
Journal of Information Processing Vol.23 No.1 67–80 (Jan. 2015)

[DOI: 10.2197/ipsjjip.23.67]

Regular Paper

An Accelerated Algorithm for Solving SVP Based
on Statistical Analysis

Masaharu Fukase1,a) Kenji Kashiwabara2,b)

Received: December 23, 2013, Accepted: September 12, 2014

Abstract: In this paper, we propose an accelerated algorithm for solving the shortest vector problem (SVP). We
construct our algorithm by using two novel ideas, i.e., the choice of appropriate distributions of the natural number
representation and the reduction of the sum of the squared lengths of the Gram-Schmidt orthogonalized vectors. These
two ideas essentially depend on statistical analysis. The first technique is to generate lattice vectors expected to be short
on a particular distribution of natural number representation. We determine the distribution so that more very short
lattice vectors have a chance to be generated while lattice vectors that are unlikely to be very short are not generated.
The second technique is to reduce the sum of the squared lengths of the Gram-Schmidt orthogonalized vectors. For
that, we restrict the insertion index of a new lattice vector. We confirmed by theoretical and experimental analysis that
the smaller the sum is, the more frequently a short lattice vector tends to be found. We solved an SVP instance in a
higher dimension than ever, i.e., dimension 132 using our algorithm.

Keywords: lattice, SVP, Gram-Schmidt orthogonalized vectors, RSR, normal distribution

1. Introduction

An integer lattice L is the set of all linear combinations
with integer coefficients of a set of linearly independent vectors
b1, . . . , bn ∈ Zm. (b1, . . . ,bn) is called a basis of the lattice L. One
of the most famous computational problems concerning lattices
is the shortest vector problem (SVP). The SVP is the problem of
finding a shortest nonzero lattice vector for a given lattice. The
SVP was proved to be NP-hard under randomized reduction in
Ref. [1].

The SVP is closely related to breaking lattice-based public key
cryptosystems. We can estimate the security of lattice-based pub-
lic key cryptosystems using SVP algorithms [3], [4]. The Lenstra-
Lenstra-Lovász (LLL) algorithm [8] was a major breakthrough
in SVP algorithms. It generates a reduced basis of proven qual-
ity in polynomial time. The Block Korkin-Zolotarev (BKZ) al-
gorithm [14] combines the LLL algorithm with an enumeration
technique in low dimensional sublattices. Although there is no
guaranteed run time bound for the BKZ algorithm, it works better
than the LLL algorithm in practice. The Random Sampling Re-
duction (RSR) algorithm [15] combines the BKZ algorithm with
the Sampling Algorithm (SA) [15] that generates a lattice vector
from a particular set of lattice vectors. Note that the BKZ algo-
rithm was updated as BKZ 2.0 [3], in which the enumeration is
much accelerated by Gama-Nguyen-Regev extreme pruning [5].

We developed an accelerated algorithm for solving SVP by ex-
tending Schnorr’s sampling technique in RSR. We construct our

1 Dokkyo University, Souka, Saitama 340–0042, Japan
2 Department of General Systems Studies, The University of Tokyo,

Meguro, Tokyo 153–8902, Japan
a) fukase@dokkyo.ac.jp
b) kashiwa@idea.c.u-tokyo.ac.jp

algorithm by using the following two novel ideas, i.e., appropri-

ate distributions of the natural number representation and the re-

duction of the sum of the squared lengths of the Gram-Schmidt

orthogonalized vectors. These two ideas depend on statistical
analysis. We reduce the expected value of the squared lengths
of generated vectors using these techniques.
Appropriate distributions of the natural number representa-
tion

We seek optimal linear combinations of basis vectors
(b1, . . . , bn) in order to obtain a very short lattice vector.
We can represent a lattice vector by some sequence of natu-
ral numbers via the Gram-Schmidt orthogonalization. We
call this representation the natural number representation.
We determine appropriate distributions of the natural num-
ber representation so that the expected value of the squared
length of the generated lattice vector gets smaller. Then, the
density of nonzero numbers in the natural number represen-
tation tends to be low. By determining the appropriate distri-
bution of the natural number representation, we can generate
short lattice vectors.

In Ref. [15], a lattice vector whose natural number represen-
tation consists of only 0-1 sequence is considered. We consider
not only 0-1 sequences but also sequences consisting of natural
numbers, i.e., 0-1-2 sequence for example. A similar concept to
the natural number representation was indicated in Ref. [9]. How-
ever, this concept did not consider the appropriate distribution of
natural number representation.
The reduction of the sum of the squared lengths of the Gram-
Schmidt orthogonalized vectors

We increase the frequency with which a short lattice vector
is found by reducing the sum of the squared lengths of the

c© 2015 Information Processing Society of Japan 67

Journal of Information Processing Vol.23 No.1 67–80 (Jan. 2015)

Gram-Schmidt orthogonalized vectors. We call our method
the Restricting Reduction (RR) Algorithm. We confirm by
experimental analysis that the smaller the sum of the squared
lengths of the Gram-Schmidt orthogonalized vectors is, the
more frequently a short lattice vector tends to be found. We
show that the distribution of the squared lengths of short can-
didate vectors approximates the normal distribution because
the Gram-Schmidt coefficients of a generated lattice vector
can be supposed to be statistically independent with respect
to indices. The mean value of the normal distribution can be
represented by the sum of the squared lengths of the Gram-
Schmidt orthogonalized vectors. According to our statistical
analysis, the mean value is 1/12 times the sum under some
assumptions. Then, the smaller the sum is, the smaller the
expected value of the squared lengths of short candidate vec-
tors is.
The RR algorithm has the following two steps.
(1) We restrict the indices of vectors in the basis where a

short candidate vector can be inserted.
(2) We increase the restriction index.
We reduce the sum by the RR algorithm.

In the sampling technique in Ref. [15], a short candidate vector
is immediately inserted to a basis and the generating system con-
sisting of a basis and a short candidate vector is reduced by BKZ.
This process might increase the sum of the squared lengths of the
Gram-Schmidt orthogonalized vectors in the short term while the
very first vectors in the basis might be improved.

We also show a possible extension of the RR algorithm, which
we call the Extended Restricting Reduction (ERR) algorithm. By
this extension, we aim to to more efficiently generate short candi-
date vectors and more strongly reduce the sum.

We experimentally confirmed that rapid speedups have been
achieved by using above two ideas. We applied our algorithm to
the SVP challenge from Technical University of Darmstadt [13],
which was opened in 2010 for the sake of assessing the perfor-
mance of SVP algorithms and has prompted intense competition
among many researchers concerning lattices. We solved an SVP
in dimension 132, which is the highest dimension of the SVP in-
stances solved ever [13].

The remainder of this paper is organized as follows. In Sec-
tion 2, we explain some basic concepts of lattices and Schnorr’s
sampling technique. In Section 3, we define the set of lattice
vectors from which we generate short candidate vectors based on
natural number representation of lattice vectors. In Section 4, we
theoretically and experimentally show the effectiveness of gen-
erating a lattice basis whose sum of the squared lengths of the
Gram-Schmidt orthogonalized vectors is small. In Section 5, we
show how to reduce the sum of the squared lengths of the Gram-
Schmidt orthogonalized vectors. In Section 6, we show the results
of applying our techniques to the SVP challenge. In Section 7,
we examine the application possibility of our techniques to other
types of lattices. In Section 8, we extend the RR algorithm and
show the complete algorithm that we used to solve an SVP in
the highest dimension of the SVP instances solved ever. In Sec-
tion 9, we compare our algorithm with the RSR algorithm and a
variant of it and show an advantage of our algorithm in terms of

efficiency.

2. Preliminaries

2.1 Lattice
Given a set of n linearly independent vectors B = [b1, . . . , bn] ∈

Z
m×n, the integer lattice L ⊂ Zm spanned by B is defined as

the set L(B) = {Bx | x ∈ Zn} of all integral combinations of
bi’s. The integer n is called the dimension of L. When n = m,
we say that L is full-dimensional. The ordered set of vectors
B = [b1, . . . ,bn] ∈ Zm×n is called a basis of L. In this paper
we concentrate on full-dimensional integer lattices. A lattice has
infinitely many bases that generate the lattice when n ≥ 2. The
volume of a lattice L = L(B), denoted by Vol(L), is defined as
the volume of the parallelepiped spanned by the columns of B,
i.e., Vol(L) = Vol({Bx | x ∈ [0, 1)n}). The volume is a lattice
invariant, i.e., it does not depend on any particular basis.

For a lattice basis B = [b1, . . . ,bn], the corresponding Gram-

Schmidt orthogonalized vectors b∗1, . . . , b
∗
n ∈ Rn are defined by

b∗i = bi − ∑i−1
j=1 μi, jb∗j with μi, j = 〈bi,b∗j〉/〈b∗j , b∗j〉 where 〈x, y〉 =∑n

i=1 xiyi is the inner product in Rn. For every i, b∗i is the compo-
nent of bi that is orthogonal to b1, . . . ,bi−1. Consequently, vec-
tors b∗i and b∗j(j � i) are orthogonal. We can compute the volume
of the lattice by the product of the lengths of the orthogonalized

vectors Vol(L(B)) =
∏n

i=1‖b∗i ‖ where ‖x‖ =
√∑n

i=1 x2
i is the Eu-

clidean norm.
Let v = Bx with x ∈ Zn be a vector in the lattice generated by

the basis B. From the definition of the Gram-Schmidt orthogonal-
ized vectors, we can represent v ∈ L(B) with b∗1, . . . , b

∗
n and μi, j

of B, i.e., v =
∑n

j=1 ν jb∗j with ν ∈ Rn such that ν j =
∑n

i=1 xiμi, j.
Because b∗j are orthgonally pairwise, ‖v‖2 = ∑n

j=1 ν
2
j‖b∗j‖2. This

equation means that for a lattice vector v =
∑n

j=1 ν jb∗j to be short,
|ν j| need to be small. In the following, we call ν j the Gram-

Schmidt coefficients of v.
Let πi : Rn → span(b1, . . . , bi−1)⊥ be the orthogonal pro-

jection. That is, πi(v) = v − ∑i−1
j=1(〈v,b∗j〉/‖b∗j‖2)b∗j . The

projection of a lattice L onto the i-th orthogonal complement
span(b1, . . . , bi−1)⊥ is πi(L) = {πi(v)|v ∈ L}. In our algo-
rithm, we repeatedly find a non-zero lattice vector v with smaller
‖πi(v)‖2 = ∑n

j=i ν
2
j‖b∗j‖2 in each i-th orthogonal complement.

We denote the length of the shortest nonzero lattice vector in a
lattice L by λ1(L). The shortest vector problem (SVP) is defined
as follows:

Definition 1 (SVP) Given a lattice basis B, find a nonzero
lattice vector Bx such that ‖Bx‖ = λ1(L(B)).
A known estimation of the length of the shortest vector is
(1/
√
π)Γ(n/2 + 1)1/n · (Vol(L))1/n [12]. Here, Γ(n/2 + 1) is the

Gamma function for n/2+1. In the following, we call the amount
(1/
√
π)Γ(n/2 + 1)1/n · (Vol(L))1/n Gaussian Heuristic and denote

it as GH(L) following Ref. [5] et al. GH(L) is the radius of the
n-ball whose volume is Vol(L). In the SVP challenge, given a
lattice basis B, one is asked to find nonzero lattice vector Bx such
that ‖Bx‖ < 1.05 ·GH(L).

2.2 Schnorr’s Sampling Technique
In this paper, we extend Schnorr’s Sampling Technique.

c© 2015 Information Processing Society of Japan 68

Journal of Information Processing Vol.23 No.1 67–80 (Jan. 2015)

Schnorr proposed Random Sampling Reduction (RSR) [15]. In
RSR, the sampling algorithm (SA) generates a single lattice vec-
tor v satisfying the following Eq. (1) for some 1 ≤ u ≤ n.

|ν j| ≤
⎧⎪⎪⎪⎨⎪⎪⎪⎩

1
2 for j < n − u

1 for n − u ≤ j < n
, νn = 1. (1)

Because the number of the candidates for ν j with |ν j| ≤ 1/2 is 1
and the number of the candidates for ν j with |ν j| ≤ 1 is 2, there are
2u distinct lattice vectors satisfying Eq. (1). Let S u,B be the set of
lattice vectors in L(B) satisfying Eq. (1) for specified u. Here, B is
assumed to be reduced by some lattice basis reduction algorithm
such as LLL and BKZ. It is well known that the initial vectors
b∗1, . . . , b

∗
k for some 1 ≤ k < n are longer than subsequent vectors

b∗j for j > k if B is reduced [4], [9], [15]. So Gram-Schmidt co-
efficients ν1, . . . , νk have a larger impact on the overall length of
v than ν j for j > k. Recall that for a lattice vector v =

∑n
j=1 ν jb∗j

to be short, each |ν j| needs to be small. Then, it is reasonable
to assume that a lattice vector v =

∑n
j=1 ν jb∗j in S u,B for some

1 ≤ u ≤ n is likely to be short.

Algorithm 1 Sampling Algorithm (SA)
Input:

B : a lattice basis B = [b1, . . . , bn]

u : an integer such that 1 ≤ u < n

Output:

v : a lattice vector satisfying Eq. (1).

1: compute μi, j such that μi, j = 〈bi,b∗j〉/〈b∗j ,b∗j〉
2: v := bn

3: for j = 1, . . . , n − 1 do

4: μ j := μn, j

5: end for

6: for i = n − 1, . . . , 1 do

7: select y ∈ Z randomly such that |μi − y| ≤
{

1/2 if i < n − u
1 if i ≥ n − u

8: v := v − ybi

9: for j = 1, . . . , i − 1 do

10: μ j := μ j − yμi, j

11: end for

12: end for

Given a lattice basis B = [b1, . . . ,bn], RSR generates by call-
ing SA up to 2u distinct lattice vectors v =

∑n
j=1 ν jb∗j satisfying

Eq. (1) until a vector v with ‖v‖2 < 0.99‖b1‖2 is found. Subse-
quently RSR inserts the vector found by SA into the basis, and
BKZ is used to reduce the new basis consisting of v, b1, . . . , bn.
This random sampling by SA and BKZ processes are iterated sev-
eral times.

3. Determining a Distribution of Natural
Number Representation

In order to efficiently generate a very short lattice vector, we
enumerate all candidates of optimal linear combinations of basis
vectors (b1, . . . , bn). We provide the candidates in terms of the
distribution of natural number representation of lattice vectors.
In the following, we explain how to determine the appropriate
distribution of natural number representation of lattice vectors as
our first novel idea and the significance of it. First, we define
the natural number representation of a lattice vector v ∈ L(B) as

follows:
Definition 2 (The Natural Number Representation) Let B

be a lattice basis. Given a lattice vector v =
∑n

j=1 ν jb∗j ∈ L(B),
the natural number representation of v is z(v) ∈ Nn such that
−(z j + 1)/2 < ν j ≤ −z j/2 or z j/2 < ν j ≤ (z j + 1)/2.
Here, N denotes the set {0, 1, 2, 3, . . .}. z j is well defined because
the above intervals (−(z j+1)/2,−z j/2] and (z j/2, (z j+1)/2] cover
all the real numbers exactly once over z j ∈ N. We have the fol-
lowing theorem.

Theorem 1 The map f : L(B) → Nn given by f (v) = z ∈ Nn

such that −(z j + 1)/2 < ν j ≤ −z j/2 or z j/2 < ν j ≤ (z j + 1)/2 is a
bijection, where v =

∑n
j=1 ν jb∗j ∈ L(B).

Proof: Consider distinct two lattice vectors v =
∑n

j=1 ν jb∗j and
v′ =

∑n
j=1 ν

′
jb
∗
j . Let i be the largest index for which νi and ν′i dif-

fer. νi and ν′i differ by an integer, otherwise it is impossible that
both v and v′ are lattice vectors. From the definition of z(v), z(v)
and z(v′) differ at least at the index i. Therefore, the map is an
injection.

Next, consider z ∈ Nn. Given z, we have the lattice vector v =∑n
j=1 ν jb∗j that corresponds to z as follows. For the last nonzero z j0

with some j0, we set u j0 in the order {1,−1, 2,−2, 3,−3, . . .}when
z j0 is taken in ascending order {1, 2, 3, 4, 5, 6, . . .}. For j > j0, we
set u j to 0. For j < j0, we set u j to −�∑n

i= j+1 uiμi, j� + (−1)z j�z j/2�
if ui ≥ 0 and −�∑n

i= j+1 uiμi, j� + (−1)z j+1�z j/2� if ui < 0 where
�x� is obtained by rounding x to the closest integer as defined by
�x� = �x − 1/2� and μi, j = 〈bi, b∗j〉/〈b∗j , b∗j〉. Then, the natural
number representation of a lattice vector Bu is z. Thus, the map
is a surjection. These prove the theorem. �

We extend the distribution of v =
∑n

j=1 ν jb∗j generated by SA.
While SA generates a lattice vector from S u,B defined in Sec-
tion 2.2, we generate a lattice vector from the set VB(s, t) defined
as follows:

Definition 3 VB(s, t) = {v ∈ L(B) : d(v) ≤ s,w(v) ≤ t} with
d ∈ Nc and w ∈ Nc such that di(v) = #{z j(v) : z j(v) = i, 1 ≤ j ≤
n} and wi(v) = n−min{ j : z j(v) = i}+1 for some c ∈ Z+, all i ∈ N
such that i ≤ c, and s ∈ Nc,t ∈ Nc for c.
Here, #S denotes the number of elements of a set S , and Z+
denotes the set {1, 2, 3, 4, . . .}. Note that

∑c
i=0 di(v) = n for any

v ∈ L(B). In Appendix A.1, we explain how to sample a lattice
vector in v ∈ L(B). Also, in Appendix A.2, we explain what the
definition of VB(s, t) means and the reason why we define VB(s, t)
in this way.

We observed that the natural number representation z(v) of a
very short lattice vector v has the following properties for the ba-
sis B that is sufficiently reduced:
• z j is always 0 for some indices j from the front.
• The density of z j with z j ≥ 1 on z is relatively low.
• The index j with z j ≥ 2 is relatively large.

The b∗j with a small index j is relatively long if the basis B is suf-
ficiently reduced. Then, v cannot be short if some z j for a small
index j is large. Therefore, it is plausible that the natural number
representation z of a very short vector has the above properties.
We specifically discuss these properties later in terms of the ex-
pected values of the squared lengths of generated lattice vectors.

There are two main differences between the search in VB(s, t)
and the search in S u,B. The first one is that a lattice vector v such

c© 2015 Information Processing Society of Japan 69

Journal of Information Processing Vol.23 No.1 67–80 (Jan. 2015)

Table 1 Density for a very short vector.

Dim Average of the density Standard deviation of the density

120 0.158 0.017

126 0.162 0.023

128 0.165 0.0082

130 0.178 0.017

that z j ≥ 2 for some j can be included in VB while such v cannot
be included in S u,B because z j < 2 for all j for any lattice vector
in S u,B. By setting s j for j ≥ 2 to a nonzero positive number for
VB(s, t), we can generate a lattice vector such that z j ≥ 2 for some
j. The second one is that the density of z j with z j ≥ 1 on z can be
adjusted for a lattice vector in VB(s, t) while it cannot be adjusted
for a lattice vector in S u,B, which means many lattice vectors for
which the density is high are also included in S u,B.

We experimentally confirmed that the density for a very short
vector tends to be low. We calculated the density for a very short
vector which satisfies the goal norm of the SVP challenge in each
of dimensions 120, 126, 128, and 130. We calculated the density
as #{ j : z j ≥ 1}/n. In each dimension, we calculated the density
for 10 reduced bases and took the average. Table 1 shows the av-
erage and the standard deviation of the density in each dimension.
As we see in Section 9, it seems that we need to set u for S u,B to
about 30 even in dimensions around 80. In higher dimensions,
we might need to set u to ≥ 30. This means that vectors with the
density ≥ 30/120 = 0.25 are sampled in dimension 120, for ex-
ample. From the tendency of the density for a very short vector,
it seems to be inefficient to sample vectors with such density as
≥ 0.25.

By setting s j to a relatively small number compared with t j for
any j > 0, we can generate only lattice vectors for which the den-
sity is relatively low. Thus, the two differences above make the
possibility of the success of the search much higher.

Note that the density of z j such that z j = r ∈ Z+ becomes lower
as r increases for a very short lattice vector, so that we should set
sr to a smaller number. We can explain that the natural num-
ber representation of a very short lattice vector tends to have the
above property as follows.

In our analysis, we generalize the following Randomness As-
sumption (RA), on which the analysis of RSR [15] depends.

Randomness Assumption (RA) The Gram-Schmidt coeffi-
cients ν j of the vectors v =

∑n
j=1 ν jb∗j generated by SA are uni-

formly distributed in [−1/2, 1/2] for j < n− u, and in [−1, 1] for
n − u ≤ j < n and statistically independent with respect to j.

We consider the generalized range of ν j compared with
Ref. [15]. Therefore, we introduce an assumption by generaliz-
ing RA as follows:

Assumption 1 The Gram-Schmidt coefficients ν j of the gen-
erated vectors v =

∑n
j=1 ν jb∗j are uniformly distributed in (−(z j +

1)/2,−z j/2] and (z j/2, (z j + 1)/2] and statistically independent
with respect to j.

First, we have the following Proposition 1:
Proposition 1 Let v be a lattice vector and let z be a natu-

ral number representation of v. Under Assumption 1, E[‖v‖2] =∑n
j=1(3z2

j + 3z j + 1)‖b∗j‖2/12.
Proof: From the definition of z, ν j ∈ (−(z j + 1)/2,−z j/2] or

ν j ∈ (z j/2, (z j + 1)/2] for all j. By Assumption 1, ν j is uniformly
distributed in (−(z j + 1)/2,−z j/2] and (z j/2, (z j + 1)/2]. By sym-
metry, it is enough to consider only the range (z j/2, (z j + 1)/2].
The probability density function f (x) of ν j is f (x) = 2 for
z j/2 ≤ x ≤ (z j + 1)/2, and the probability density function g(x)

of ν2j is g(x) = 1/
√

x. Then, E[ν2j] =
∫ ((z j+1)/2)2

(z j/2)2 x(1/
√

x)dx =

2/3[x3/2]
((z j+1)/2)2

(z j/2)2 = ((z j + 1)3 − z3
j)/12 = (3z2

j + 3z j + 1)/12.

Then, E[‖v‖2] =
∑n

j=1(3z2
j + 3z j + 1)‖b∗j‖2/12. �

While we need to generate a sufficient number of short can-
didate vectors, we need to reduce E[‖v‖2] as possible. From the
above, E[ν2j] = (3z2

j+3z j+1)/12 is in order 1/12, 7/12, 19/12, . . .
when z j is in order 0, 1, 2, Schnorr’s geometric series assump-
tion (GSA) [15] states b∗j gets shorter as j increases. Then, we
should set z j to 1 or 2 at a higher frequency at large indices where
‖b∗j‖2 is relatively small.

Regarding how to set s and t in VB(s, t), we set s and t to
(n, 13, 1) and (n, 55, 15), respectively, for an n-dimensional SVP
challenge. This determination is based on empirical observa-
tions as in Appendix A.2. We should not set z j to 1 or 2 at a
high frequency at relatively small indices since ‖b∗j‖2 is relatively
large. Therefore, we do not use v in VB(s, t) such that z j ≥ 1 ap-
pears at a high frequency at relatively small indices. In fact, we
need to ignore many such vectors in VB(s, t) since #VB(s, t) with
s = (n, 13, 1) and t = (n, 55, 15) is too large. Thus, we use heuris-
tic methods to set s and t and select vectors which are likely to be
short in VB(s, t).

In an exceptional case, however, we used a more general ap-
proach in solving a 132 dimensional SVP challenge. In the fol-
lowing, we explain the method.
(1) We select a lattice basis B approximating GSA.
(2) We determine the number of short candidate vectors to be

generated. This is a trade-off between the running time and
the length of the shortest one among all short candidate vec-
tors. In our implementation, we set the number to 5 × 107.

(3) We set s and t so that VB(s, t) includes a sufficiently larger
number of vectors than the above number. In dimension 132,
we set s and t to s = (130, 19, 2) and t = (130, 35, 12), re-
spectively.

(4) Among all vectors in VB(s, t), we select those of which the
expected values of the lengths are relatively small in advance
of the search. Specifically, in the above example, we select
the first 5 × 107 vectors in order starting with the smallest
expected value. The expected values can be computed from
Proposition 1 and G-S lengths of B.

(5) We store the natural number representations of those vectors
in a list and utilize the list in the search.

We compute the list for a lattice basis B approximating GSA at
the beginning of the execution of the program. Then, we apply the
list to an arbitrary basis during execution of the program. How-
ever, it is impractical to generate a list with a huge number of
elements, e.g., 5 × 107 elements. In order to avoid this, we gen-
erate two or three lists with smaller number of elements and use
elements with a shorter length in each list. Then, we obtain all
of the natural number representations needed by combining ele-
ments in these lists.

c© 2015 Information Processing Society of Japan 70

Journal of Information Processing Vol.23 No.1 67–80 (Jan. 2015)

4. Relation Between the Success of Search for
a Very Short Lattice Vector and the Sum of
Squared G-S Lengths

In this section, we explain why we aim to decrease the sum of
the squared lengths of the Gram-Schmidt orthogonalized vectors.
In the next section, we provide the Restricting Reduction (RR)
algorithm, by which a new lattice basis has the smaller sum of
the squared lengths of the Gram-Schmidt orthogonalized vectors.
We briefly call the lengths of the Gram-Schmidt orthogonalized
vectors G-S lengths in the following.

We use the sum of squared G-S lengths, i.e.,
∑n

j=1‖b∗j‖2, as
a measurement of how good the basis is. We observed that the
smaller

∑n
j=1‖b∗j‖2 is, the more frequently a short lattice vector

tends to be found. We can explain this tendency as follows.
Let k be the minimum index j such that ν j ≥ 1 for any lat-

tice vector v =
∑n

j=1 ν jb∗j in VB(s, t). Under Assumption 1,

E[ν2j] =
∫ (1/2)2

0
x(1/
√

x)dx = 1/12 for j < k in the same way
as in Section 3. Then,

E[‖v‖2] = 1/12
k−1∑
j=1

‖b∗j‖2 + E[
n∑

j=k

ν2j‖b∗j‖2]. (2)

In the form above, the value
∑n

j=k ν
2
j‖b∗j‖2 cannot be easily es-

timated because the value of this part depends on the natural
number representation. Recall that b∗j tends to get shorter as
j increases if B is reduced. So, the contribution of the term∑n

j=k ν
2
j‖b∗j‖2 to the whole value of E[‖v‖2] is small enough to ig-

nore as long as ν2j for j ≥ k are not too large and k is not too small.
Then, it is allowable to replace the range (−(z j + 1)/2,−z j/2] and
(z j/2, (z j+1)/2] of ν j for j ≥ k with the range (−1/2, 1/2]. There-
fore, it makes sense to introduce the following assumption by re-
placing E[

∑n
j=k ν

2
j‖b∗j‖2] with 1/12

∑n
j=k‖b∗j‖2.

Assumption 2

E[‖v‖2] ≈ 1/12
n∑

j=1

‖b∗j‖2. (3)

Thus, the mean value of ‖v‖2 approximates
∑n

j=1‖b∗j‖2/12.
Under Assumption 1, ν j‖b∗j‖ are statistically independent and

uniformly distributed in [−‖b∗j‖/2, ‖b∗j‖/2] for j < k. We re-
place k − 1 with n similarly to the above, i.e., we assume that
ν j‖b∗j‖ are statistically independent and uniformly distributed in
[−‖b∗j‖/2, ‖b∗j‖/2] for j ≤ n. From the fact that the probability
density function of x = ν2j is g(x) = 1/

√
x for 0 < x ≤ (1/2)2,

E[ν2j] =
∫ (1/2)2

0
x(1/
√

x)dx = 1/12 and V[ν2j] =
∫ (1/2)2

0
(x2 −

1/12)(1/
√

x)dx = 1/180. Therefore, the mean value E[ν2j‖b∗j‖2]
is ‖b∗j‖2/12 and the variance V[ν2j‖b∗j‖2] is ‖b∗j‖4/180.

We can estimate the distribution of ‖v‖2 by applying the gener-
alized central limit theorem because n is large enough and ν j‖b∗j‖
are statistically independent with respect to j. By applying the
generalized central limit theorem, we can introduce the following
assumption.

Assumption 3 The distribution of
∑n

j=1 ν
2
j‖b∗j‖2 follows the

normal distribution N(μ, σ2) with μ =
∑n

j=1‖b∗j‖2/12 and σ =
(
∑n

j=1‖b∗j‖4/180)1/2.

Fig. 1 The actual distribution of
∑n

j=1 ν
2
j‖b∗j‖2.

Therefore, by considering the probability density function φ(x) =
(1/
√

2πσ) exp[−(x − μ)2/2σ2] of the normal distribution func-
tion, the probability that the length of a generated lattice vector v
is shorter than γ is

(1/
√

2πσ)
∫ γ2

−∞ exp[−(x − μ)2/2σ2]dx

= (1/2)(1 + erf((γ2 − μ)/√2σ)).
(4)

Here, erf is the error function such that erf(x) =

(2/
√
π)
∫ x

0
exp[−t2]dt. From Eq. (4), the probability that a

short lattice vector is found can be computed by the mean value
μ and the variance σ2. We emphasize that the mean value μ is
determined by the sum of squared G-S lengths and the variance
σ2 is determined by the sum of the fourth power of G-S lengths.
Therefore, the probability is determined by the sum of squared
G-S lengths and the sum of the fourth power of G-S lengths.

Here, we experimentally verify Assumption 3. Although As-
sumption 3 does not hold strictly, it is close enough. For example,
see Fig. 1. Figure 1 shows the actual distribution of

∑n
j=1 ν

2
j‖b∗j‖2

for v ∈ VB(s, t) with s = (120, 7), t = (120, 30). Here, B is
a basis for a 120 dimensional SVP challenge problem. The ac-
tual mean value and variance of

∑n
j=1 ν

2
j‖b∗j‖2 were 2.7 × 107

and 1.049 × 1013, respectively. On the other hand, the theoret-
ical values of μ and σ2 of

∑n
j=1 ν

2
j‖b∗j‖2 were 2.656 × 107 and

1.047 × 1013, respectively. In Fig. 1, the probability density func-
tion of N(2.656 × 107, 1.047 × 1013) is also drawn. We can see
that the distribution approximates N(2.656 × 107, 1.047 × 1013).

Our claim is that the smaller
∑n

j=1‖b∗j‖2 is, the higher the prob-
ability is. In the following, we experimentally confirm the above
theoretical analysis. Figure 2 shows the relation between the ex-
pected probability and the sum of basis for the 120 dimensional
SVP challenge problem. Here, the probability is computed from
Eq. (4), and the target length is γ = 1.05 ·GH(L). From Fig. 2, we
can see that the probability gets higher for the smaller

∑n
j=1‖b∗j‖2.

The graph of Fig. 2 is not a smooth curve but has some steps since
the probability is determined by non-fixed parameters μ and σ2.

Note that the probability calculated based on Eq. (4) itself does
not provide an accurate approximation of the actual frequency
with which a very short lattice vector is found. The gap between
the calculated probability and the actual frequency seems to be
caused by the following factors:
(1) treating the distribution of the squared lengths of lattice vec-

c© 2015 Information Processing Society of Japan 71

Journal of Information Processing Vol.23 No.1 67–80 (Jan. 2015)

Fig. 2 The relation between the probability that Pr[‖v‖ < γ = 1.05 ·GH(L)]
and the sum of squared G-S lengths.

tors as the continuous probability distribution as above al-
though it is in fact the discrete probability distribution.

(2) assuming that ν j are statistically independent with respect to
indices and uniformly distributed in some range.

(3) assuming n is large enough for the generalized central limit
theorem.

(4) replacing the range (−(z j+1)/2,−z j/2] and (z j/2, (z j+1)/2]
of ν j for j ≥ k with the range (−1/2, 1/2] in Eq. (2).

However, the calculated probability shows the tendency of the
magnitude relation of the frequencies. We can see that the prob-
ability increases as the sum of squared G-S lengths decreases
in Fig. 2, which derives the claim that the smaller

∑n
j=1‖b∗j‖2 is,

the higher the probability is. We can also see that the probabil-
ity gets larger for larger σ = (

∑n
j=1‖b∗j‖4/180)1/2 from Eq. (4) if

μ =
∑n

j=1‖b∗j‖2/12 is the same.
We also experimentally calculated the fraction of the number

of found short vectors and the number of all generated vectors.
We ran our algorithm, which we will explain in Section 5, for
a SVP challenge lattice of dimension 128 in about one day. We
used one process on a 2.6 GHz laptop computer “Let’snote” (Intel
Core i5). We note that a lattice basis is transformed many times in
our algorithm, and consequently the sum of squared G-S lengths
continues to be changed. We calculate the correlation between
the fraction and the sum of squared G-S lengths. As a result,
the calculated correlation coefficient is −0.892, i.e., there was a
strong correlation between the fraction and the sum of squared G-
S lengths. Here, by a short vector, we mean a lattice vector which
is shorter or slightly longer than b1, of which length was always
3128.62 during program execution. Figure 3 shows the relation
between the fraction and the sum of squared G-S lengths. We di-
vided the range of the sum of squared G-S lengths into ten parts
with equal intervals in Fig. 3. We computed the fraction for each
range of the sum. Figure 3 supports the claim that the smaller∑n

j=1‖b∗j‖2 is, the higher the probability that a short lattice vector
is found is. In Fig. 3, we also show the theoretical probabilities
computed from Eq. (4) for actual bases, of which sums are in the
range of the graph. We can see that the tendency of the magnitude
relation is the same although the theoretical values do not provide
accurate approximations of the experimental values.

Fig. 3 The relation between the fraction and the sum of squared G-S
lengths.

5. How to Decrease the Sum of Squared G-S
Lengths

We showed the effectiveness of generating a lattice basis of
which the sum of squared G-S lengths is as small as possible in
Section 4. In this section, we show how to decrease the sum of
squared G-S lengths. We call the algorithm the Restricting Re-

duction (RR) algorithm. By the RR algorithm, a new lattice basis
has the smaller sum of squared G-S lengths.

In Schnorr’s sampling technique, when a short lattice vector
is found by SA, it is immediately inserted to the basis and the
generating system, which consists of a lattice basis and a gen-
erated vector, is reduced by BKZ. This process might increase
the sum of squared G-S lengths, even if b j for very small j, e.g.,
j ∈ {1, . . . , 10}, might be improved. We aim to reduce

∑n
j=1‖b∗j‖2

as much as possible by a more efficient way of forming a gener-
ating system. The essential idea of our method is restricting the
index of vectors in the basis where a short candidate vector can
be inserted, so that the sum is not increased. We further reduce
the sum by changing the index in increasing order.

We define the insertion index h(v) of a generated vector v for
some δ as follows:

Definition 4 Let B be a lattice basis, v be a lattice vector in
L(B), and δ ∈ R with δ ≤ 1. The insertion index h(v) of v is j

such that min{ j : ‖π j(v)‖2 < δ‖b∗j‖2, n + 1}.
We do not insert v with h(v) < l for some integer 1 ≤ l ≤ n.
We call such an integer l the restriction index. Once the sum of
squared G-S lengths of a local basis (b1, . . . ,bl−1) is decreased,
it is never influenced by the subsequent insertion. Therefore, by
increasing l, the sum of the squared G-S lengths of a local basis
(bl, . . . , bn) gets smaller from the front.

We show the outline of the RR algorithm in the following Al-
gorithm 2. It is shown that the RR algorithm works very well in
practice, although there is no theoretical guarantee that a lattice
vector to satisfy the goal norm of the SVP instance is always ob-
tained by using the RR algorithm. We generate lattice vectors in
VB(s, t) for each l. As explained in Section 3, we use some subset
of VB(s, t) in practice. We denote the subset by VB(s, t). We store
all generated vectors v such that h(v) ≤ n as a set P of vectors for
all possible l. After generating lattice vectors, we take a lattice
vector v from P with the minimum pair (h(v), ‖v‖2) larger than

c© 2015 Information Processing Society of Japan 72

Journal of Information Processing Vol.23 No.1 67–80 (Jan. 2015)

(l, 0) in the lexicographic order. Then, we insert v into B at the
index h(v). After the insertion, we reduce a generating system,
which consists of a lattice basis and a generated vector. We main-
tain the generated vectors v such that h(v) < l, which cannot be
inserted at this stage due to the restriction index l.

We increase the restriction index l when the number of times
that bl is not changed reaches a constant c. Basically, we set c

to 1. The further l increases, the more likely a short lattice vec-
tor is found because

∑n
j=1‖b∗j‖2 continues to decrease during this

step. The exception of the above restriction is when l reaches lmax,
which is a parameter given as input. In that case, the generated
vector v with the minimum pair (h(v), ‖v‖2) is inserted into B at
the index h(v) without the restriction index l. That means that b j

for very small j, e.g., j ∈ {1, . . . , 10}, is steadily improved, and
has a chance to satisfy the goal norm of the SVP instance. On the
other hand, that means

∑n
j=1‖b∗j‖2 considerably increases. Then,

the whole step above is repeated from the beginning after LLL-
reduction. Here, we use LLL-reduction of a linearly dependent
generating system in Ref. [14], which removes a linearly depen-
dent vector from the generating system.

Algorithm 2 The Restricting Reduction (RR) Algorithm
Input:

B : a lattice basis B = [b1, . . . , bn]

δ : the decreasing factor

lmax : a parameter to determine the limit of the restriction index

s, t : parameters to determine the distribution of generated vectors

Output:

B : a lattice basis B = [b1, . . . , bn] such that b1 is a short candidate vector

to satisfy the goal norm of the SVP instance

1: for l = 1, . . . , lmax do

2: repeat

3: generate lattice vectors in VB(s, t) and store all the lattice vectors w

with h(w) ≤ n in a set P of vectors

4: take a lattice vector v from P with the minimum pair (h(v), ‖v‖2)

larger than (l, 0) in the lexicographic order

5: insert v at the index h(v)

6: update P so that P includes only the lattice vectors w such that

h(w) < l

7: reduce a generating system consisting of [b1, . . . ,bh0−1, v, bh0 , . . . ,

bn] by LLL and form a new lattice basis B

8: until bl is not changed c times /* Basically, we set c to 1. */

9: end for

10: take a lattice vector v from P with the minimum pair (h(v), ‖v‖2)

11: insert v at the index h(v)

12: reduce a generating system [b1, . . . , bh0−1, v, bh0 , . . . ,bn] by LLL and

form a new lattice basis B

Figure 4 shows the transitions of the sum of squared G-S
lengths in the for loop in the algorithm. From the transitions, we
can see the effectiveness of the RR algorithm in terms of decreas-
ing the sum of squared G-S lengths. Here, the lattice of dimension
128 with seed 0 in the SVP challenge is considered. The sum of
squared G-S lengths is steadily decreased in the case of using the
restriction index l while it is almost unchanged in the case of not
using the restriction index l. We calculated the transition in about
one day both in the cases of using the restriction index l and not
using the restriction index l.

Fig. 4 The transitions of the sum of squared G-S lengths by the RR algo-
rithm.

Table 2 The result of the experiment to solve some SVP challenges.

Dim
Achieved

Norm
Previous

Norm
Estimated

Norm
Goal
Norm

132 3012 unsolved (-) 2902 (1.038) 3047 (0.988)

130 3025 unsolved (-) 2887 (1.048) 3031 (0.998)

128 2984 unsolved (-) 2868 (1.040) 3012 (0.991)

126 2944 2969 (0.9913) 2839 (1.037) 2981 (0.988)

120 2756 2830 (0.9740) 2769 (0.995) 2907 (0.948)

118 2782 2868 (0.9700) 2760 (1.008) 2898 (0.960)

116 2786 2825 (0.9861) 2729 (1.021) 2866 (0.972)

114 2697 2735 (0.9859) 2707 (0.996) 2843 (0.949)

104 2594 2644 (0.9838) 2584 (1.004) 2713 (0.956)

102 2555 2597 (0.9837) 2566 (0.996) 2694 (0.948)

6. Solving the SVP Challenges

We applied our algorithm to the Darmstadt’s SVP challenge.
We wrote all of our code in JAVA. In an exceptional case, we
wrote our code in C++ for a 132 dimensional SVP challenge
problem. We used 3.4 GHz iMac (Intel Core i7) and 2.6 GHz Mac
mini (Intel Core i7). In exceptional cases, we used a 2.6 GHz lap-
top computer “Let’snote” (Intel Core i5) for an SVP in dimension
120 and we used a 3.1 GHz iMac (Intel Core i7) besides the above
computers in dimension 132. We solved an SVP in dimension
132, which is the highest dimension of the SVP solved ever, for
150 days. We also solved the several SVP for a few days or a few
weeks. Table 2 shows the results. The column of “Dim” shows
the dimensions, the column of “Achieved norm” shows the norm
that we achieved using our algorithm, the column of “Previous
norm” shows the norm achieved by other algorithms, the column
of “Estimated norm” shows the estimated norms of the shortest
vector, i.e., GH(L), and the column of “Goal norm” shows the
goals of the SVP challenge, i.e., GH(L). In Table 2, the num-
bers in parentheses show the ratios of the norm achieved by our
algorithm to the corresponding norms.

Table 3 shows the information about the computers that we
used for the experiment. Table 4 shows the information about the
computational costs. In all cases, we ran a single thread in each
process. In Table 4, the running time for dimensions 102, 104,
114, and 120 are not provided since we used the information on
the previous vectors found by other algorithms.

In the following, we provide what is the best Hermite factor
we can achieve with our algorithm. The Hermite factor, which is

c© 2015 Information Processing Society of Japan 73

Journal of Information Processing Vol.23 No.1 67–80 (Jan. 2015)

Table 3 The computers that we used.

Computer CPU
Chip

Number
Operating
Frequency

iMac
Intel

Core i7 4 3.4 GHz

iMac
Intel

Core i7 4 3.1 GHz

Mac mini
Intel

Core i7 4 2.6 GHz

Let’snote
Intel

Core i5 4 2.6 GHz

Table 4 The information about the computational costs to solve SVP chal-
lenges.

Dim Running Time
Parallel

Processing Level

132 150 days 12

130 62 days 4

128 20 days 4

126 15 days 4

120 - 1

118 15 days 4

116 22 days 4

114 - 4

104 - 4

102 - 4

Table 5 Achieved Hermite factors.

Dim Hermite factor

132 1.00823132

130 1.00838130

128 1.00839128

126 1.00844126

120 1.00833120

118 1.00851118

116 1.00869116

114 1.00855114

104 1.00875104

102 1.00904102

popularized by Gama et al. [4], is the most common measurement
of the quality of SVP algorithms. The Hermite factor is defined
as ‖b1‖/Vol(L)1/n. According to Ref. [4], the stronger an SVP
algorithm is, the smaller the Hermite factor it can achieve. Ta-
ble 5 shows Hermite factors achieved in our experiment. These
Hermite factors correspond to the norms shown at the column of
“Achieved norm” in Table 2. We can see from Table 5 that the
Hermite factors are very small in all dimensions of the SVP we
solved. The Hermite factors are considerably small especially in
dimensions 120 and 132, where the Hermite factors 1.00833120

and 1.00823130 are achieved, respectively. These small Hermite
factors indicate the strength of our algorithm.

Table 6 shows the ratio of the squared norms of the very short
lattice vectors to the sum of squared G-S lengths. In Table 6, the
column of “Dim” shows the dimensions, the column of “Sum of
squared G-S lengths” shows the sum of squared G-S lengths of
the bases when the very short lattice vectors were found, the col-
umn of “Squared norms” shows the squared norms of the very
short lattice vectors, and the column of “Ratio” shows the ratios
of the squared norms of the very short lattice vectors to the sum
of squared G-S lengths. From Table 6, we can see that the ratios
are almost constant. Thus, by reducing the sum of squared G-S

Table 6 The ratio of the squared norms of the very short lattice vectors to
the sum of squared G-S lengths.

Dim Sum of squared G-S lengths Squared norms Ratio

132 3.576 × 108 9.071 × 106 0.0254

130 3.132 × 108 9.149 × 106 0.0292

128 3.315 × 108 8.902 × 106 0.0268

126 3.089 × 108 8.664 × 106 0.0280

120 2.702 × 108 7.596 × 106 0.0281

118 2.746 × 108 7.740 × 106 0.0282

116 2.813 × 108 7.761 × 106 0.0276

114 2.603 × 108 7.272 × 106 0.0280

104 2.128 × 108 6.728 × 106 0.0316

102 2.178 × 108 6.526 × 106 0.0300

lengths, we can find very short lattice vectors more frequently.
We used other techniques, which are shown in Section 8, be-

sides the RR algorithm to solve SVP challenges. These tech-
niques include some algorithmic and implementational tech-
niques. However, the RR algorithm is the central part of our total
techniques. In fact, we solved the SVP in dimensions 102, 104,
and 114 by using only the RR algorithm without the techniques
shown in Section 8.

7. Application Possibility of the RR Algorithm
to Other Lattices

In this section, we experimentally confirm that the RR algo-
rithm is applicable to other types of lattices than the SVP chal-
lenge lattices. As we saw in Section 3, we can explain by
Schnorr’s GSA the properties of the natural number representa-
tion of a very short lattice vector and how to determine a distri-
bution of it. This indicates that if a lattice basis for some lattice
approximates GSA, then the RR algorithm is applicable to the
lattice. Here, we consider GGH lattices [6], Micciancio’s GGH
lattices [10], and NTRU lattices [7]. These types of lattices are re-
lated to lattice-based cryptography. Reduced bases for GGH lat-
tices and Micciancio’s GGH lattices approximate GSA [9], [15].
On the other hand, those for NTRU lattices somewhat violate
GSA. However, most squared G-S lengths approximate a geo-
metric sequence (see, e.g., Ref. [9]). In the following, we test if
the RR algorithm is applicable to these types of lattices.

In Section 3, we analyzed the density #{ j : z j ≥ 1}/n for a very
short vector in SVP challenge lattices. Here, we experimentally
confirm that the density for a very short vector tends to be low
also in the above types of lattices. As mentioned in the above,
these types of lattices are related to lattice-based cryptography
and very short vectors in each type of lattice can be obtained in
the key generation process. We calculated the density for very
short vectors that correspond to the secret key in each type of lat-
tice. Note that the number of such vectors is related to the dimen-
sion n of the lattice concerned and specifically, the number is n, n

and n/2 for GGH lattices, Micciancio’s GGH lattices and NTRU
lattices, respectively. In each case, we calculated the density for
a reduced basis in a lattice and took the average among all very
short vectors that correspond to the secret key. Table 7 shows
the average and the standard deviation of the density. Table 7
indicates that the density tends to be low also in these types of
lattices as in SVP challenge lattices. This shows the application

c© 2015 Information Processing Society of Japan 74

Journal of Information Processing Vol.23 No.1 67–80 (Jan. 2015)

Table 7 Density for very short vectors.

Type of Lattices Dim
Average

of the density
Standard deviation

of the density

GGH 180 0.0863 0.017

Micciancio’s GGH 160 0.145 0.062

NTRU 214 0.169 0.029

Fig. 5 Density for very short vectors in a GGH lattice.

possibility of our analysis in Section 3 to these types of lattices.
In the above example, we used a (δ, β)-BKZ reduced basis with
δ = 0.99 and β = 20 for each type of lattice. Here, a (δ, β)-BKZ
reduced basis is the output computed by the BKZ algorithm and δ
and β are parameters that adjust the quality of the output. Recall
that z is determined by a lattice basis B. According to our empir-
ical observation, the density #{ j : z j ≥ 1}/n seems to be strongly
dependent on the strength of reduction for B rather than the type
of lattices. We calculated the average and the standard deviation
of the density with increasing β. Figure 5 shows the result of the
calculation. We conducted the calculation for the same GGH lat-
tice as in Table 7. We reduced a lattice basis by (0.99, β)-BKZ re-
duction with increasing β and obtained 10 reduced bases. We cal-
culated the density for each of the 10 reduced bases. Note that the
larger β is, the stronger (0.99, β)-BKZ reduction is. From Fig. 5,
we can see that the more strongly a lattice basis is reduced, the
lower the density tends to be. This can be explained by GSA as
follows. Under GSA, the length of b∗j at large indices gets larger
for a more strongly reduced basis. Consequently, #{ j : z j ≥ 1}
needs to be smaller in order for a lattice vector v to be very short.

In order for the RR algorithm to be applicable to the above
types of lattices, we need to show that Assumption 3 is applicable
to them in addition to the analysis in Section 3. In the following,
we experimentally confirm that Assumption 3 is close enough for
those types of lattices.

Figure 6 shows the actual distribution of
∑n

j=1 ν
2
j‖b∗j‖2 of v ∈

VB(s, t) with s = (180, 7), t = (180, 30) for a basis B of a 180
dimensional GGH lattice. Note that here we use not some sub-
set of VB(s, t) but VB(s, t) itself. The actual mean value and
variance of

∑n
j=1 ν

2
j‖b∗j‖2 were 6.751 × 105 and 9.448 × 109, re-

spectively. On the other hand, the theoretical values of μ and
σ2 of

∑n
j=1 ν

2
j‖b∗j‖2 were 6.748 × 105 and 9.447 × 109, respec-

tively. Figure 6 also shows the probability density function of
N(6.748 × 105, 9.447 × 109).

Figure 7 shows the actual distribution of
∑n

j=1 ν
2
j‖b∗j‖2 of v ∈

Fig. 6 The actual distribution of
∑n

j=1 ν
2
j‖b∗j‖2 for a basis of a 180 dimen-

sional GGH lattice.

Fig. 7 The actual distribution of
∑n

j=1 ν
2
j‖b∗j‖2 for a basis of a 160 dimen-

sional Micciancio’s GGH lattice.

Fig. 8 The actual distribution of
∑n

j=1 ν
2
j‖b∗j‖2 for a basis of a 214 dimen-

sional NTRU lattice.

VB(s, t) with s = (160, 7), t = (160, 30) for a basis B of a 160
dimensional Micciancio’s GGH lattice. The actual mean value
and variance of

∑n
j=1 ν

2
j‖b∗j‖2 were 5.322 × 107 and 5.772 × 1013,

respectively. On the other hand, the theoretical values of μ and
σ2 of

∑n
j=1 ν

2
j‖b∗j‖2 were 5.316 × 107 and 5.774 × 1013, respec-

tively. Figure 7 also shows the probability density function of
N(5.316 × 107, 5.774 × 1013).

Figure 8 shows the actual distribution of
∑n

j=1 ν
2
j‖b∗j‖2 of

v ∈ VB(s, t) with s = (214, 7), t = (214, 30) for a basis B of
a 214 dimensional NTRU lattice. The actual mean value and

c© 2015 Information Processing Society of Japan 75

Journal of Information Processing Vol.23 No.1 67–80 (Jan. 2015)

variance of
∑n

j=1 ν
2
j‖b∗j‖2 were 1.696 × 103 and 4.045 × 106, re-

spectively. On the other hand, the theoretical values of μ and
σ2 of

∑n
j=1 ν

2
j‖b∗j‖2 were 1.696 × 103 and 4.044 × 106, respec-

tively. Figure 8 also shows the probability density function of
N(1.696 × 103, 4.044 × 106).

From the above, we can see that Assumption 3 is close enough
for each type of lattice. This shows the application possibility of
the RR algorithm to these types of lattices.

8. Extension of the RR Algorithm

As mentioned in Section 6, we used other techniques besides
the RR algorithm to solve SVP challenges. Since those tech-
niques are basically ones to more efficiently generate short can-
didate vectors and more strongly reduce the sum of squared G-S
lengths, we consider them to be a possible extension of the tech-
niques shown in the preceding sections. In the following, we ex-
plain the extension. Then, we show the complete algorithm that
we used to solve an SVP instance in a higher dimension than ever.
We call the algorithm the Extended Restricting Reduction (ERR)
algorithm. Regarding theoretical and experimental analysis of
the techniques shown in this section, it is our future work to show
to what extent each of those techniques contributes to the whole
performance of our algorithm.

In order to explain the ERR algorithm, we define the lexico-

graphical ordering on G-S lengths as follows:
Definition 5 Let B and B′ be lattice bases, and let [b∗1, . . . , b

∗
n]

and [b′∗1, . . . , b′
∗
n] be the Gram-Schmidt orthogonalized vectors

corresponding to B and B′, respectively. Let j be the smallest in-
dex for which b∗j and b′∗j differ. B′ is smaller in lexicographical
ordering than B if and only if ‖b′∗j‖ < ‖b∗j‖.

8.1 Stock Vectors
In the RR algorithm, we consider only lattice vectors shorter

than i-th G-S length ‖b∗i ‖ in i-th orthogonal complement. In
the extension of the RR algorithm, we consider not only lattice
vectors shorter than i-th G-S length ‖b∗i ‖ but also lattice vectors
slightly longer than ‖b∗i ‖. We call those lattice vectors stock vec-

tors. Although lattice vectors which are slightly longer than the
G-S length cannot be used to update the basis immediately, it
is worth storing those lattice vectors in the memory since those
lattice vectors might have chances to be used later. Those lattice
vectors might be enough short to update the basis in some orthog-
onal complement as the lattice basis is iteratively transformed.

During generating short candidate lattice vectors, we store the
lattice vectors each of which is relatively short on the orthogonal
complement span(b1, . . . ,bi−1)⊥ for 1 ≤ i ≤ n. Specifically, we
define i-th stock vector of B as follows:

Definition 6 Let B be a lattice basis, and let r be a real num-
ber with r ≥ 1. For 1 ≤ i ≤ n, an i-th stock vector is a lattice
vector v with ‖πi(v)‖2 < r‖b∗i ‖2.
We denote the set of i-th stock vectors of B by Wr

i,B. We call r

the relaxation factor for stock vectors. Note that Wr
i,B is actually

determined by [b1, . . . , bi−1] in addition to i and r.
In the RR algorithm, a set VB(s, t) of short candidate lattice

vectors is used. We store the stock vectors belonging to VB(s, t)

into memory. We set r to 1.4, for example.

8.2 Utilizing Two Types of Lattice Bases
In the following, we introduce a technique to reduce the sum

of squared G-S lengths over a relatively long period. In the tech-
nique, we use two types of lattice bases. In order to generate
short candidate vectors, we need a lattice basis of which the sum
of squared G-S lengths is smaller. On the other hand, it is desir-
able to keep the smallest basis in lexicographical ordering. This
is a dilemma, and the solution for it is to simultaneously main-
tain these two types of lattice bases, i.e., the lattice basis which
is the current smallest in lexicographical ordering and the lattice
basis of which sum of squared G-S lengths is the current small-
est. We call the former basis and the latter basis the lexicographi-
cally optimal basis and the smallest sum basis, respectively. Also,
we denote the former basis and the latter basis by G and S , re-
spectively. The lexicographically optimal basis will be used as a
smallest sum basis later since the sum of G-S lengths should be
reduced from the front indices.

We summarize how to use the two type of lattice bases as fol-
lows.
Step 1 Preprocess S to reduce the sum of G-S lengths in the

back indices.
Step 2 Generate short candidate lattice vectors in VS (s, t) and

store stock vectors.
Step 3 Update S and G by using the stock vectors generated in

Step 1 and Step 2.
Step 4 Increase the restriction index l.

The above processes from Step 1 to Step 4 repeat until no lat-
tice vector that can be used to update S and G is found. In the
case that such a lattice vector is not found, we substitute the lexi-
cographically optimal basis G for S and reset the restriction index
l. We reduce the sum of squared G-S lengths from the front in-
dices again.

The role of the preprocessing in Step 1 is to reduce the sum
of squared G-S lengths of S so that the expected values of the
lengths of short candidate lattice vectors generated in Step 2 get
smaller. Therefore, the framework of the preprocessing is basi-
cally the same with that of the RR algorithm. For the prepro-
cessing, we generate short candidate lattice vectors in VS (s′, t′)
with s′ and t′, where s′ and t′ are determined so that #VS (s′, t′) is
much smaller than #VS (s, t). As with VS (s, t), we use some subset
VS (s′, t′) of VS (s′, t′). In our implementation, in dimension 130,
e.g., we set s and t to (130, 13, 1) and (130, 55, 15), respectively.
Then, we set s′ and t′ to (130, 4) and (130, 22), respectively. We
choose a subset VS (s′, t′) so that #VS (s′, t′) is 2,000 or so. We
repeatedly transform S . We also store stock vectors in this step
for Step 3.

In Step 2, we generate short candidate lattice vectors by using
the smallest sum basis S . We use S for generating short candi-
date lattice vectors since the sum of squared G-S lengths for S is
small.

In Step 3, we update S under the restriction index l. As in the
RR algorithm, we take a lattice vector v with the minimum pair
(h(v), ‖v‖2) larger than (l, 0) in the lexicographic order. Then, we
insert v into S at the index h(v). While we reduce the sum of

c© 2015 Information Processing Society of Japan 76

Journal of Information Processing Vol.23 No.1 67–80 (Jan. 2015)

squared G-S lengths of S , we update G by using stock vectors
without any restriction.

In Step 4, we control the restriction index by using a list of
variables, each of which we call the unchanged counter. The i-
th unchanged counter is increased by 1 if i-th G-S length is un-
changed for each i. On the other hand, the i-th unchanged counter
is initialized to 0 when i-th G-S length is updated. Then, we in-
crease the restriction index l if the l-th unchanged counter reaches
the value of an upper limit function of l.

8.3 Double Loops for Reducing the Sum of Squared G-S
Lengths

In Section 8.2, we explained a technique to reduce the sum of
squared G-S lengths by using two lattice bases. Here, we show
a revised version of the technique, in which we use three lattice
bases. For that, we nest loops shown in Section 8.2. We call this
algorithm the Extended Restriction Reduction (ERR) algorithm.
In the following Algorithm 3, we show the outline of the ERR
algorithm, which is an extension of the RR algorithm. The ERR
algorithm works very well in practice, although there is no guar-
anteed quality for the output lattice basis. We assume that the
input basis B is somewhat reduced by the LLL algorithm or the
BKZ algorithm.

We use three types S , M, and G of lattice bases. G is the lex-
icographically optimal basis. S is the smallest sum basis S with
restriction index l. M is a lattice basis between S and G lexico-
graphically. We call the lattice basis M the medium basis. M has
restriction index m with m ≤ l. In the inner loop, the restriction
index l increases. In the inner loop, M and S are in a similar rela-
tion between the lexicographically optimal basis and the smallest
sum basis. In the outer loop, the restriction index m increases.
In the outer loop, G and M are in a similar relation between the
lexicographically optimal basis and the smallest sum basis. We
reduce the sum of squared G-S lengths of M from the front in-
dices gradually.

We increase these restriction indices in the following way.
We count the number of times that i-th basis vector in S is not
changed as unchangedinner(i) for any i. We count the number of
times that i-th basis vector in M is not changed in the outer loop as
unchangedouter(i) for any i. We use upper limit functions cinner(i)
and couter(i) that determine the upper values of unchangedinner(l)
and unchangedouter(m), respectively. If the unchanged counter
unchangedinner(l) reaches the upper value cinner(l), l is increased.
If the unchanged counter unchangedouter(m) reaches the upper
value couter(m), m is increased. The upper values cinner(l) and
couter(m) indicate the maximum number of times the process stays
at the indices l and m, respectively. As m increases, computational
time in the inner repeat-until might be shorter since the value of
l is m at the initial stage in the inner repeat-until. We set cinner(i)
and couter(i) so that computational time in the inner repeat-until
might not be very different for each m. We set cinner(i) and couter(i)
to some small integers, e.g., 2 or 3, at small indices. On the other
hand, we set cinner(i) and couter(i) to a relatively large integers, e.g.,
20 or so, at large indices.

We show below which part of Algorithm 3 corresponds to each
of the Steps 1–4 in Section 8.2.

Step 1 line 9 in Algorithm 3.
Step 2 line 10 in Algorithm 3.
Step 3 lines 11 and 13 in Algorithm 3.
Step 4 line 14 in Algorithm 3.
Thus, the Steps 1–4 in Section 8.2 correspond to the inner repeat-
until in Algorithm 3.

Algorithm 3 The Extended Restricting Reduction (ERR) Algo-
rithm
Input:

B : a lattice basis B = [b1, . . . ,bn]

δ : the decreasing factor

r : a relaxation factor for stock vectors

s, t : parameters to determine the distribution of generated vectors

s′, t′ : parameters to determine the distribution of generated vectors

Output:

G : a lattice basis G, which is earlier in lexicographical ordering than the

input basis

1: m := 0

2: G := B

3: M := G

4: reset unchangedouter(i) and unchangedinner(i)

5: repeat

6: l := m

7: S := M

8: repeat

9: S :=Preprocessing(S , δ, r, n − t′1, s′, t′)
10: generate lattice vectors in VS (s, t) and store the stock vectors in W.

11: S :=Updating(S , l, W, δ)

12: M :=Updating(M, m, W, δ)

13: G :=Updating(G, 0, W, δ)

14: l := min{ j : unchangedinner(j) ≤ cinner(j)}
15: update unchangedinner

16: until No vector is found for updating S

17: m := min{ j : unchangedouter(j) ≤ couter(j)}
18: update unchangedouter

19: until No vector is found for updating M

8.4 Parallel Processing
In this section, we explain the parallel processing technique

used in our program. We run multiple processes of JAVA pro-
grams on a computer which has multiple CPU-cores. We par-
allelize the whole steps of Algorithm 3, i.e., we naively execute
Algorithm 3 on each CPU-core. We assign a different basis of
the same lattice to each process. All processes interact with each
other through stock vectors as follows. i-th stock vectors with
small relaxation factor are stored in files on a disk and shared
with all processes. Therefore, a short vector found by one pro-
cess can be used by another process. We associate the file name
with the sequence of G-S lengths from 1 to i − 1 since the i-th
orthogonal complement is determined by Gram-Schmidt orthog-
onalized vectors from 1 to i − 1. The greatest part of the running
time is spent is spent in the steps of generating short lattice candi-
date vectors. Therefore, the time of writing stock vectors to files
and reading them from files is ignorable. We note that the only
difference between a serial and parallel version of the ERR algo-
rithm is that files of stock vectors are shared among all processes
in the latter.

c© 2015 Information Processing Society of Japan 77

Journal of Information Processing Vol.23 No.1 67–80 (Jan. 2015)

Algorithm 4 The Preprocessing Algorithm
Input:

B : a lattice basis B = [b1, . . . , bn]

δ : the decreasing factor

r : a relaxation factor for stock vectors

lmax : a parameter to determine the limit of the restriction index

s, t : parameters to determine the distribution of generated vectors

Output:

B : a lattice basis B with the small sum of squared G-S lengths

1: for l = 1, . . . , lmax do

2: repeat

3: generate lattice vectors in VB(s, t) and store all the lattice vectors w

with h(w) ≤ n in a set P of vectors

4: store the stock vectors in W

5: take a lattice vector v from P with the minimum pair (h(v), ‖v‖2)

larger than (l, 0) in the lexicographic order

6: insert v at the index h(v)

7: update P so that P includes only the lattice vectors w such that

h(w) < l

8: reduce a generating system consisting of

[b1, . . . , bh0−1, v,bh0 , . . . , bn] by LLL and form a new lattice

basis B

9: until bl is not changed c times /* We set c to a large number, e.g., 500.

*/

10: end for

In order to work cooperatively, each process should solve
the same problem, which has the same orthogonal complement.
However, lattice bases used in processes should be different, for
otherwise all processes provide the same vectors. Therefore, we
use bases which are different only in the back indices. Then, they
give different V(s, t).

Although the lattice bases in processes are similar at the initial
stage, they might differ much from each other as the processes
progress. In order to avoid this, the lattice bases need to be syn-
chronized autonomously among all processes in some sense. For
that, we use two tricks:
(1) We add the basis vectors bi of the lattice basis [b1, . . . , bn]

with small indices into stock vectors.
(2) We adjust the restriction indices to relax the restriction of the

insertion for the above vectors.
By the first trick, basis vectors in the front indices are synchro-
nized. By the second trick, the restriction indices in processes are

Algorithm 5 The Updating Algorithm
Input:

B : a lattice basis B = [b1, . . . , bn]

l : the restriction index for B

W : a set of stock vectors

δ : the decreasing factor

Output:

B : an updated lattice basis B

1: repeat

2: take a lattice vector v from W with the minimum pair (h(v), ‖v‖2)

larger than (l, 0) in the lexicographic order

3: insert v at the index h(v)

4: reduce a generating system consisting of [b1, . . . , bh0−1, v,bh0 , . . . ,bn]

by LLL-reduction with δ and form a new lattice basis B

5: until no vector to update B is found in W

synchronized.

9. Efficiency of the ERR Algorithm

In this section, we experimentally confirm that the ERR algo-
rithm has an advantage over the RSR algorithm and the Simple
Sampling Reduction (SSR) algorithm [2], [9], which is an im-
proved version of the RSR algorithm. Here, we experimentally
compare the ERR algorithm with the RSR algorithm and the SSR
algorithm. We conducted the experiment for the SVP of dimen-
sions around 80 with seed 0. Our choice of the dimensions is
based on the report in Ref. [12]. In Ref. [12], Schneider reported
that it seems to be hard to solve SVP challenge instances using the
SSR algorithm in a reasonable running time in dimension more
than 85. In all cases of the experiment, we used one process with
a single thread on a 1.7 GHz MacBook Air (Intel Core i5). We
wrote the code for the RSR algorithm and the SSR algorithm in
C++ with the version 6.0.0 of the NTL software package [16].
Regarding the ERR algorithm, we used the same program written
in JAVA as we used to solve SVP challenges. Table 8 shows the
comparison of the running time required to find a lattice vector

Table 8 Comparison of the running time.

Dim ERR RSR SSR

70

found
1 sec.

s = (70, 13, 1),
t = (70, 55, 15)

found
97 sec.
k = 36

found
38 sec.
u = 22

72

found
4 sec.

s = (72, 13, 1),
t = (72, 55, 15)

not found
17 min.
k = 36

not found
52 min.
u = 28

74

found
3 sec.

s = (74, 13, 1),
t = (74, 55, 15)

found
61 min.
k = 38

found
72 min.
u = 29

76

found
7 sec.

s = (76, 13, 1),
t = (76, 55, 15)

found
24 min.
k = 38

not found
224 min.
u = 30

78

found
39 sec.

s = (78, 13, 1),
t = (78, 55, 15)

not found
101 min.
k = 38

not found
237 min.
u = 30

80

found
75 sec.

s = (80, 13, 1),
t = (80, 55, 15)

not found
221 min.
k = 39

found
8 sec.
u = 30

82

found
3 min.

s = (82, 13, 1),
t = (82, 55, 15)

not found
293 min.
k = 39

not found
343 min.
u = 30

84

found
9 min.

s = (84, 13, 1),
t = (84, 55, 15)

not found
469 min.
k = 39

found
42 min.
u = 30

86

found
14 min.

s = (86, 13, 1),
t = (86, 55, 15)

not found
355 min.
k = 39

not found
290 min.
u = 30

88

found
6 min.

s = (88, 13, 1),
t = (88, 55, 15)

not found
335 min.
k = 39

found
54 min.
u = 30

90

found
8 min.

s = (90, 13, 1),
t = (90, 55, 15)

not found
386 min.
k = 39

not found
346 min.
u = 30

c© 2015 Information Processing Society of Japan 78

Journal of Information Processing Vol.23 No.1 67–80 (Jan. 2015)

Table 9 Comparison of the memory consumption.

Dim ERR RSR SSR

70 160 MB 3 MB 3 MB

72 155 MB 3 MB 3 MB

74 161 MB 3 MB 3 MB

76 158 MB 4 MB 4 MB

78 155 MB 3 MB 4 MB

80 162 MB 4 MB 4 MB

82 155 MB 4 MB 4 MB

84 156 MB 4 MB 4 MB

86 169 MB 4 MB 4 MB

88 166 MB 4 MB 4 MB

90 168 MB 4 MB 5 MB

which satisfies the goal norm of the SVP challenge. In Table 8,
the parameters that adjust the search space size for each algorithm
are shown besides the running time. Here, the parameter k for
the RSR algorithm is the one which, together with the constant
related to GSA, determines the parameter u for S u,B. For exam-
ple, u took the values from 29 to 31 when k = 38 in dimension
80. Note that regarding the ERR algorithm we use some subset
VB(s, t) of VB(s, t) as explained in Section 3.

In all cases, we used a (δ, β)-BKZ reduced basis with δ = 0.99
and β = 20 as input. The results in Table 8 do not include the
the running time required for the initial reduction of a basis. For
the initial reduction, we used BKZ XD, which is one of the BKZ
variants implemented in the NTL software package. The running
time required for BKZ XD with δ = 0.99 and β = 20 was within
1 minute in all dimensions except for 90. In dimension 90, the
running time was 76 seconds. In Table 8, “found 97 sec.”, e.g.,
shows that a solution for the SVP challenge was found in 97 sec-
onds. On the other hand, “not found 17 min.”, e.g., shows that
the algorithm concerned terminated in 17 minutes and a solution
for the SVP challenge was not found. Table 9 shows the memory
consumption measured for each dimension.

From Table 8, we can see that the program for the ERR al-
gorithm was faster than the ones for the other algorithms in all
dimensions except for 80. Although the tools used to write the
code for the three algorithms are different, the implementation in
JAVA language is slower than that in C++ language in general and
Table 8 shows that the JAVA implementation of ERR algorithm is
much faster than the C++ implementations of other algorithms.
This is a qualitative evidence of the efficiency of our algorithm.
That is, we can say that our algorithm is more efficient in terms of
the running time than the RSR algorithm and the SSR algorithm.
On the other hand, our algorithm requires much more memory
than those algorithms. However, the increase of the memory con-
sumption is not so rapid as to make our algorithm impractical as
in Table 9. In fact, even in dimension 130, the memory consump-
tion, which was measured in the same environment as above, was
181 MB.

References

[1] Ajtai, M.: The Shortest Vector Problem in L2 is NP-hard for Random-
ized Reductions (Extended Abstract), Proc. 30th Annual ACM Sympo-
sium on Theory of Computing, pp.10–19 (1998).

[2] Buchmann, J. and Ludwig, C.: Practical Lattice Basis Sampling Re-
duction, Proc. ANTS 2006, LNCS, Vol.4076, pp.222–237 (2005).

[3] Chen, Y. and Nguyen, P.Q.: BKZ2.0: Better Lattice Security Esti-

mates, ASIACRYPT 2011, LNCS, Vol.7073, pp.1–20 (2011).
[4] Gama, N. and Nguyen, P.Q.: Predicting Lattice Reduction, EURO-

CRYPT 2008, LNCS, Vol.4965, pp.31–51 (2008).
[5] Gama, N., Nguyen, P.Q. and Regev, O.: Lattice Enumeration Using

Extreme Pruning, EUROCRYPT 2010, LNCS, Vol.6110, pp.257–278
(2010).

[6] Goldreich, O., Goldwasser, S. and Halevi, S.: Public-Key Cryp-
tosystems from Lattice Reduction Problems, CRYPTO 1997, LNCS,
Vol.1294, pp.112–131 (1997).

[7] Hoffstein, J., Pipher, J. and Silverman, J.H.: NTRU: A Ring-Based
Public Key Cryptosystem, Proc. ANTS III, LNCS, Vol.1423, pp.267–
288 (1998).

[8] Lenstra, A.K., Lenstra, H.W. and Lovász, L.: Factoring Polynomials
with Rational Coefficients, Mathematische Ann, Vol.261, pp.513–534
(1982).

[9] Ludwig, C.: Practical Lattice Basis Sampling Reduction, PhD thesis,
TU Darmstadt (2005).

[10] Micciancio, D.: Improving Lattice Based Cryptosystems Using the
Hermite Normal Form, CaLC2001, LNCS, Vol.2146, pp.126–145
(2001).

[11] Micciancio, D.: The Geometry of Lattice Cryptography, Foundations
of Security Analysis and Design VI, LNCS, Vol.6858, pp.185–210
(2011).

[12] Schneider, M.: Computing Shortest Lattice Vectors on Special Hard-
ware. PhD thesis, TU Darmstadt (2011).

[13] Schneider, M. and Gama, N.: SVP Challenge, available from
〈http://www.latticechallenge.org/svp-challenge/〉.

[14] Schnorr, C.P. and Euchner, M.: Lattice Basis Reduction: Improved
Practical Algorithms and Solving Subset Sum Problems, Math. Pro-
gramming, Vol.66, pp.181–199 (1994).

[15] Schnorr, C.P.: Lattice Reduction by Random Sampling and Birthday
Methods, STACS 2003, LNCS, Vol.2607, pp.145–156, Springer-Verlag
(2003).

[16] Shoup, V.: NTL - A Library for Doing Number Theory, available from
〈http://www.shoup.net/ntl/index.html〉.

Appendix

A.1 Method to Generate a Lattice Vector in
VB(s, t)

The method that we implemented to generate a lattice vector
in VB(s, t) is a slightly modified version of the enumeration al-
gorithm ENUM [14]. ENUM determines the Gram-Schmidt co-
efficients of a lattice vector to be output by exhaustive search.
We determine the Gram-Schmidt coefficients not by exhaustive
search but by the natural number representation. In the following
Algorithm 6, we show the outline of the method, which we call
the Generating Algorithm (GA).

A.2 An Empirical Explanation of VB(s, t)

Here, we explain what the definition of VB(s, t) means and the
reason why we define VB(s, t) in this way.

Example 1 We consider the SVP of dimension 128 with seed
0 in the SVP challenge. A very short vector v in the lattice L cor-
responding to this SVP is as follows:
v = (322 −301 −24 119 218 −342 119 444 −329
312 92 66 −64 −62 181 −204 138 −497 −259 297
−448 627 137 217 89 42 337 33 1 63 −303 −290
21 1 −412 370 −111 335 171 29 −77 −65 139
−432 38 312 −528 −339 −66 175 664 223 192 277
270 −175 60 98 −34 −424 −243 160 −41 −162
224 −61 −428 −331 270 230 −80 193 −345 −244
10 −438 −19 117 −315 259 424 −227 −213 −174
84 66 −506 −152 −253 233 256 −122 144 −256
363 102 204 −35 −127 456 247 −134 237 12 132
−317 109 191 469 −110 −381 −233 −605 −503 180

c© 2015 Information Processing Society of Japan 79

Journal of Information Processing Vol.23 No.1 67–80 (Jan. 2015)

Algorithm 6 Generating Algorithm (GA)
Input:

B : a lattice basis B = [b1, . . . , bn]

z ∈ Nn : a natural number representation

Output:

v : a lattice vector

1: compute μi, j such that μi, j = 〈bi,b∗j〉/〈b∗j ,b∗j〉
2: for i = 1, . . . , n do

3: ui := 0

4: end for

5: for i = n, . . . , 1 do

6: yi := 0

7: for j = i + 1, . . . , n do

8: yi := yi − u jμ j,i

9: end for

10: ui := �yi + 0.5�
11: if ui < yi then

12: δi := −1

13: else

14: δi := 1

15: end if

16: if zi mod 2 = 0 then

17: ui := ui + δi�zi/2�
18: else

19: ui := ui − δi�zi/2�
20: end if

21: end for

22: v := Bu

−196 277 −137 39 −423 −37 126 371 53 −396
121 176 −213).
The lattice vector v ∈ L is short enough to satisfy the criterion
in the SVP challenge, i.e., ‖v‖ < 1.05 · GH(L). We represent v
in terms of b∗1, . . . , b

∗
n that are the Gram-Schmidt orthogonalized

vectors of some reduced basis B in L, i.e., v =
∑n

j=1 ν jb∗j . Then, ν
is as follows:
ν = (0.057 0.02 0.001 0.114 −0.112 0.096 −0.13 −0.125
−0.095 −0.065 −0.031 −0.116 0.045 −0.032 −0.086
−0.167 −0.129 −0.17 −0.119 0.099 −0.047 −0.025
0.017 0.173 0.176 −0.061 −0.093 0.021 −0.143 −0.068
−0.107 0.137 0.094 0.168 0.049 −0.21 −0.003 −0.158
−0.146 0.025 0.104 0.073 −0.004 0.123 0.124 −0.083
0.149 −0.041 −0.088 0.235 −0.002 −0.224 −0.404
0.514 0.055 −0.093 0.367 −0.125 −0.193 −0.197
−0.258 −0.054 −0.03 0.009 −0.082 −0.15 −0.152
0.127 −0.204 0.096 −0.335 0.05 0.24 0.068 0.643
−0.091 −0.184 −0.176 0.699 0.287 −0.019 −0.373
−0.153 −0.705 −0.493 0.036 −0.146 0.283 −0.052
−0.268 −0.423 −0.957 0.408 −0.924 0.045 −0.524
0.328 −0.419 −0.207 −0.036 0.049 0.016 0.629 −0.552
0.235 0.546 −0.632 −0.252 0.328 −0.589 0.519 0.39
0.716 −0.127 −1.542 −0.042 −0.012 0.66 1.236 −1.339
−0.162 −1.782 −1.38 −0.27 0.987 0.388 2.15 1).
In this case, the last nonzero Gram-Schmidt coefficient is ν128 =

1. Because 1/2 < ν128 ≤ (1 + 1)/2, z128 = 1 by the definition of
z(v). z j for j < 128 is also determined in the same way. Thus, the
natural number representation z(v) is as follows:
z(v) = (0 0

0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 1 0 0
0 0 0 0 0 1 0 1 0 1 0 0 0 0 0 0 1 1 0 1 1 0 0 1 1 0 1 0 3 0
0 1 2 2 0 3 2 0 1 0 4 1).
From the definitions of d and w, d0 = 105, d1 = 17, d2 = 3,
d3 = 2, d4 = 1 and w0 = 126, w1 = 75, w2 = 10, w3 = 14,
w4 = 2. This means that VB(s, t) with s = (105, 17, 3, 2, 1), t =
(126, 75, 10, 14, 2) or s = (127, 20, 5, 3, 2), t = (128, 75, 15, 15, 5)
and so on, includes v while VB(s, t) with s = (127, 15, 3, 2, 1), t =
(128, 75, 15, 15, 5) or s = (127, 20, 5, 3, 2), t = (128, 70, 15, 15, 5)
and so on, do not include v.
Thus, if s and t are properly set, VB(s, t) includes v.

Masaharu Fukase received B.S., M.S.,
and Ph.D. degrees from the University of
Tokyo, Japan, in 2006, 2008, and 2011,
respectively. Since 2011, he has been a
project research assistant of Dokkyo Uni-
versity, Japan. His research interest is in
lattices.

Kenji Kashiwabara received B.S., M.S.,
and Ph.D. degrees from Tokyo Institute
of Technology, Japan, in 1991, 1993,
and 1998, respectively. He is currently
a research associate of the University of
Tokyo, Japan from 2007. His research in-
terests are in Cryptography and Combina-
torics.

c© 2015 Information Processing Society of Japan 80

