′i as a
secret independently for 1 ≤ i ≤ d. One distinct share in S 1,i

is assigned to each P ∈ C′i (1 ≤ i ≤ d).

( 6 ) For Ci j ∈ Ai , if Ci j = φ then

S 2,i, j = φ,

else compute |Ci j| shares

S 2,i, j = {si, j,1, si, j,2, · · · , si, j,|Ci j |}
by using Shamir’s (|Ci j|, |Ci j|)-threshold scheme with wi as a
secret independently for 1 ≤ i ≤ d, 1 ≤ j ≤ |Ai|. One dis-
tinct share in S 2,i, j is assigned to each P ∈ Ci j (1 ≤ i ≤ d, 1 ≤
j ≤ |Ai|).

Example 4: Let Q = {P1, P2}. We shall realize the access struc-
ture of Example 1 by the proposed scheme B.
• Since l = 4, we have

Γ0− = {A1, A2, A3, A4}
and P = P′. Compute 6 shares

S = {s1, s2, · · · , s6}
for the secret K by using Shamir’s (5, 6)-threshold scheme.

• Since Q = {P1, P2},A′ is defined by

A′ = {C′1,C′2,C′3}
where

C′1 = {P1, P2},

C′2 = {P2},
C′3 = φ.

• A1,A2 andA3 are defined by

A1 = {{P5, P6}},
A2 = {{P3, P5, P6}, {P4, P5, P6}},
A3 = {{P3, P4, P5, P6}}.

• For C′1,C
′
2 ∈ A′, compute 2 shares

S 1 = {w1, w
′
1},

S 2 = {w2, w
′
2}

by using Shamir’s (2, 2)-threshold scheme with K as a secret.
Since C′3 = φ, we set

S 3 = {w3} and w3 = K.

• For C′1,C
′
2 ∈ A′, compute |C′i | shares

S 1,1 = {s′1,1, s′1,2},
S 1,2 = {s′2,1}

by using (|C′i |, |C′i |)-threshold scheme with w′i as a secret in-
dependently for 1 ≤ i ≤ 2. Since C′3 = φ, we set

S 1,3 = φ.

• For Ci j ∈ Ai , compute |Ci j| shares

S 2,1,1 = {s1,1,1, s1,1,2},
S 2,2,1 = {s2,1,1, s2,1,2, s2,1,3},
S 2,2,2 = {s2,2,1, s2,2,2, s2,2,3},
S 2,3,1 = {s3,1,1, s3,1,2, s3,1,3, s3,1,4}

by using Shamir’s (|Ci j|, |Ci j|)-threshold scheme with wi as a
secret independently for 1 ≤ i ≤ 3, 1 ≤ j ≤ |Ai|.

• In this case, shares are distributed as follows:

P1 : s1, s
′
1,1

P2 : s2, s
′
1,2, s

′
2,1

P3 : s3, s2,1,1, s3,1,1

P4 : s4, s2,2,1, s3,1,2

P5 : s5, s1,1,1, s2,1,2, s2,2,2, s3,1,3

P6 : s6, s1,1,2, s2,1,3, s2,2,3, s3,1,4.

The number of shares distributed to P ∈ P is described in Ta-
ble 1.

This result shows that the proposed schemes A and B can re-
duce the numbers of shares distributed to P ∈ Q. The proposed
scheme B does not require shares corresponding to authorized
subsets A5 and A6. Thus, the proposed scheme B can also reduce

Table 1 Comparison of the number of shares distributed to P ∈ P.

P1 P2 P3 P4 P5 P6

Benaloh and Leichter’s scheme 3 5 4 4 5 5
The scheme I of TUM05 2 4 3 3 5 5
The proposed scheme A 1 2 4 4 5 5
The proposed scheme B 2 3 3 3 5 5
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the numbers of shares distributed to P3, P4(∈ P − Q). Here, we
show some properties of the proposed scheme B.

Theorem 4 Let P = {P1, P2, · · · , Pn} be a set of n partici-
pants. For any Q(⊂ P) and any access structure Γ(⊂ 2P), dis-
tribute shares for a secret K by using the proposed scheme B.
Then, for any subset X ⊂ P,
(a) X ∈ Γ⇒ H(K|X) = 0,
(b) X � Γ⇒ H(K|X) = H(K).
Proof: Let XS denote the shares in S assigned to X ⊂ P. Sim-
ilarly, let XS 1,i and XS 2,i, j denote the shares in S 1,i and S 2,i, j as-
signed to X, respectively(1 ≤ i ≤ d, 1 ≤ j ≤ |Ai|). At first, we
show H(K|X) = 0 for any X ∈ Γ.
(Case i) X ∈ Γ and |X| ≥ l + 1: In this case,

|XS | ≥ l + 1.

Since s1, · · · , sn′ are shares computed by Shamir’s (l + 1, n′)-
threshold scheme with K as a secret, we immediately obtain

H(K|X)

= H(K|XS , XS 1,1 , · · · , XS 1,d , XS 2,1,1 , · · · , XS 2,d,|Ad | )

≤ H(K|XS )

= 0.

(Case ii) X ∈ Γ and |X| ≤ l: From the property of the access struc-
ture and the definition ofA1, · · · ,Ad andA′, there exists A ∈ Γ0−
such that

C′i ∪Ci j = A ⊂ X.

In this case, we have

|XS 1 ,i| = |C′i | and |XS 2 ,i, j| = |Ci j|.
X can recover wi since si, j,1, si, j,2, · · · , si, j,|Ci j | are shares computed
by Shamir’s (|Ci j|, |Ci j|)-threshold scheme with wi as a secret.
Similarly, If C′i � φ, X can recover w′i since s′i,1, s

′
i,2, · · · , s′i,|C′i | are

shares computed by Shamir’s (|C′i |, |C′i |)-threshold scheme with
w′i as a secret. From the definition of S i, we immediately obtain

H(K|X)

= H(K|XS , XS 1,1 , · · · , XS 1,d , XS 2,1,1 , · · · , XS 2,d,|Ad | )

≤ H(K|XS 1,i , XS 2,i, j )

= 0.

Since H(K|X) ≥ 0 is obvious, we have H(K|X) = 0 for any X ∈ Γ.
Next we show H(K|X) = H(K) for any X � Γ. For any X � Γ,

we have |X| ≤ l. This implies

H(K|XS ) = H(K). (12)

From the property of the access structure and the definition of
Ai, · · · ,Ad andA′, for any Ai ∈ Γ0−, we have

C′i � X or Ci j � X (1 ≤ j ≤ |Ai|).
This implies

H(K|XS 1,i , XS 2,i, j ) = H(K).

for 1 ≤ i ≤ d, 1 ≤ j ≤ |Ai|. From the definition of S i, we have

H(K|XS 1,i , XS 2,i,1 , · · · , XS 2,i,|Ai | ) = H(K)

for 1 ≤ i ≤ d. This implies

H(XS 1,i , XS 2,i,1 , · · · , XS 2,i,|Ai | |K)

= H(XS 1,i , XS 2,i,1 , · · · , XS 2,i,|Ai | ). (13)

In order to show H(K|X) = H(K), we expand H(K|X) as follows:

H(K|X)

= H(K|XS , XS 1,1 , · · · , XS 1,d , XS 2,1,1 , · · · , XS 2,d,|Ad | )

= H(K|XS )

+H(XS 1,1 , · · · , XS 1,d , XS 2,1,1 , · · · , XS 2,d,|Ad | |K, XS )

−H(XS 1,1 , · · · , XS 1,d , XS 2,1,1 , · · · , XS 2,d,|Ad | |XS ). (14)

From the chain rule for entropy, we have

H(XS 1,1 , · · · , XS 1,d , XS 2,1,1 , · · · , XS 2,d,|Ad | |K, XS )

=

d∑

t=1

H(XS 1,t , XS 2,t,1 , · · · , XS 2,t,|At | |K, XS , XS 1,1 , · · ·

· · · , XS 1,t−1 , XS 2,1,1 , · · · , XS 2,t−1,|At−1 | )

(∗)
=

d∑

t=1

H(XS 1,t , XS 2,t,1 , · · · , XS 2,t,|At | |K)

=

d∑

t=1

H(XS 1,t , XS 2,t,1 , · · · , XS 2,t,|At | ). (15)

Here, (∗) comes from the fact that XS , XS 1,1 , · · · , XS 1,d and
XS 2,1,1 , · · · , XS 2,d,|Ad | are mutually independent and the last equality
comes from Eq. (13). On the other hand, we have

H(XS 1,1 , · · · , XS 1,d , XS 2,1,1 , · · · , XS 2,d,|Ad | |XS )

=

d∑

t=1

H(XS 1,t , XS 2,t,1 , · · · , XS 2,t,|At | |XS , XS 1,1 , · · ·

· · · , XS 1,t−1 , XS 2,1,1 , · · · , XS 2,t−1,|At−1 | )

≤
d∑

t=1

H(XS 1,t , XS 2,t,1 , · · · , XS 2,t,|At | ). (16)

Substituting Eqs. (12), (15) and (16) into Eq. (14), we obtain
H(K|X) ≥ H(K). Since H(K|X) ≤ H(K) is obvious, we have
H(K|X) = H(K). �

The next theorem shows that the proposed scheme B includes
the scheme I of TUM05 as a special case.

Theorem 5 If Q = φ, then the proposed scheme B coincides
with the scheme I of TUM05.
Proof: Since Q = φ, we have

A′ = {C′1},C′1 = φ
and

A1 = Γ0−.

Thus, the proposed scheme B coincides with the scheme I of
TUM05. �

The next theorem shows that the proposed scheme B includes
Shamir’s (k, n)-threshold schemes as a special case.

Theorem 6 Let P = {P1, P2, · · · , Pn}. If Γ = {A ∈ 2P : |A| ≥
k}, then the proposed scheme B coincides with Shamir’s (k, n)-
threshold scheme for any Q(⊂ P).
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Proof: In this access structure, we have l = k − 1, n′ = n and
Γ0− = φ. Then, S = {s1, s2, · · · , sn′ } is obtained by using Shamir’s
(l + 1, n′)-threshold scheme, and one distinct share in S is as-
signed to each P ∈ P. Thus, the proposed scheme B coincides
with Shamir’s (k, n)-threshold scheme. �

Let NB(P) be the number of shares distributed to P ∈ P by us-
ing the proposed scheme B. Similarly, let NTUM(P) be the number
of shares distributed to P ∈ P by using the scheme I of TUM05.
The next theorem shows the proposed scheme B is more efficient
than Benaloh and Leichter’s scheme and the scheme I of TUM05
from the viewpoint of the number of shares distributed to each
participant.

Theorem 7 For any P ∈ P, the number of shares distributed
to P is evaluated as follows:

NB(P) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

NBL(P) −
d∑

i=1

|{P} ∩C′i |(|Ai| − 1)

−∣∣∣|{X ∈ Γ0 − Γ0− : P ∈ X}| − 1
∣∣∣+ ( P ∈ Q)

NBL(P)

−∣∣∣|{X ∈ Γ0 − Γ0− : P ∈ X}| − 1
∣∣∣+ ( P � Q)

and

NB(P) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
NTUM(P) −

d∑

i=1

|{P} ∩C′i |(|Ai| − 1) ( P ∈ Q)

NTUM(P) ( P � Q)

where |x|+ = max{0, x}.
Proof: From the definition of Γ0−, we have

NBL(P) = |{X ∈ Γ0− : P ∈ X}| + |{X ∈ Γ0 − Γ0− : P ∈ X}|
and

NTUM(P) = |{X ∈ Γ0− : P ∈ X}| + |{P} ∩ P′|. (17)

The last term of Eq. (17) comes from the fact that the scheme I of
TUM05 needs one additional share for every P ∈ P′. From the
definition ofA1, · · · ,Ad andA′, NB(P) is obtained by

NB(P) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

|{P} ∩ P′| +
d∑

i=1

|{P} ∩C′i | ( P ∈ Q)

|{P} ∩ P′| +
d∑

i=1

|{C ∈ Ai : P ∈ C}| ( P � Q).

Theorem 7 is easily obtained by the above equations and the re-
sult of Theorem 3. �

5. Evaluation of the Efficiency

Here, we consider the efficiency of the proposed schemes. The
proposed scheme A can reduce the number of shares distributed
to each participant P ∈ Q(⊂ P). The proposed scheme B can
also reduce the number of shares distributed to each participant
in P − Q. From Theorem 3 and 7, we immediately obtain

NB(P) ≤ NA(P) for any P � Q.
Next, we consider P ∈ Q. From Eq. (5) and the proof of Theorem
7, we have

NB(P) = NA(P) + |{P} ∩ P′| −
∑

X∈A′A−A′B
|{P} ∩ X|, (18)

where

A′A = {C ⊂ Q : Q ∩ A = C for some A ∈ Γ0},
A′B = {C ⊂ Q : Q ∩ A = C for some A ∈ Γ0−}.

This shows that the proposed scheme B is not always more effi-
cient than the proposed scheme A for P ∈ Q and the efficiency
depends on the access structure. In the worst case, Eq. (18) is
evaluated by

NB(P) ≤ NA(P) + 1.

Next, we consider the information rate ρ. The information rates
of the proposed schemes A and B are denoted by

ρA = min{1/NA(P) : P ∈ P}, (19)

ρB = min{1/NB(P) : P ∈ P}. (20)

Equations (19) and (20) show that the efficiency of the proposed
schemes gets higher as the number of shares distributed to partic-
ipants becomes small. Thus, we can improve the information rate
when we set

Q = {P ∈ P : ρA = 1/NA(P)}
or

Q = {P ∈ P : ρB = 1/NB(P)}.

6. Conclusion

We have proposed new secret sharing schemes realizing gen-
eral access structures. Our proposed schemes are perfect secret
sharing schemes and can reduce the number of shares distributed
to specified participants. Furthermore, for any access structure,
the proposed schemes are more efficient than the previous re-
sults [5], [8].
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