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Abstract: We analyzed traffic data after a malware infection and clarified which features would be the most effective
in the detection of infection. The focus is on the use of traffic data to detect infections and on the use of features that
do not change much over time from those of the training data. The characteristics of features that are effective for
detecting malware infections are also described. Experimental results clarified the effects of the time difference, and
the effective features that were little affected by the time difference were identified. There is thus a need to focus on
the effect of the time difference when investigating malware infection detection.
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1. Introduction

The proliferation of Internet use in recent years has increased
the threat of malware, a shortened term for malicious software,
which can cause harm in our lives by leaking personal infor-
mation or taking control of our personal computers. The harm
caused by malware is increasing in both breadth and depth, and
damage from botnets, whose activities are unabated, and infec-
tions from Web sites such as Gumblar [1] has increased in recent
years. The need for countermeasures is urgent.

This paper concerns infection detection, which we broadly
classify as malware detection, intrusion detection and infection
detection. Intrusion detection involves techniques for detecting
unauthorized access from a network before a malware infection
occurs. Infection detection involves techniques for detecting an
existing malware infection from network traffic. The malware
infections of recent years have been difficult to notice, and infec-
tions have spread widely without users knowing that their com-
puters are being used. Therefore, infection detection for per-
sonal computers and upstream machines in the network such as
routers and firewalls is also an important measure for preventing
the spread of infection.

The research reported here focuses on the use of traffic data to
detect infection. This approach determines the features of normal
communication traffic and the traffic of infected machines and
applies pattern recognition techniques to detect infections. Infec-
tion detection based on traffic data uses only the input and output
communication traffic of the target machine. Basically, some traf-
fic is generated if there is an infection [2], so this method holds
promise as a means of detection from outside the target machine.
Furthermore, this method can be applied to the home electronic
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products and corporate terminals that are currently growing in
popularity. Although those devices do not necessarily have suf-
ficient computing power or memory for the introduction and up-
dating of detection modules, malware detection can be performed
externally by observing the device’s exchange of traffic when it
connects to a network. A more promising approach is to exter-
nally detect malware infections by observing the device’s traffic
patterns when it connects to a network, as illustrated in Fig. 1.

PCs, home electronic products and corporate terminals and so
on are often used for the long term. The traffic data may change
year to year because new applications and services of network are
occurred and used. It is thus necessary to use features that do not
change much over time from those of the training data. However,
effective features have not been thoroughly evaluated for malware
infection detection. In this paper, we demonstrate the necessary
to evaluate the features and clarify the effects of the time differ-
ence. And we demonstrate the effectiveness of malware infection
detection using fusion of the effective features that were little af-
fected by the time difference were identified.

This paper is organized as follows. Section 2 describes the
requirements for a traffic feature to be effective for detecting mal-
ware infections. Section 3 describes previous research in this
area. Section 4 describes the evaluation of the features, and Sec-
tion 5 shows the experimental results and demonstrates the effec-

Fig. 1 Malware infection detection from outside PCs, home electronic
products and corporate terminals and so on.
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tiveness of fusion of selected feature. Section 6 summarizes the
key points and mentions future work.

2. Effective Features for Detecting Malware
Infections

The distribution of data is varied by used feature in feature
space. Features are effective for detecting malware if they can be
used to easily separate normal traffic from malware traffic with-
out any overlap in feature space, as illustrated in Fig. 2. Features
are ineffective if they cannot be used to easily separate normal
traffic from malware traffic by using an algorithm. Therefore, the
use of effective features will improve the performance of malware
infection detection.

The evaluation metrics were the true positive rate (TPR), i.e.,
the rate at which malware traffic was correctly classified as mal-
ware, and the true negative rate (TNR), i.e., the rate at which
normal traffic was correctly classified as normal.

The higher the TPR, the higher the security level because of
the reduced chance of misdetecting a malware infection. Gener-
ally, a feature with a higher TPR is more effective for detecting
a malware infection. However, a high TNR is also important for
PCs, home electronic products and corporate terminals because
the higher the TNR, the greater the convenience because of the
reduced number of false alerts. A false alert causes the user in-
convenience because the user must disconnect the device from
the network and initiate the malware removal process. A feature
with a high TNR is also an effective feature. The overall TPR and
TNR can be improved by fusing the features that have a high TPR
with features that have a high TNR (including features that have
both a high TPR and a high TNR).

If traffic features that change much over time from those of the
training data are used for malware infection detection, the TPR
and TNR will greatly decrease over time. This increases the risk
of malware infection. These decreases in TPR and TNR can be
avoided by using traffic features that do not change much over
time from those of the training data. This is especially true for
PCs, home electronic products and corporate terminals used for a
long period of time.

Therefore, features effective for detecting malware infections
in PCs, home electronic products and corporate terminals
• have a high TPR and do not change much over time from

those of the training data,
• have a high TNR and do not change much over time from

those of the training data, and
• have both a high TPR and a high TNR and do not change

Fig. 2 Results of using effective and ineffective features.

much over time from those of the training data.
Using a combination of these features improves the effectiveness
of detection.

3. Previous Work

Previous studies on malware detection and network intrusion
detection included ones that looked at signature-based detection
and anomaly-based detection [3].

The most commonly used type of method is signature-based
detection. Each file has a unique signature, something like a fin-
gerprint of an executable. A signature-based method uses the pat-
terns extracted from various types of malware. A signature must
be prepared for each type of malware. Therefore, a signature-
based method cannot detect malware if the signature for the mal-
ware is unknown. Anomaly-based detection is also commonly
used. An anomaly-based method detects anomalous behavior on
a computer or computer network. If the behavior of unknown
malware is similar to that of known malware, the unknown mal-
ware may be detected. The focus here is on the latter type of
method—malware detection based on traffic characteristics.

The following discussion describes the features used in previ-
ous research on malware detection and network intrusion detec-
tion by methods based on the traffic characteristics.

Hiramatsu studied a clustering method for defining multiple
normal states from network traffic data [4]. The normalized num-
bers of ICMP, SYN, FIN, UDP, TCP except SYN, and FIN pack-
ets extracted every 60 minutes are used to define multiple normal
states.

Kugisaki focused on the host’s transmission intervals as a fea-
ture and demonstrated that there is a difference in the transmission
interval between human-originated traffic and botnet-originated
traffic [5].

Saad focused on detecting bots before they are used to launch
an attack. Information about the size of the payloads, the num-
ber of packets, the length of duplicate packets, and the number
of concurrent active ports used to build a feature set is used by a
machine learning algorithm to detect P2P botnets [6].

Garg focused on the traffic characteristics such as the size of
the packets, the number of packets, the size of the payloads, and
the packet length per flow or host and used a machine learning
algorithm to detect P2P botnets [7].

Soniya proposed botnet detection method using header infor-
mation [8]. Traffic data is cut in 30 minitues and extracted the
traffic communication that is not normally used by using destina-
tion IP address and port number. For this traffic communication,
botnet traffic is detected by using packet inter arrival time and
synscan.

Suzuki evaluated the identification rate of changing the length
of timeslot [9]. They used three features (mean packet size and so
on) for identify the normal traffic and malware traffic.

Previous research did not sufficiently evaluate the features in
terms of identification accuracy and the effect of the time differ-
ence between the captured data and the training data.

We think that there are two main requirements for effective
malware infection detection.
• Detect malware infections with a high TPR and a high TNR.

c© 2015 Information Processing Society of Japan 604



Journal of Information Processing Vol.23 No.5 603–612 (Sep. 2015)

• Detect malware infection stably over a long term.
To meet the first requirement, we previously focused on mal-

ware infection detection using effective features for each type of
malware described by Otsuki et al. [10]. Each type of malware
exhibits a unique behavior. To give an example, a worm exploits
vulnerabilities in software to carry out infections on the network.
A Trojan horse, in contrast, accesses a specific site and requests
the downloading of unauthorized files, thereby exposing the in-
fected computer to even more threats. It has been shown that a
subspecies of a certain malware tends to exhibit the same behav-
iors. This means that it is possible to identify the features effective
for each type of malware. We divided malware into three types—
worm, Trojan horse, and file-infected virus—and clarified which
features would be most effective for each type.

To meet the second requirement, we propose using a combi-
nation of effective features that change little over time to detect
malware infection. In this paper, we demonstrate the need to eval-
uate the features and clarify the effects of the change over time.
We also demonstrate the effectiveness of using a combination of
effective features that change little over time for malware infec-
tion detection.

4. Evaluation Method and Data

Thirty-six features were evaluated in terms of identification ac-
curacy and the effect of the time difference between the captured
data and the training data. The effect of the time difference was
demonstrated through experimental results.

4.1 Traffic Features
The results of previous research were used as a guide to ex-

tracting features from the packet header and compiling statistics
about the header information.

Table 1 lists the 36 features evaluated.
Features 1–10 are used for Internet application identification

and malware infection detection. They are a basic representation
of traffic data.

TCP fragment information is often used for malware detection,
and features 11–32 are commonly used for malware detection.
Since we did not know whether it was better to use the number or
ratio, we evaluated both the number and ratio for the TCP frag-
ment information.

Many malwares cause infection by using the 80/TCP and
443/TCP ports (features 34 and 36) because many users often use
these ports. They are thus representative of malware download
and command and control (C&C) communication. Therefore, we
used features 34 and 36 for evaluation.

The 69/UDP port (feature 33) is used for normal network con-
trol. Malwares also use this port (the Blaster worm for example).
Therefore, we used feature 33 for evaluation.

Since the mail receiving function is normally set to receive mail
on a regular basis, it is possible to misidentify mail receiving as
polling communication between the host and C&C server. The
110/TCP port (feature 35) is likely to be reflected in the normal
characteristic as representative of normal mechanical operation.
Therefore, we used feature 35 for evaluation.

Our goal here is to show the need to use features that are effec-

Table 1 Features evaluated.

tive for detecting malware infection stably over a long term. In
our evaluations, feature 35 is representative of normal operation,
and features 33, 34, and 36 are representative of both normal and
malware infection operation.

4.2 Method
The following describes the method we used for identifying

infected traffic and normal traffic.

4.3 Codebook Creation by Vector Quantization
We created an infected codebook and a normal codebook in ad-

vance, in which learning was performed using only infected traf-
fic for the former and only normal traffic for the latter. Codebook
means the centroid of cluster that is divided from distribution of
training data. Since the objective of this study is to evaluate indi-
vidual features, we created a one-dimensional codebook for each
feature. We used the Linde-Buzo-Gray (LBG) + splitting algo-
rithm [11] for vector quantization setting the number of levels to
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four types: 2, 4, 8, 16 and 32. We choose four types of parameters
because we refer Ref. [11] and number of timeslot we used in this
experiment is small.

Vector quantization represents data by using some codebooks,
which represent the characteristic of normal or infection traffic
data. The LBG splitting algorithm iteratively creates good code-
book by applying splitting and representation to the initial code-
book.

Description how to calculate the number of codebook is fol-
lowing. We gave the value of frequency of target feature included
in each timeslot as following input vector.
Notation: Input vector x = {x0, · · · , xk−1}, k: number of time slot,

d(a, b) =
k−1∑
i=0
|ai − bi|2, N set = number of level, parameter N = 1

Algorithm
1. Initialization: Given a distortion threshold ε, and an initial

N-level codebook A0. Set m = 0 and D−1 = ∞
2. Given Am = {yi; i = 1, · · · ,N}, find its minimum distor-

tion cluster P(Am) = {S i; i = 1, · · · ,N} : x ∈ S i if
d(x, yi) < d(x, y j) for all j. Compute the resulting average
distortion, Dm = D({Am, P(Am)}) = min

y∈Am

d(x, y)

3. If (Dm−1 − Dm)/Dm < ε and N = N set, halt with Am

and P(Am) describing final and output the codebook Am. If
(Dm−1 − Dm)/Dm < ε and N < N set, N = N × 2, and
Splitting: yi = yi + δ, yi+N = yi − δ and go to 1. otherwise
continue.

4. Find the optimal reproduction codebook x(P(Am)) =

{x(S i); i = 1, · · · ,N} for P(Am). Set Am+1 = x(P(Am)). Re-
place m by m + 1 and go to 2.

Am is codebook calculated by LBG splitting algorithm. We ex-
plain this algorithm by using an example (Fig. 3).

We calculated the codebook for each cluster by using the time-
slot data in each cluster. This operation corresponds to (1) in
Fig. 3. Next, we split the codebook by adding and reducing
minute values from the target codebook. This operation corre-
sponds to (2). Then, we upgraded the affiliation cluster of the
data in each timeslot and calculated the codebooks for each clus-
ter by using the timeslot data in each cluster. This operation cor-
responds to (3). Operations (2) and (3) were repeated until the
convergence condition for the codebooks ((Dm−1 − Dm)/Dm < ε

and N = N set) were met.

Fig. 3 Vector quantization.

4.4 Computation Method Using Codebooks
To be able to detect malware infection stably over a long term,

we need to evaluate the features and clarify the effects of changes
in the features over time from those of the training data. There
are two requirements for a feature to be effective.
• The distance between the distribution of normal traffic data

and the distribution of normal traffic data must be short, and
the distance between the distribution of infected traffic data
and the distribution of infected traffic data must be short.

• The distance between the distribution of normal traffic data
and the distribution of infected traffic data must be long.

We therefore represent the distributions of normal traffic data
and of infected traffic data as codebooks by using vector quantiza-
tion and evaluate the efficiency of the features by calculating the
distance between the codebook and target traffic data. It is appro-
priate to represent the traffic data distribution by using codebooks
because there are a number of conditions related to traffic data.
As a basic study, we used the nearest distance classifier to calcu-
late the distance between the codebook and target traffic data.

Using vector quantization and the above codebooks, we calcu-
lated the distance between test data and the infected/normal code-
books and identified the test data as being infected or normal de-
pending on which distance from the infected/normal codebooks
was shorter.

4.5 Evaluation of Feature
We therefore studied features with both a high true positive rate

(TPR) and a high true negative rate (TNR), features with only a
high TPR, and features with only a high TNR. TPR is the rate at
which infected traffic is correctly classified into infected category.
TNR is the rate at which normal traffic is correctly classified into
normal category. Description to calculate TPR and TNR is below.

TNR =

Number of the infected test data classified
correctly into infected category

Number of the total infected test data

TPR =

Number of the normal test data classified
correctly into normal category

Number of the total normal test data

An overview of the evaluation is shown in Fig. 4.
The TNR and TPR were calculated for each feature and param-

eter for each timeslot by using traffic data from 2009, 2010, and
2011.

Fig. 4 Overview of evaluation.
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4.6 Data
The malware traffic data came from the Cyber Clean Center

(CCC) DATAset [12] by capturing it in a honeypot system, and
the normal traffic was taken from the Intranet. Both types of data
were captured on the same dates: March 13, 14, and 15, 2009.
The CCC2009 dataset was used for the malware codebook. The
normal traffic data was used for the normal codebook. The test
data for the malware traffic came from the CCC2009, CCC2010,
and CCC2011 datasets, and the test data for the normal traffic
came from 2009, 2010, and 2011.

Ideally, the normal and malware traffic data would have been
captured under the same circumstance. However, resources on
malware traffic are limited. In addition, normal traffic data cap-
tured in a honeypot system would not be realistic because nobody
generates traffic in a honeypot. This problem was overcome by
preprocessing the normal traffic data so that it imitated the capture
circumstances of the malware traffic.
• Preprocessing for normal traffic

The normal traffic data was preprocessed to meet the following
requirements.
1. Generated from one host—It is necessary to imitate the cap-

ture circumstances of malware traffic.
2. Generated by normal users—If the host is infected with mal-

ware, it will download or update new malware or try to con-
nect to the Internet. However, such transmissions are normal
in terms of their behavior. In this research area, it is im-
portant to be able to distinguish malware transmissions from
those of people with no malicious intent. Hence, the traffic
generated by a normal user must be used.

• Preprocessing for malware traffic
The honeypot traffic data used (from CCC2009, CCC2010, and

CCC2011) included scan traffic, exploit traffic, and infected traf-
fic. This means it also included non-infected traffic data. How-
ever, it was essential to use only infected traffic data in the eval-
uation. Hence, preprocessing to extract the malware traffic from
the other attack traffic data was done. The procedure for doing so
is as follows.
1. Remove control packets generated only in a honeypot situa-

tion.
2. Divide the pcap data in the OS reset interval of the honeypot.
3. Check whether traffic is truly infected by referring to the

malware collection log provided in the CCC DATAset and
look for the first packet of the malware transmission.

4. Extract the traffic data after the first packet of the malware
transmission.

5. Evaluation Results

5.1 Evaluation in Terms of Capture Time
This section summarizes the experimental results and analyzes

the features that were effective in detecting malware on the basis
of the time difference between the captured data and the training
data. The features are classified into those for which the effect of
the time difference was significant and those for which the effect
was insignificant. Then, which features overall were the most ef-
fective are summarized. Finally the effectiveness of fusion of the
most effective features is evaluated.

Table 2 Average TPR and TNR.

Fig. 5 TPRs of features for which average TPR was higher than 70% for all
three years.

Table 3 TPRs over 90% over three years for minimum packet size.

First, the changes in the TPR and TNR over the course of three
years are evaluated.

Table 2 shows the average TPRs and TNRs in 2009, 2010,
and 2011. The average TPR or TNR is the average of the corre-
sponding values calculated for each feature, timeslot length, and
number of vector quantization levels.

The average TPR in 2011 was the lowest, while the average
TNR in 2011 was the highest. This means that the time differ-
ence affects the TPR and TNR.

5.2 Analysis in Terms of Capture Time
5.2.1 Analysis on Basis of TPR

A “low TPR” feature, i.e., a feature for which the effect of the
time difference is small, is not appropriate for detecting malware
infections. So “high TPR” features were selected.

The TPRs of the features for which the average TPR was higher
than 70% for all three years are plotted in Fig. 5.

From these features, those for which the effect of the time dif-
ference was small were selected: features 4, 14, 20, and 30 had
the smallest changes in TPR. Three of these features had average
TPRs higher than 80%: feature 4 (minimum packet size), feature
14 (number of ACK packets), feature 20 (number of RST/ACK
packets). These three features were analyzed from the viewpoint
of separating normal traffic from malware traffic.
1. Minimum packet size (feature 4)

As shown in Table 3, the TPRs over 90% over the three years
for minimum packet size were for timeslot lengths of 0.1, 1, and
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Table 4 Average and standard deviation of minimum packet size in normal
and malware test traffic data (unit for “average” is bytes per slot).

10 seconds for quantization level 32.
As shown in Table 4, the minimum packet size for normal traf-

fic was almost always 60 bytes when the timeslot interval was
larger than 1 second. In contrast, the minimum packet size for
malware traffic varied considerably. There was an enormous dif-
ference in the standard deviation between the minimum packet
size of normal traffic and that of malware traffic. For normal traf-
fic, the standard deviation was almost always 0 while it was much
larger than zero for malware traffic. This difference means that
minimum packet size is effective for malware detection.
2. Number of ACK packets (feature 14)

As shown in Table 5, the number of ACK packets for the mal-
ware test traffic was much smaller that for the normal test traffic.
This means that the number of ACK packets is an effective feature
for detecting malware infections.
3. Ratio of RST/ACK packets to TCP packets (feature 20)

In terms of the ratio of RST/ACK packets to TCP packets, the
TPR was high and the effect of the time difference was small.
However, both the malware test traffic and the normal test traf-
fic had many timeslots in which the ratio of RST/ACK packets
to TCP packets was 0. Moreover, the TPR was high because the
malware codebook was closer to 0 than the normal codebook, and
timeslots in which the ratio of RST/ACK packets to TCP packets
is 0 are classified as malware. Therefore, the ratio of RST/ACK
packets to TCP packets cannot be used to accurately detect mal-

Table 5 Average number of ACK packets in normal and malware test
traffic.

Fig. 6 TNRs of features for which average TNR was higher than 50% for
all three years.

ware. This feature is thus not useful for malware detection.
5.2.2 Analysis in Terms of TNR

A “low TNR” feature, i.e., a feature for which the effect of the
time difference is small, is not appropriate for detecting malware
infections. So “high TNR” features were selected.

The TNRs of the features for which the average TNR was
higher than 50% for all three years are plotted in Fig. 6.

From these features, those for which the effect of the time dif-

c© 2015 Information Processing Society of Japan 608



Journal of Information Processing Vol.23 No.5 603–612 (Sep. 2015)

Table 6 TNRs over 90% over three years for minimum packet size.

ference was small were selected: features 4, 8, 11, 21, 25, and 32
were the least affected by the time difference.

Three of these features had average TNRs higher than 70%:
feature 4 (minimum packet size), feature 11 (number of SYN
packets), and feature 21 (ratio of SYN packets to TCP packets).
These three features were analyzed from the viewpoint of sepa-
rating normal traffic from malware traffic.
1. Minimum packet size (feature 4)

As shown in Table 6, the TNRs over 90% over the three years
for minimum packet size were for various timeslot lengths and
quantization levels.

The average and standard deviations of the minimum packet
sizes are shown in Table 4.

As mentioned in the TPR analysis, the minimum packet size
differs between normal traffic and malware traffic, so the mini-
mum packet size is effective for detecting malware.
2. Number of SYN packets; ratio of SYN packets to TCP packets

(features 11 and 21)
TNR was very high when the number of SYN packets or the

ratio of SYN packets to TCP packets was used. This is because
malware traffic data tends to resemble the data in a SYN scan.
Therefore, the values in a malware codebook are much larger than
those in the normal codebook. Moreover, normal test traffic data
does not have many SYN packets. Therefore, almost all of the
normal traffic data were classified as normal. That is why the
TNR was very high. However, malware traffic does not always
have SYN scan data. Although these features are not particularly
useful for classifying traffic as normal or malware, they would be
effective for predicting or detecting an attack.

5.3 Correlation among Features
We discuss the correlation among the features.
We calculated the correlation coefficients for all combinations

(36C2) of two features by using

r =

n∑
i=1

(xi − x̄)(yi − ȳ)
√

n∑
i=1

(xi − x̄)2

√
n∑

i=1
(yi − ȳ)2

,

Fig. 7 Histogram of correlation coefficients.

Table 7 Feature combinations with correlation coefficient ≥ 0.90.

where r is the correlation coefficient, xi, yi are the features, n is
the number of timeslots, and x̄, ȳ are the mean values of the two
features.

We calculated the correlation coefficients using traffic data
combining normal and malware traffic data, as described in Sec-
tion 4.6. A histogram of the coefficients is shown in Fig. 7.

The horizontal axis represents the rank of the correlation co-
efficients. The vertical axis represents the frequency rate of the
number of correlation coefficients corresponding to each rank.
Many of correlation coefficients were small, so there was little
correlation between many features. The six combinations with
fairly strong coefficients (≥ 0.90) are listed in Table 7.

The difference between two features that are strongly corre-
lated is the amount of statistical data. The basic type of two fea-
tures is the same (e.g., packet size). The larger the packet size,
the greater the standard deviation in packet size roughly and the
greater the mean packet size roughly. The standard deviation is
related to the maximum and mean packet sizes. That is, the max-
imum packet size, mean packet size, and standard deviation are
strongly correlated. Moreover, the greater the number of ACK
packets, the larger the sum of the packet sizes roughly. There is
thus a strong correlation between the sum of the packet sizes and
the number of ACK packets. None of the features was strongly
correlated with all the other features.

We applied principal component analysis (PCA) to the traffic
data and used feature vectors (36 dimensions) consisting of 36
features normalized by each feature’s variance. First, we inves-
tigated the cumulative contribution ratio of the principal compo-
nents. The results are plotted in Fig. 8.

The horizontal axis represents the number of principal compo-
nents, and the vertical axis represents the cumulative contribution
ratio (%). The lack of a principal component with a very high cu-
mulative contribution ratio in this figure demonstrates that there
were no dominant principal components.

We also mapped the feature vectors (36 dimensions) in a two-
dimensional space by using PCA and investigated the traffic data
distribution. The traffic data distribution is shown in Fig. 9.
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Fig. 8 Cumulative contribution ratio vs. number of principal components.

Fig. 9 Two-dimensional feature space.

The horizontal axis represents the 1st principal component, and
the vertical axis represents the 2nd principal component. The
spread of the distribution in various directions indicates that there
was no dominant component.

These results are convincing evidence that dominant features
do not exist.

5.4 Evaluation of Effective Features for Malware Infection
Detection

As mentioned in Section 2, features that are effective for mal-
ware detection are those that are little affected by the time differ-
ence between the captured data and the training data and those
that have both a high TPR and a high TNR. Features that are lit-
tle affected by the time difference and that have either a high TPR
or a high TNR may also be effective. The minimum packet size,
the number of SYN packets, the ratio of SYN packets to TCP
packets, and the number of ACK packets were identified as the
most effective features for malware detection on the basis of the
requirements described in Section 2.

Ideally, the normal and malware traffic data would have been
captured under the same circumstance. However, resources on
malware traffic are limited. In addition, normal traffic data cap-
tured in a honeypot system would not be realistic because nobody
generates traffic in a honeypot. This problem was overcome by
preprocessing the normal traffic data so that it imitated the capture
circumstances of the malware traffic.

To make our evaluation as reasonable as possible, normal
traffic data were preprocessed to remove packets corresponding
to the routing within the LAN, thereby removing packets with
environment-specific characteristics. Likewise, the malware traf-
fic data were preprocessed to remove packets corresponding to

Table 8 Identification rate using fusion of features.

the specific data capture environment of the CCC DATASET hon-
eypots.

Since we needed to use only malware-infected traffic data
(without any normal traffic data) as the malware-infected traffic
data for our evaluation, we extracted the malware-infected traffic
data from the traffic data in each CCC DATASET on the basis of
the correspondence between the traffic data and logs.

The four features we identified as being effective for detecting
malware infection may not be effective in other traffic environ-
ments because traffic data (including noisy data) depend on the
environment in which they are captured. Our goal here is to sim-
ply show the need to use features effective for detecting malware
infection stably over a long term. For detecting malware infection
in other environments, normal traffic data for the target environ-
ment should be captured in advance, and malware-infected traffic
data should be obtained from a distribution organization such as
MWS [12]. And it is necessary to evaluate features effective for
detecting malware infection stably over a long term as explained
in Section 2.

5.5 Malware Infection Detection Using Several Features
In addition to evaluating the effectiveness of individual fea-

tures, the effectiveness of the fusing features was evaluated.
The identification rates in two cases were compared. The

“identification rate” is defined as the ratio of correct identifica-
tion of normal traffic data and of malware traffic data.

In case 1, malware infection was detected by using a fusion of
all the features listed in Table 1. In case 2, malware infection was
detected by using a fusion of the minimum packet size, the num-
ber of SYN packets, the ratio of SYN packets to TCP packets,
and the number of ACK packets.

The same dataset shown in Section 4.6 was used. Vectors
that concatenated the features were used for input. CCC2010
was used for malware traffic training data. Normal traffic data
captured in 2010 were used for normal traffic training data.
CCC2011 was used for malware traffic test data. Normal traffic
data captured in 2011 were used for input data test data. Decision
tree and naı̈ve Bayes classifiers, which are often used as traffic
identification algorithms [13], [14], were used as traffic identifi-
cation algorithms.

As shown in Table 8, the differences in the identification rates
between 2010 and 2011 in case 2 were smaller than those in case
1. This means that it needs to detect malware infection using fea-
tures that are little affected by the time difference between the
captured data and the training data.

Previous work did not sufficiently evaluate the features in terms
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of the effect of the change over time between the features of the
testing data and those of the training data. We clarified the effects
of the change over time and demonstrated that malware infection
detection was improved by using a combination of the effective
features that changed less over time.

Case 1 corresponds to previous work (effective features not
identified and used) while case 2 corresponds to our approach
(identify and use effective features). As shown in Table 8, the
identification rate for 2010 with naı̈ve Bayes for case 2 was better
than that for case 1. In contrast, the identification rates with deci-
sion tree were virtually the same. The identification rate for 2011
with naı̈ve Bayes for case 2 was again better than that for case 1.
The identification rate with decision tree for case 2 was slightly
better than that for case 1. The difference in identification rate
between 2010 and 2011 with decision tree for case 2 was better
than that for case 1. The difference in identification rate between
2010 and 2011 with naı̈ve Bayes for case 2 was better than that for
case 1. Our approach thus produces better results than previous
approaches.

6. Conclusion

We analyzed traffic data after a malware infection and clarified
which features would be the most effective in the detection of in-
fection. It focused on using traffic data to detect infections and on
the use of features that do not change much over time from those
of the training data. Requirements for effective features for de-
tecting malware infections were identified. Experimental results
demonstrated the effects of the time difference. Then the effective
features that were little affected by the time difference were de-
scribed. This study revealed the need to focus on the effect of the
time difference when investigating malware infection detection.

There are infection activities specific to each type of malware,
such as “Internet connection confirmation” for worms, “down-
load malware order to attack communications” for Trojan horses,
and “IRC connection” for file-infected viruses. Future work in-
cludes investigating malware infection detection by focusing on
the traits of each malware type, meeting the two main require-
ments (detect malware infection stably over a long term and de-
tect malware infections with a high TPR and a high TNR), and
evaluating the features of ports other than those investigated in
this study as those features may also be effective.
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