Journal of Information Processing Vol.23 No.1 58-66 (Jan. 2015)

[DOI: 10.2197/ipsijip.23.58]

Regular Paper

Development of resource management server for

production IaaS services based on OpenStack

1,a) 1 1

Yoit YamaTo Yukinisa Nisaizawa! Masanrro Muror! KENTARO TANAKA

Received: April 4, 2014, Accepted: September 12, 2014

Abstract: In this paper, we show the development of resource management server to enable production Cloud ser-
vices easily based on OpenStack. In recent days, Cloud computing technologies have progressed and many providers
have started Cloud services. Some providers use proprietary systems but others use open source IaaS software such
as OpenStack and CloudStack. Because the community of OpenStack development is very active, we expect Open-
Stack will become a de facto standard open source laaS software. Because OpenStack target is providing primitive
APIs for IaaS control, there are some problems to use OpenStack as it is for production services. For example, there
are some problems that logical/virtual resources CRUD transactions are insufficient, nova-scheduler which determines
hypervisors for virtual machines deployment does not consider operators business requirements and logical checks of
unsuitable API calls are insufficient. Therefore, we propose a resource management server which manages physical
resources and logical/virtual resources to enable production IaaS services easily based on OpenStack. The resource
management server mediates users and OpenStack, provides added actions such as logical checks of API calls, multiple
API combination uses, scheduling logic of hypervisors for virtual machines. We implemented the proposed resource
management server and showed that operators can operate reliable IaaS services without conscious of OpenStack prob-
lems. Furthermore, we measured the performance of multiple API combination uses and showed our method could

reduce users waiting time of image deployment or image extraction from volume.

Keywords: OpenStack, Cloud computing, laaS, resource management server

1. Introduction

In recent days, Cloud computing technologies such as virtual-
ization and scale-out have been progressed and many providers
have started Cloud services. According to the definition of the
United States NIST[1], Cloud service models can be divided
SaaS (Software as a Service), PaaS (Platform as a Service) and
laaS (Infrastructure as a Service). laaS provides hardware re-
sources of CPU or Disk via a network. For examples, Amazon
Web Services EC2 (Elastic Compute Cloud) [2] and Rackspace
Public Cloud [3] are production [aaS services.

For setting up laaS cloud software, Amazon uses propri-
etary systems and RackSpace uses open source software Open-
Stack [4]. OpenStack, CloudStack [5] and Eucalyptus [6] are ma-
jor open source laaS software and adoptions of open source laaS
software are increasing. Recently, OpenStack development com-
munity is very active and new functions are released every 6
months. We also expect the openness of OpenStack developments
and develop IaaS services based on OpenStack.

However, OpenStack main target is providing primitive APIs
of IaaS control. There are some problems when operators pro-
vide reliable Cloud IaaS services using only OpenStack. For ex-
amples, logical/virtual resources CRUD transactions are insuffi-
cient and unnecessary resources are remained when API termi-
nates abnormally, nova-scheduler which determines hypervisors

! NTT Software Innovation Center, NTT Corporation, Musashino, Tokyo

180-8585, Japan
@ yamato.yoji@lab.ntt.co.jp

© 2015 Information Processing Society of Japan

for VM (virtual machine)s selects hypervisors randomly and does
not consider operators business requirements, logical checks of
unsuitable API calls are insufficient such as volume deletion API
can be done when a snapshot is creating from the volume.

For this reason, we propose a resource management server
(RM) which manages physical resources and logical/virtual re-
sources both to enable production IaaS services easily based on
OpenStack. The RM mediates users and OpenStack, provides
added actions such as logical checks of API calls, multiple API
combination uses, scheduling logic of hypervisors for VMs. The
RM makes users can use reliable TaaS services. We design and
implement the proposed RM and show it can support the IaaS ser-
vice operations without conscious of OpenStack problems. Fur-
thermore, we measure the performance of multiple API combina-
tion uses and show our method can effectively reduce users wait-
ing time of image deployment or image extraction from volume.

The rest of the paper is organized as follows. In Section 2, we
introduce OpenStack architecture and clarify OpenStack prob-
lems for production business use. In Section 3, we propose a RM
which mediates users and OpenStack, and also study policies to
resolve OpenStack problems using RM. We explain hypervisors
scheduling for VMs and high speed image deployment/image ex-
traction from volume through multiple API combination use in
detail. In Section 4, we implement the RM, confirm our proposed
methods feasibility and evaluate the performance. We compare
our work to related works in Section 5. We summarize the paper
in Section 6.

58

Journal of Information Processing Vol.23 No.1 58-66 (Jan. 2015)

2. OpenStack Problems for Production IaaS
Services

2.1 Outline of OpenStack

OpenStack, CloudStack and Eucalyptus are major open source
TaaS software, and among them OpenStack community is active
because many providers contribute developments and adopted
services are rapidly increasing. Figure 1 shows architecture of
OpenStack.

OpenStack is composed of the function block which manages
each logical/virtual resource, and the function block which pro-
vides Single Sign On authentication among other function blocks.
OVS (Open Virtual
Switch) [7] and other software switches can be used as a vir-
tual switch. Nova controls VMs. KVM (Kernel based Virtual
Machine) [8], Xen [9] and others can be used as a hypervisor of

Neutron controls virtual networks.

a VM. OpneStack provides two storage management function
blocks. Cinder for block storages and Swift for object storages
and both storages are used for retaining data. Block storages can
be attached to VMs like local disk volumes. Glance manages
image files for VMs. An image file such as OS image can be de-
ployed to a block storage using Cinder and Glance and a user can
boot a VM of certain OS from the block storage using Nova. Key-
stone is a base which performs integrated authentications of these
function blocks. The functions of OpenStack are used through
REST (Representational State Transfer) APIs. There is also Web
GUI called Horizon to use the functions of OpenStack.

OpenStack major version is released once a half-year and the
latest version name is IceHouse. After IceHouse, the new func-
tions to catch-up Amazon EC2 will be added. However, com-
pared with Amazon EC2 or CloudStack, it can be said that Open-
Stack is still in developing phase. Therefore, we think there are
some problems to adopt OpenStack as it is for production laaS
services.

2.2 Clarification of OpenStack Problems

As mentioned above, there remain insufficient points of Open-
Stack functions. In particular, since OpenStack main targets
are providing primitive APIs to manage logical/virtual resources,
there are some insufficient points for a reliable IaaS service. A
reliable TaaS service has some features. It is running for a long
period of time, it has a sufficient high performance/availability,
a prescribed fee is charged per resource usage and physical re-

[Horizon } i
/[RESTAPI]) '(Eapse ':g:ck)
[Keystone]

> <

Nova, Glance Cinder Swift Neutron
Virtualization

hyper || CPUarchi- || block object switch router FwW
visor tecture storage storage
layer

server storage network Hardware
layer

Fig. 1 OpenStack architecture.

© 2015 Information Processing Society of Japan

sources are shared effectively to reduce a prescribed fee. Here
we clarify 6 major problems when we use OpenStack for reliable
TaaS services. 1 to 3 are from OpenStack insufficient functions.
4 to 6 are from operator business requirements. OpenStack im-
provement has been progressed in each new version, but these
problems have not been completely resolved yet.

2.2.1 Logical Checks of OpenStack API Calls are Insuffi-

cient

OpenStack provides general purpose APIs and have few pre-
condition checks, there are problems that logically inappropriate
API calls can be received. For example, a volume deletion API
call can be performed during creating a snapshot from the vol-
ume. This causes a snapshot creation process incomplete. Since
the logical checks of API calls are insufficient, there are problems
in the view of user convenience because API processing may ter-
minate abnormally after API request is received.

Insufficient logical checks of API calls cause failures of re-
source provisioning for orders and unnecessary resources re-
mained. These increase risks of wrong charging and perfor-
mance/availability degradation.

2.2.2 Transaction Management is Insufficient

Although OpenStack performs an asynchronous processing
correspond to an API call, transaction management is insufficient.
Therefore unnecessary resources remain in OpenStack side when
OpenStack API processing terminates abnormally. For example,
if a problem occurs when a volume creation API is performing,
unnecessary volume may remain in OpenStack side.

Insufficient transaction managements cause unnecessary re-
sources remained and unnecessary resourses increase risks of
wrong charging and performance/availability degradation.

2.2.3 Completion Confirmation of Neutron Asynchronous
Processing is Insufficient

As a design concept, Neutron manages a resource state in DB
and does not care an actual completion time after it has written
the requests to DB. The thread of processing a network resource
checks DB periodically and if there are pending requests, it car-
ries out the request asynchronously. For example, when the se-
curity group setting (in other words, access control setting) of
a logical router is performing in Neutron, security group setting
may not complete yet even if the API requester has received the
response of DB written. This increases a risk of allowing mali-
cious access.

Neutron does not guarantee when actual virtual network re-
sources are created, operators cannot charge usage fees accu-
rately.

2.2.4 OpenStack Does Not Manage Physical Resources

OpenStack manages virtual or logical resources and its man-
agement of physical resources is insufficient. Ironic[10] is a
project of OpenStack for provisioning on physical machines but
its implementation is undergoing. For IaaS services operation,
operators need to manage physical resources states. Since it is
a mission of operator to provide services stable for a long time,
physical resources maintenances are important. For example, we
need operations of migrating VMs to other physical servers tem-
porally and blocking new VMs deployment on the physical server
during the maintenance of physical server replacements.

59

Journal of Information Processing Vol.23 No.1 58-66 (Jan. 2015)

Insufficient managing of physical servers and virtual resources
may lead a delay of facilities extension and an inefficient physical
resources sharing. These increase a risk of performance degrada-
tion.

2.2.5 VM Allocation Scheduler Does Not Consider Business
Requirements of Operators

Intelligent VM allocation to physical servers is also insufficient
in OpenStack. When nova-scheduler determines a hypervisor
where a VM will be deployed, we can use Filter Scheduler [11].
Filter Scheduler can set 30 type conditions of hypervisor selec-
tions but it lacks some important conditions such as software li-
cense or VM usage conditions. We think it does not meet some
business requirements to reduce license cost or noisy neighbor
problem. For example, when guest OS of VMs are RedHat En-
terprise Linux (RHEL), these VMs may need to be deployed on
a hypervisor which host OS is RHEL. In other example, when
there is a VM used much, operators would like to put the VM
into a specific hypervisor to isolate.

If VMs are not deployed on physical servers effectively and
physical resources are not shared effectively, laaS service prices
remain high because of facilities costs.

2.2.6 Naive API Calls May Have Problems of System Incon-
sistency or Lower Performance

Because OpenStack provides general and primitive APIs, naive
API calls may bring problems that unnecessary resources are re-
mained in OpenStack or user waiting time becomes too long. For
example, when deleting a tenant (in other word, virtual floor), it
is necessary to delete VMs or volumes under the tenant. How-
ever we can delete only a tenant by tenant control API, there may
remain unnecessary resources in OpenStack. In other example,
when we create a new volume from a certain OS image, the vol-
ume size is larger and larger, user waiting time becomes longer
and longer. When volume size is 50 GB, it takes more than 15
minutes to create and it makes users frustrated.

Naive usages of OpenStack APIs take long times and decrease
satisfactions of users.

Although there are other slight problems, we think main prob-
lems are these 6 items for reliable IaaS services on OpenStack.
These 6 problems are common among other [aaS software (those
do not have all of them but have many of them). CloudStack
and Eucalyptus have same problems of operator business require-
ments 4-6. Regarding to OpenStack insufficient problems 1-3,
CloudStack has 1 problem and Eucalyptus has 1 and 2 problems.

Of course, OpenStack insufficient functions are discussed in
OpenStack community but the implementation is not enough yet.
And some operator business requirements are out of scope in
OpenStack community. Becuase we need to launch our laaS ser-
vices fast, we resolve 6 problems which cover insufficient func-
tions and operator business requirements by ourselves. In paral-
lel with our development, we also feedback these enhancements
to OpenStack community. Taskflow is a project for transaction
management in OpenStack and we are discussing its specifica-
tion much in OpenStack community.

If we develop our codes inside OpenStack, there is a code gap
between community OpenStack and our customized OpenStack.
The gap may increase investigation efforts when we encounter

© 2015 Information Processing Society of Japan

an OpenStack problem because of complicated code structures.
For this reason, we implemented these codes in a RM which is a
server outside OpenStack.

3. Proposal of Resource Management Server

We propose a RM which manages physical resources and log-
ical/virtual resources to enable production laaS services easily
based on OpenStack. The RM behaves as a proxy when users
or operators use OpenStack APIs, analyzes requests and provides
added actions such as logical checks. Because 6 problems depend
on business types, we design the RM as an external function sep-
arated from OpenStack. Here, we describe the policies how to
resolve 6 problems. Especially, we explain 5 and 6 policies in
detail because these two problems need new methods.

3.1 Logical Checks of OpenStack API Calls

To resolve insufficient logical checks of OpenStack, the RM
analyzes API requests and calls OpenStack APIs whether there is
no problem of precondition or parameter validity.

Because all virtual/logical resource controls need logical
checks, our RM checks more than 200 logics. Logical checks
are divided into following patterns.

- Check elemental preconditions. (validities of Region, Avail-
ability Zone, Tenant, VM Flavor, etc)

- Check each resource is operable or not. (e.g., when we create
a snapshot from a volume, the volume status needs to be valid)

- Check related resources before deletion. (e.g., during image
extracting from a volume, the volume should not be deleted)

- Check parameter values validities. (e.g., VLAN ID, CIDR
(Classless Inter-Domain Routing) IP format, etc)

- Check contract quota, system threshold of each resource.

Rigid logical checks of API calls can prevent unnecessary re-
sources remaining and abnormal terminating after order accep-
tances.

3.2 Transaction Management of Virtual/logical Resources
Operations

To resolve insufficient transaction management of OpenStack,
the RM manages transactions and calls a reverse operation API if
a transaction does not complete. OpenStack does not have purge
APIs, we need to call a reverse operation API like deletion API
when creation API error occurs. In this way, the RM prevents
an inconsistency of virtual/logical states between OpenStack and
API requester. Since OpenStack API is a small unit processing,
the RM manages related API calls as a transaction and if one of
processing fails, calls reverse operation APIs for all related APIs.
For example, logical router setting needs plural APIs such as se-
curity group and routing settings.

Transaction managements can prevent unnecessary resources
remaining.

3.3 Confirm Neutron Asynchronous Completion Notifica-
tions
Because an operator business is charging fees for provisioned
resources, it is fatal to charge a resource not created yet. To re-
solve insufficient completion information of Neutron, the RM

60

Journal of Information Processing Vol.23 No.1 58-66 (Jan

c OpenStack neutron— Execution
R nova—api a
Hypervisor server system
UM power on
starting VM WM areation
Creating VM
%creauon completion
Bind port to VM

OK (has yrritten to DB)

VM gower on completion

Get port information Get port information

Recognize VIF with BMAC address which is related to specified port

ort information

7
T Getstatus information

Confirm status s “UP” not from DB but

exacution systam
Fig. 2 Resource management server confirms VM port setting.

Portinformation

~

confirms actual resources validities, and then changes the re-
sources statuses to valid in DB. All virtual/logical network re-
sources are controlled by Neutron, about 40 operations are influ-
enced. A confirmation method depends on each resource opera-
tion.

For example, we explain VM port setting confirmation using
Fig.2. When we call VM power on API, there is a possibility
that VM is available but a port is not available and the VM cannot
communicate other VMs. The RM calls an API to get the status
of port related to the VM, confirms status is “UP;” then changes
the status of VM and notifies a completion to a user.

Confirming completions of Neutron virtual network resources
certainly, operators can charge resource usage fees accurately.

3.4 Physical Resource Management

Because OpenStack physical resource management is insuf-
ficient, the RM manages physical resources such as physical
storages, servers and retains mapping information what vir-
tual/logical resources are on each physical resource. Specifically,
the RM manages each physical server, each cluster of physical
servers, mapping of OpenStack logical hosts and physical cluster,
each physical storage, user volume or image area within physi-
cal storage. Adding physical resources information to OpenStack
virtual/logical resources information, the RM can manage what
virtual/logical resources are on each physical resource uniformly.
In addition, the RM manages capacities that how much virtual
resources deploy on each physical server and quota settings that
how much virtual resources each user can create. This informa-
tion of specifications, capacities or quota settings are set by oper-
ators.

Managing mapping information of physical servers and virtual
resources, operators can use physical server effectively and ex-
tend facilities accurately.

3.5 Scheduling Hypervisors Where VMs Deploy

To resolve Nova Filter Scheduler insufficient points, the RM
determines a hypervisor based on some consideration points
where a VM deploys using physical server information. After
determination, the RM requests a VM deployment to OpenStack

© 2015 Information Processing Society of Japan

. 2015)
R hypervisor hypervisor hypervisor
RHEL Oracle
Software software Software
group group group
Individual [Rrueis1 |[RHELS2 | [RHELGS oraces || oracle 10 || oracle 11
software

volume, Image
image A 8

Fig. 3 Software license management relationships.

with concrete hypervisor assignment.

For operator businesses, there are four consideration points
where to deploy a VM; license, VM usage, physical server ca-
pacity and migration availability.

- License.

A VM which uses license software may need to be deployed on
specified hypervisors. For example, VM A uses RHEL6.1, VM B
uses RHEL6.2 and VM C uses CentOS, we may need to deploy
VM A and B on a hypervisor which host OS is RHEL.

- VM usage.

Operators need to consider some VMs are used frequently and
consume resources much. Operators may need to isolate these
VMs for minimizing bad effects to other VMs. Thus, the RM
needs to deploy these VMs on specified hypervisors for isolation.

- Physical server capacity.

operators would like to reduce working physical servers and
operation costs, the RM needs to take in VMs to one physical
server as much as possible. And when there are plural servers
which have margin rooms for VMs, the RM needs to select a
hypervisor to enhance effectiveness of physical server resources
usage. (Because some users stop VMs use, plural servers have
margin rooms for new VMs)

- VM migration.

When a VM migrates to other hypervisors, we need to check
a VM migration availability. KVM is a most used hypervisor
in OpenStack community, but KVM specification prohibits VM
migrations to other hypervisors with no CPU compatibility. Be-
cause OpenStack does not manage physical server CPU informa-
tion, there is a risk of live migration or block migration failure
after API calls.

Based on these consideration points, the RM manages hyper-
visor information of CPU type, resource capacity, usage; normal
or isolation, state; under use or stock and what software group is
related. This information is set by operators.

Figure 3 shows the concept of software license management.
Multiple software licenses can be attached to bootable volumes
or images. Software group is a bundle concept of individual soft-
ware. And multiple software group can be related to a hypervisor.

In Fig. 3 case, RHELG6.1 is attached to volume A and RHEL6.2
and Oracle9 are attached to image B. RHELG.1 is a component
of RHEL software group. RHEL software group is related to hy-
pervisor C and D. Then, the RM judges it can deploy the VM of
volume A to hypervisor C or D. These relationships are managed
in tables of resource management DB. Using software group con-

61

Journal of Information Processing Vol.23 No.1 58-66 (Jan. 2015)

cept, we do not have to modify hypervisor settings but only mod-
ify software group setting when new software is released (e.g.,
RHEL 6.4).

Here, we explain a flow of hypervisor selection when normal
VM activates. If there is another consideration point, we can put
selection logic which corresponds to the point to these steps.

Step a - The RM narrows down hypervisors of “normal usage”
from all hypervisors of specified Region and Availability Zone.

Step b - The RM narrows down hypervisors of “under use”
state from step a candidates.

Step ¢ - The RM narrows down hypervisors using software
group information to satisty license requirement from step b can-
didates.

Step d - The RM narrows down hypervisors using capacity and
usage information from step ¢ candidates. It means when the RM
deploys a VM of specified flavor to the hypervisor, CPU core us-
age and Memory usage should not exceed the hypervisor thresh-
olds.

Step el - The RM determines a hypervisor of Step d if there is
only one candidate.

Step e2 - The RM determines a hypervisor based on specified
calculation formula if there are plural candidates. This calcula-
tion formula can be customized by each provider. For example,
we set the formula to bring), [Memory size of VM]/ 3, [CPU
core number of VM] near to [Memory size of hypervisor]/[CPU
core number of hypervisor] because CPU and Memory unbal-
anced usage does not use physical resources effectively. Here),
means summation of all VMs on the hypervisor.

Step f - When there is no candidate during b to e steps, the RM
changes a stock hypervisor status from “stock” to “under use”
and re-select a hypervisor from Step b.

In VM migration case, we add the step that the RM narrows
down hypervisors using CPU type information whether there is
CPU compatibility or not between current hypervisor and target
hypervisor.

In isolation VM deploy or migration case, lst step a is nar-
rowing down hypervisors of “isolation usage.” Because opera-
tors would like to isolate these VMs, step e2 calculation formula
should be the logic that the RM distributes these VMs to candi-
date hypervisors as much as possible.

Deploying VMs considering software license and vacant ca-
pacity of physical servers, physical resources are shared effec-
tively and operators can reduce prices of laaS.

3.6 Multiple API Combination Use to Delete Unnecessary
Resources or Enhance Performances

To resolve a problem that there remains unnecessary resources
under a tenant when a tenant deletion API is called, the RM calls
multiple deletion APIs collectively and clean up unnecessary re-
sources. Specifically, the RM gets information of virtual/logical
resources under a tenant when a tenant deletion API is requested,
then calls each resource deletion API in accordance with 1) log-
ical check rules. Virtual/logical resources are VMs, volumes,
snapshots, logical switches, logical routers, floating IPs and oth-
ers. After all virtual/logical resources are deleted, the RM deletes
a tenant. When a user cancels a contract, the RM deletes all

© 2015 Information Processing Society of Japan

CP Receive API requestof volume creation from Image

‘ Determine storage ‘

to create volume

Confirm cache
volume
Thereis cachevolume There is not cache volume
] ¥

Copyvolume from cache ‘ ‘

(Volume2Volume)

Create volume from Image
(Image2Volume)

There s cache volume Confirm cache

volume
There is not cache volume

Confirm cache volume
threshold

Not exceed threshold

Exceedthreshold ‘l’

‘ Delete oldvolume cache

L

Create cache volume from Image
(Image2Volume)

O o

Fig. 4 Proposed image deployment flow.

tenants in same way, deletes shared images among tenants, then
deletes a user account.

To resolve a problem that large size image deployment and im-
age extraction from volume take long waiting time for users, we
propose a method to use multiple APIs appropriately for one im-
age deployment or one image extraction from volume.

- The method to reduce image deployment time.

When we create a volume from an image using OpenStack
Image2Volume API, 50 GB volume creation takes more than 30
minutes in Section 4 environment (Fig.7). This is because it
needs a cooperation of Glance and Cinder through a network.

Therefore, to reduce network traffic for frequently used images
deployment case (e.g., create a new volume from OS image), we
retain a created volume from a certain image as a cache volume
in storages. And if a request of volume creation from the image
comes, a volume is copied from the cache volume in the storage.

Figure 4 shows the flow of image deployment. If there is a
cache volume, a new volume is created using Volume2Volume
copy way from the cache volume. If there is not a cache vol-
ume, new volume is created using normal Image2Volume way
and a cache volume is also created after user volume creation.
Operators can set a threshold number of cache volume which is
managed in the RM. And an old cache volume is deleted when
a cache volume number exceeds the threshold value. Note that
Volume?2 Volume copy is a physical storage function.

- The method to reduce VM power off time during image ex-
traction from volume.

Users can recover VMs using an image of the attached volume.
Periodical image extractions from volumes can be used for vol-
ume backup in case of volume failure. But when users extract an
image from a volume, there is a risk of dirty volume and image
extraction from volume failure in case of VM power on. Thus,
operators recommend users to stop VM power before an image
extraction from volume starts, and reactivate VM power on af-
ter the image extractions from volumes complete. However, an
image extraction from a 50 GB volume takes 20-30 minutes in
Section 4 environment (Fig. 7).

Therefore, to reduce VM power off time, we study the way
not to extract an image from a volume directly but extract an im-

62

Journal of Information Processing Vol.23 No.1 58-66 (Jan. 2015)

- Receive AP requestof image acquisition from volume

irstly create a temporal volume
orsnapshot?

Create atemporal volume first Create a snapshotfirst

Create atemporal volume from

specified volume (Volume2Volume)

Create asnapshotfrom
specified volume

I I
Motify userthat user can activate VM ‘ Notifyuserthatsu;fzr‘ can activate VM ‘
afely 0 ¥

¥ Create atemporal volume from
‘ Acquire Image from a temporal ‘

asnapshot
volume (Volume2image) P

T I

‘ Acquire Image from atemporal

volume (Volume2image)

I

‘ Delete aternporal volume |

I

‘ Delete a snapshot |

|
e

Fig. 5 Proposed image extraction from volume flow.

‘ Delete atemporal volume

age from a temporal volume or snapshot. We create a temporal
volume or snapshot from a volume first. These creation times
are shorter than image extraction from volume, users can activate
VM power on after these creations.

Figure 5 shows the flow of image extraction from volume.
When the RM receives a request of image extraction from vol-
ume, the RM creates a temporal volume using Volume2Volume
copy function or creates a snapshot using snapshot API. After
this creation, the RM returns the information that users can ac-
tivate VM safely. In a temporal volume case, the RM extracts
an image from a temporal volume, deletes the temporal volume
after the image extraction from volume complete. In a snapshot
case, the RM creates a temporal volume from a snapshot, then
extracts an image from a temporal volume, deletes the temporal
volume and the snapshot after the image extraction from volume
complete. Because a snapshot creation takes only a minute, users
can activate a VM sooner but a total processing takes more time
than Volume2Volume copy case. Thus, users can select these two
types based on their needs (fast VM activate or fast total process-
ing).

Combination uses of OpenStack API can reduce waiting times
of image deployment or image extraction and enhance satisfac-
tions of users.

4. Resource Management Server Evaluation

We implement the RM with proposed 1-6 functions and con-
firm it can support production IaaS service operations. Further-
more, we evaluate the performance of implemented RM.

4.1 Resource Management Server Implementation

Figure 6 shows the function block diagrams of the RM, Open-
Stack and related systems. The RM has three outer interfaces,
Web GUI, API and a resident process of resource manage-
ment. The RM manages virtual/logical resources and physical
resources. It provides both GUI and API to users and operators
for virtual/logical resources managements and provides GUI to
operators for physical resources managements. Note that GUI
for users can be customized by each provider using API func-
tions. Requests from users or operators to OpenStack are put

© 2015 Information Processing Society of Japan

q F‘)
|
R Users % Operators
[API& GUI] Gul]
virtualllogical respurce management Physical resource
1) management 4)

RM

ource management DB

Requestdata TBL Managementdata TBL

Getrequest

Resident process of resource management
2,3,5,6) cories
Call OpenStack APl ‘ f Completion nofification .

I |
¥ T

monitoring] - oo "
[OpenStack AP] notification| | Billing system |
= ||| |
Open Stack ossmss
CTEmEVEN
~ tenant
OVST | TOVST [COVST] ... monhmb [fioniomng |
Hyper || Hyper || Hyper " system
visor visor visor [

Fig. 6 Function blocks of resource management servers and related sys-
tems.

into requests data table in resource management DB first, then
a resident process gets the requests and calls OpenStack APIs.
The resident process of resource management receives event no-
tifications from OpenStack such as VM creation completion and
then put the state data to resource management DB. The resident
process of resource management also receives event notifications
of monitoring from OSS (Operation Support System) monitor-
ing system which monitors physical servers, changes states of
physical servers of DB. Resource control logs including Neutron
asynchronous processing are put into resource management DB,
operator BSS (Business Support System) billing system gets log
data periodically for accountings. Proposed 6 functions are im-
plemented on the function blocks described in Fig. 6.

We designed the RM on OpenStack and implemented it on
Ubuntu 12.04 OS and Apache Tomcat 6.0.36 by Java language
(JDK1.6.0.38).

We confirmed 6 functions validity on a test environment of per-
formance measurement.

The transaction management function calls reverse APIs to
roll-back virtual resources when OpenStack APIs processing fail.
This function prevents unnecessary resources remained. Using
the implemented RM, we have confirmed there is no unnecessary
resource in OpenStack after roll-backs of failed OpenStack APIs
processing. 30-40 asynchronous OpenStack APIs processing fail-
ures of Cinder, Glance, Keystone, Nova and Neutron were tested
practically.

Regarding to rigid logical checks, we have confirmed that more
than 200 logical checks block inappropriate API calls which may
terminate abnormally in OpenStack beforehand by practical tests.
For example, a request of VM live-migration is blocked during an
image extraction of attached volume.

63

Journal of Information Processing Vol.23 No.1 58-66 (Jan. 2015)

For the VM scheduling function tests, we created Windows
VM and CentOS VM one by one. We have confirmed that Win-
dows VMs are deployed on a physical server for Windows and
CentOS VMs are deployed on a physical server for CentOS one
by one and after “under use” physical servers are fulfilled, a
“stock” physical server is activated and used for new VMs de-
ployment. When a VM migrates to other physical servers, our
RM schedules to migrate a VM to a physical server on which
same software VMs are deployed. By practical tests, we have
confirmed that same software VMs are deployed on a same phys-
ical server to reduce software license cost of physical server and
VMs are deployed to a “stock” physical server after other “un-
der use” physical servers are fulfilled to utilize physical servers
effectively.

4.2 Performance Evaluation of Proposed Method

The RM reduces users waiting time of image deployment
and image extraction from volume by multiple API combination
uses. We measure the processing time and confirm our proposed
method effectiveness.

4.2.1 Performance Measurement Patterns

Image deployment measurement.

- Volume creation time is measured when cache is hit and when
cache is not hit.

- 10, 30 and 50 GB volumes are created from 10, 30 and 50 GB
CentOS images.

- Concurrent processing numbers of volume creation are 1, 3
and 5.

Image extraction measurement.

- When we use a temporal volume, temporal volume creation
time, image extraction from volume time and temporal volume
deletion time are measured. When we do not use a temporal vol-
ume, image extraction from volume time is measured.

- Images are extracted from 10, 30 and 50 GB volumes.

- Concurrent processing numbers of image extraction from vol-
ume are 1, 3 and 5.

4.2.2 Performance Measurement Environment

Figure 7 shows performance measurement environments and
Fig. 8 shows each server specification and usage. Figure 7 omits
maintenance servers such as syslog or backup servers, and re-
dundant modules such as heartbeat. Two RMs compose Active-
Active setting for redundancy. These servers are connected with
Gigabit Ethernet.

4.2.3 Performance Measurement Results

Figure 9 (a) shows the performances of 50GB image deploy-
ment with different concurrent thread number and indicates that
the caching mechanism can reduce processing times about 1/3 of
no cache ones. When concurrent processing number is 1, vol-
ume creation time of cache use is 6.5 min and it is about 2/5 of
no cache case. When concurrent number is 3, volume creation
time of cache use is 8.6 min and it is about 1/3 of no cache case.
We think OS images are frequently used for new volume creation
timing. Therefore, operators prepare cache volumes from OS im-
ages beforehand, cache hit rate will become larger and processing
time can be reduced sufficiently.

Figure 9 (b) shows the performances of 1 thread image de-

© 2015 Information Processing Society of Japan

|m—————— === m e e m e mm e mm e e e mm e mm———————— '
DMZ- KVM Intemal- OpenStack-Volume
Load Balancer Glance application server s T

-

B

neutraninubridze seert

Neutron-Li=sgant

ooy

Neutron-DHCR-Azent

T
KVM

OpensStack-Volume

—

s
Storage

for Glance

Glance application server|

KVM Cinder v

User terminal

neutraninubridce seent

Neutron-Li-/gent

Neutron-DHOR-Azent OpensStack Hypervisor

Operatorterminal RM

o o
3 3
2 2
8 8
:- :
Z Z
g o g
L H

ovs T

h—

DB (OpenStack&RM)

OpenStack Hypervisor
Physical Server consokesuth | | MySGL
e S
Virtual Server | —
T ST
(Cemie toraze
Internetsegment L — — — — — — | Controlsegment— — — — — — — — — _ _ _ _

Fig.7 Performance measurement environment.

physical CPU HDD.

Hardware ar WM MName Main usage model name o RAM(GE) logical(GB. NIC
HP ProLiant Quad-Core Intel
BL460c G6 physical KVM host Xeon 2533 MHzX2 8 48 300 4
OpenStack APL OpenStack stateless § § X
W i s S e AT assign 4 | assign 8 | assign: 60
VM RM proposed RM server assign: 4 | assign: B | assign: 60
HP ProLiant Quad-Core Intel
BL460 ao | Pvsical | KVM host eon ooms Mz | 8 48 300 | 4
wm Glance application |receive requests related to assign B | assign: 32 | assign; 150
server fance
HP ProLiant DB Quad-Core Intel
BL460c G1 physical (O y | OpenStack and RM DB Xeon 1600 MHzX 2 8 24 72 4
HP ProLiant OpenStack- | used for OperStack bgical| Quad—Core Intel
BL460c 61 _| P! Network retwork esources | Xeon 1600 MHz X2 8 s 2 s
HP ProLiant OpenStack— used for OpenStack Quad-Core Intel
BLi60g 61 | P=e! Volume logical volume resources | Xeon 1600 MHz X2 8 s 2 s
HP ProLiant OpenStack— used for OpenStack Quad-Core Intel
BLa60c 61| % | hypervisor VM resources Xeon 1600 MHz X 2 8 24 2 4
DMZ- Load Balancer for Xeon E5160 3.0GHz
IBM HS521 physical Load Balancer Internet access x1 2 2 2 !
Internal— Load Balancer for Xeon E5160 3.0GHz
IBM HS21 | ensical | | 5ad Balancer Inte rmal access 2 2 ” !
physical KVM host Xeon E5160 3.0GH: 2 2 72 1
IBM HS21 X1
WM User VM VM for user terminal assign 1| assign. 1| aesien. 20
VM Grerstor Vid | Vi for operator termiral assign'1 | sssign 1| sssign 70
EMG VNX . ISGS! storage for user
5300 physical iSCSI storage volume 500
EMO VNX | ysical | NFS storage | NS storage for Image 500

Fig. 8 Each server specification and usage.

45 (@) 18 (b)

40 16 —+—Use cache
£3 / “ - =
£ Mot use cache /
< 30 2
E 5 /. —+—Jse cache "
. " —mnotuse cache N y
a
g 15 o« 5 pd -
& . . s

) —_— ; v

0 T 0 !

1thread 3thread Sthread 10GB 30GB 50GB

Fig.9 Image deployment processing time comparison when we use a cache
volume and do not use a cache volume. (a) 50 GB image deploy-
ment with 1, 3 and 5 concurrent thread number, (b) 1 thread image
deployment with 10, 30 and 50 GB image size.

ployment with different image size and indicates that the caching
mechanism can reduce processing times about 1/3 of no cache
ones. Of course, image sizes or concurrent thread number be-
come larger, processing times also become larger. Figure 9 (a),
(b) show that processing times are only 10 minutes when 50 GB
image deployment with 5 concurrent threads and the perfor-
mances are sufficient for practical use. These performance val-
ues are like Amazon Web Services image deployment values [12].
Thus, we evaluated our proposed cache method is effective to re-
duce processing times and shows good scalability for practical
use.

Figure 10 shows the comparison of 50 GB image extraction
processing times. When we use a temporal volume, total process-
ing time becomes longer than direct image extraction time from
the volume. However our target is to reduce a time of VM power
off, users can activate a VM after a temporal volume creation.
When concurrent processing number is 1, a temporal volume cre-
ation time is 6.6 min and it is about 1/3 of image extraction from

64

Journal of Information Processing Vol.23 No.1 58-66 (Jan. 2015)

I~}
S

mtemporal volume deletion

image acquisition
miemporal volume creation

@ =
= 154

=
S

processing time (min)
o
=

[~
S

Nl

T T 1
tempvol tempvol tempvol no temp volno temp volno temp vol
1thread 3thread Sthread 1thread 3thread Sthread

Fig. 10 50 GB image extraction each processing time comparison when we
use a temporal volume and do not use a temporal volume.

35 //. =¢=—Total time
30 / (use temp volume)
25 =m=Total time

(not use temp volume)

temp volume creation
(use temp volume)

13 S

5 —k

Processing time {min)
=]
=

10GB 30GB 50GB

Fig. 11 Image extraction processing time with different volume size.

volume time from volume directly. When concurrent processing
number is 3, a temporal volume creation time is 8.8 min and it is
about 1/4 of image extraction time from volume directly.

Figure 11 shows the comparison of 1 thread image processing
time with different image size. It indicates that total processing
times of temporal volume use are about twice of no temporal vol-
ume use but VM power off times of temporal volume use are
about 1/3 of no temporal volume use. Thus, we evaluate our pro-
posed temporal volume method is effective to reduce a time of
VM power off.

5. Related Works

Like OpenStack, OpenNebula [13], Eucalyptus [6] and Cloud-
Stack [5] are open source Cloud software. OpenNebula is a vir-
tual infrastructure manager of IaaS building. OpenNebula man-
ages VM, storage, network of company and virtualizes system
resources to provide Cloud services. Eucalyptus characteristic is
an interoperability of Amazon EC2, and Xen, KVM or many hy-
pervisors can be used on Eucalyptus. Our group also contributes
to developments of OpenStack itself. Some bug fixes and en-
hancements of OpenStack are our group contributions.

There are some researches of resource allocations on shared
or VPS hosting to use physical server resources effectively [14],
[15]. Our work rearranges VMs on OpenStack. And a validity
check of VM migration is a different requirement from shared
hosting and new rearrangement logic is needed. The papers of
[16] and [17] are VM allocation technologies. The paper [16] is
a research of dynamic resource allocations on OpenStack. The
paper [17] is a research of VM consolidation on OpenStack and it
consolidates VMs while SLAs of VM are kept. Our VM schedul-
ing considers not only vacant capacity of physical server or mi-
gration availability but also deploying same software VMs to a
same physical server as possible and activating a “stock” server
after fulfilling other “under use” servers. These logics are novel
ones which other works do not have so that our method can re-
duce software license cost of physical server and can use physical
server resources effectively. Filter Scheduler [11] can describe

© 2015 Information Processing Society of Japan

various logics but cannot control VMs considering software li-
cense.

Next, we compare performance enhancements by API com-
bination use with other technologies. To extract an image from
volume certainly, other [aaS software also need to stop VMs. Our
method is novel because it extracts an image from a temporal vol-
ume, reduces VM stop time and improves satisfactions of user.
Regarding to the image deployment, VMware vSphere [18] also
deploys from a cache. But VMware has some restrictions such as
setting hypervisors to VMware ESX, our method does not have
such restrictions because it only uses primitive and common laaS
APIs. The works of [12] and [19] show performances of plu-
ral IaaS platform. Our method showed sufficient performances
of image deployment comparing with Refs. [12] and [19]. Naive
API use of OpenStack may take long time for image deployment
or extraction because OpenStack needs Glance and Cinder coop-
eration. Our work can reduce users waiting time by multiple API
combination use while keeping interfaces for users.

Regarding to a total function of mediating IaaS and users,
Amazon OpsWorks [20] is a managing function of IaaS. Amazon
OpsWorks supports automatic scheduling or deploying on Ama-
zon Web Services. Our RM provides reliable IaaS services by
covering insufficient points of [aaS software and operator busi-
ness requirements, and the design of RM can re-use for other
Cloud software CloudStack or Eucalyptus because the design is
based on primitive and common APIs of [aaS software.

Cloud API had discussed in DMTF (Distributed Management
Task Force) CMWG (Cloud Management Working Group) and
OGF (Open Grid Forum) OCCI (Open Cloud Computing Inter-
face) WG. OCCI summarized the use cases of Cloud computing,
required conditions of IaaS interfaces and evaluated each produc-
tion Cloud management API whether it satisfies the required con-
ditions or not. Elastic Hosts, Sun, IBM and other companies dis-
cussed in OCCI and the specification was submitted to CMWG.
VMware, HP, Telefonica, Red Hat, Fujitsu, and Oracle have also
proposed Cloud management API to CMWG (Delta Cloud, etc)
and API standardization is expected. libcloud[21] and Simple
Cloud API [22] are open source Cloud management APIs. lib-
cloud is an open source library by Cloudkick for using two or
more cloud services such as Amazon EC2 and Rackspace based
on common APIs. Simple Cloud API are abstract APIs of stor-
ages, document database, queue services which Amazon EC2,
Windows Azure, Rackspace Cloud Files and others provide.

6. Conclusion

In this paper, we proposed the RM which mediated users and
OpenStack to enable production IaaS services based on Open-
Stack. To resolve problems of using OpenStack for reliable busi-
nesses, we designed the RM which managed both physical re-
sources and logical/virtual resources and which also provided
added actions such as logical checks of API calls, multiple API
combination uses, scheduling logic of hypervisors for VMs. We
implemented the proposed RM on OpenStack, confirmed func-
tions feasibilities and measured performances.

It was confirmed that the RM enabled operators could oper-
ate without regard to 6 problems of OpenStack. We also con-

65

Journal of Information Processing Vol.23 No.1 58-66 (Jan. 2015)

firmed our proposed scheduler could determine hypervisors for
VMs meeting with requirements of license, VM isolation and VM
migration. Moreover, we showed the effective reduction of users
waiting time by multiple API combination uses. About 2/3 of
image deployment waiting time was reduced by using a cache
volume. Also 2/3-3/4 of image extraction from volume waiting
time was reduced by using a temporal volume.

NTT group has started IaaS services based on OpenStack in
2013, and our RM has been used in the services. In the future,
we will modify the RM for OpenStack new versions. IceHouse
or Juno are new major versions of OpenStack and provides new
functions to catch up Amazon EC2 such as Amazon CloudFor-
mation and Simple Queue Service. We will also plan to add new
additional functions of RM, for example a function of image shar-
ing among users. In parallel with new functions implementing,
we will hear comments of actual users who use OpenStack IaaS
services and enhance the software quality or functionalities of
RM.

Acknowledgments We are thankful to Hiroshi Sakai and
Hikaru Suzuki who are managers of this development.

References

[11 Mell, P. and Grance, T.: The NIST Definition of Cloud Computing v15,
National Institute of Standards and Technology (Oct. 2009).

2] Amazon Elastic Compute Cloud web site, available from
(http://aws.amazon.com/ec2).

[3] Rackspace public cloud powered by OpenStack, available from
(http://www.rackspace.com/cloud/).

[4] OpenStack, available from ¢http://www.openstack.org/).

[5] CloudStack, available from ¢http://CloudStack.apache.org/).

[6] Nurmi, D., Wolski, R., Grzegorczyk, C., Obertelli, G., Soman, S.,
Youseff, L. and Zagorodnov, D.: The Eucalyptus Open-source Cloud-
computing System, Proc. Cloud Computing and Its Applications (Oct.
2008).

[7] Pfaff, B., Pettit, J., Koponen, T., Amidon, K., Casado, M. and Shenker,
S.: Extending Networking into the Virtualization Layer, Proc. Sth
ACM Workshop on Hot Topics inNetworks (HotNets-VIII) (Oct. 2009).

[8] Kivity, A., Kamay, Y., Laor, D., Lublin, U. and Liguori, A.: Kvm:
The Linux virtual machine monitor, OLS ’07: The 2007 Ottawa Linux
Symposium, pp.225-230 (July 2007).

[9] Barham, P., Dragovic, B., Fraser, K., Hand, S., Harris, T., Ho, A.,
Neugebauer, R., Pratt, I. and Warfield, A.: Xen and the art of virtual-
ization, Proc. 19th ACM Symposium on Operating Systems Principles
(SOSP’03), pp.164—177 (Oct. 2003).

[10] TIronic, available from (https://wiki.openstack.org/wiki/Ironic).

[11] Filter Scheduler, available from ¢http://docs.openstack.org/developer/
nova/devref/filter_scheduler.html).

[12] CloudHarmony cloud benchmark, available from
(http://cloudharmony.com/benchmarks).

[13] Milojicic, D., Llorente, .M. and Montero, R.S.: OpenNebula: A
Cloud Management Tool, IEEE Internet Computing, Vol.15, No.2,
pp.11-14 (Mar. 2011).

[14] Urgaonkar, B., Shenoy, P. and Roscoe, T.: Resource overbooking and
application profiling in shared hosting platforms, Symp on Operating
Systems Design and Implementation, pp.239-254. ACM Press (2002).

[15] Liu, X., Zhu, X., Padala, P., Wang, Z. and Singhal, S.: Optimal Mul-
tivariate Control for Differentiated Services on a Shared Hosting Plat-
form, Proc. IEEE Conference on Decision and Control, pp.3792-3799
(2007).

[16] Wuhib, F, Stadler, R. and Lindgren, H.: Dynamic resource alloca-
tion with management objectives - Implementation for an OpenStack
cloud, Proc. Network and Service Management, 2012 8th Interna-
tional Conference and 2012 Workshop on Systems Virtualiztion Man-
agement, pp.309-315 (Oct. 2012).

[17] Corradi, A., Fanelli, M. and Foschini, L.: VM consolidation: A real
case based on OpenStack Cloud, Elsevier Future Generation Com-
puter Systems, DOI: http://dx.doi.org/10.1016/j.future.2012.05. 012,
2012 (June 2012).

[18] VMware vSphere, available from ¢http://www.vmware.com/
products/vsphere/).

© 2015 Information Processing Society of Japan

[19] Steinmetz, D., Perrault, B.W., Nordeen, R., Wilson, J. and Wang,
X.: Cloud computing performance benchmarking and virtual machine
launch time, Proc. 13th Annual Conference on Information Technol-
ogy Education (SIGITE ’12), pp.89-90 (2012).

[20] Amazon OpsWorks, available from (https://aws.amazon.com/
opsworks/).

[21] libcloud, available from ¢http://incubator.apache.org/libcloud/
index.html).

[22] Simple Cloud API, available from (http://www.simplecloud.org/api).

Yoji Yamato received his B.S., M.S. de-
grees in physics and Ph.D. degree in gen-
eral systems studies from The University
of Tokyo, Japan in 2000, 2002 and 2009,
respectively. He joined NTT Corporation,
Japan in 2002. There, he has been en-
gaged in developmental research of Cloud
computing platform, Peer-to-Peer com-
puting, Service Delivery Platform and Semantic Web Services.
Currently he is a researcher of NTT Software Innovation Center.
Dr. Yamato is a member of IEEE and IEICE.

Yukihisa Nishizawa joined NTT Corpo-
There, he has
been engaged in developmental research

ration, Japan in 2002.

of Cloud computing platform. Currently
he is a researcher of NTT Software Inno-
vation Center.

Masahito Muroi joined NTT Corpora-
There, he has
been engaged in developmental research

tion, Japan in 2011.

of Cloud computing platform. Currently
he is a researcher of NTT Software Inno-
vation Center.

Kentaro Tanaka joined NTT Corpora-
There, he has
been engaged in developmental research

tion, Japan in 2012.
of Cloud computing platform. Currently

he is a researcher of NTT Software Inno-
vation Center.

66

