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Abstract: Stochastic processes play an important role in gene regulatory networks. For many years, methods and al-
gorithms have been developed to solve the problems regarding stochastic mechanisms in the cellular reaction system.
Discrete Chemical Master Equation (dCME) is a method developed to analyze biological networks by computing the
exact probability distribution of the microstates. With this method, because all computations and analyses of proba-
bility distribution can be processed based on the enumerated microstates, network microstates enumeration has been
considered as a significant and prerequisite step. However, there is no efficient enumeration method. Applications will
perform poorly when enumeration must address a complex or large network. To improve these microstate computation
and analysis methods, we propose an efficient algorithm to enumerate microstates using Matrix Network, a new data
structure we designed. Unlike traditional methods that perform the enumeration using simulation to apply reactions,
the proposed approach utilizes the correlation of the microstate values and the geometric structure of the microstate
map to accelerate the enumeration computation. In this paper, the theoretical basis, features and algorithms of Matrix
Network are discussed. Moreover, sample applications demonstrating computation and analysis using Matrix Network
are provided.
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1. Introduction

Gene regulation has a significant role in cellular processes. Re-
search has continued to explore the secrets of gene regulation,
describing these systems using mathematics and biology. Many
different kinds of models and methods have been proposed [1] in-
cluding methods using Bayesian and Boolean networks [2], [3].

Gene regulation involves a complex reaction network consist-
ing of a set of genes, proteins, small molecules, and their mutual
regulatory interactions. In genetic regulatory networks, stochas-
tic processes have occupied an important role [4], [5]. Different
regulatory proteins are produced to control the development of
functions by selecting different reaction pathways [6]. Based on
stochastic processes, pathway selection probabilities are deter-
mined. Exploiting the advantage of stochastic expression, cells
randomize the regulatory outcome and ensure mechanisms that
function smoothly and stably.

The high biological significance of stochastic processes has ad-
vanced applicable studies. In 1977, Gillespie provided a stochas-
tic simulation algorithm as the fundamental framework to study
stochasticity [7]. Under his framework, a microscopic state
(microstate) can be defined as a combination of molecules in
a chemical system. Then, different independent reactions can be
modeled as transitions between these microstates. Because the
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probability distribution of microstates and transitions describes
the full properties of a stochastic system, the study of stochastic-
ity can be seen as a research to determine the methods to study
the probability distribution of microstates. The discrete Chemical
Master Equation (dCME), one such method, was developed to
calculate the probability distribution of a steady state [8]. The
dCME method can calculate the statistics of microstates with
significantly higher performance, without loss of accuracy, than
methods using the SDE and ODE models [9], [10], [11], [12].

In fact, the whole microstates of a biological network and the
transitions of the microstates are built up as a Markov process.
The dCME method calculates the microstate probability distribu-
tion by solving some equation on Markov state transition proba-
bilities. The first step of dCME is to enumerate all possible mi-
crostates based on the specific molecular species and related re-
actions of the given biological network model. The second step is
to obtain the Markov state transition matrix M by the microstates
and related reactions. Finally, the probability distribution P of the
microstates is obtained by solving the equation P =MP.

According to the dCME procedure, an essential step is the enu-
meration of the microstates. The subsequent computation for
probability distribution can be accomplished using the result of
the enumeration. However, there is no efficient algorithm to enu-
merate microstates. In a traditional enumeration, there is a set X
that is used to collect the enumerated microstates. After generat-
ing a microstate m, it must be confirmed that m does not already
exist in set X (to ensure that m has not been previously generated,
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that is, that m is a new microstate). Only if it is a new microstate,
m can be added to set X. However, even an extremely small ge-
netic network can result in a vast number of microstates. Tradi-
tional computation requires excessive time to verify the unique-
ness of each microstate generated by a reaction in a large size
set X.

In this paper, we provide an efficient method to enumerate mi-
crostates. We solved the problem of enumeration using geomet-
ric relevance based on the structure of a map of the microstates.
For a given genetic network, the microstates can be considered as
an enormous graph where the vertices are microstates and edges
are the transitions (reactions to change microstates) between mi-
crostates. In fact, based on the shape of the graph, many parts
of the geometry structure can reveal a similar pattern that can be
considered as a special feature. To utilize this feature, we de-
signed a new data structure, Matrix Network. We then use Matrix
Network to build an efficient microstate enumeration algorithm.

2. Methods

2.1 Matrix Network
2.1.1 Definitions

Matrix Network is defined on theoretical basis that includes
M-Vector, M-Set, M-Matrix, R-Matrix and Plus Computation. To
discuss Matrix Network, definitions must be provided in advance.

Definition 2.1: M-Vector is a vector where, m is the sum
of the elements, n is the number of elements, and the elements
are natural numbers. We denote the M-Vector of n elements by
V(m,n).

Example 2.2: Vector (1,2,1) is an M-Vector, V(4,3), because
the sum of elements is four, and the vector has three elements.
Similarly, Vector (1,2) is an M-Vector V(3,2).

Definition 2.3: M-Set (S(m,n)) is a set containing all possible
M-Vectors that have the same expressions (V(m,n)).

Example 2.4: Using Definition 2.1, it is known that both Vec-
tor (1,2) and (3,0) are V(3,2) M-Vectors and both belong to the
set S(3,2). The full set S(3,2) is {(1,2), (3,0), (0,3), (2,1)}.

M-Set facilitates the definition of M-Matrix, the most essential
object used to build the Matrix Network.

Definition 2.5: M-Matrix (M(m,n)) is a matrix composed of
all the M-Set’ (S(m,n)) vectors, which have been ordered by left-
heavier; each row of M-Matrix is a vector of M-Set. Because
a row of M-Matrix has n elements, the number of columns of
M-Matrix is also n.

Example 2.6: As S(3,2) contains four vectors: (1,2), (3,0),
(0,3), (2,1), then ordered by left-heavier and combined, these
yield the M-Matrix M(3,2):

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

3 0
2 1
1 2
0 3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Example 2.7: Other examples: M-Matrix M(1,2) and M(2,2)

M(1,2) is

⎡⎢⎢⎢⎢⎣1 0
0 1

⎤⎥⎥⎥⎥⎦ , and M(2,2) is

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
2 0
1 1
0 2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ .

Clearly, a vector has a determinate position in the M-Matrix.
That is, a vector has a unique sequence number in an M-Matrix.

Example 2.8: (1,1) is the second vector (or row) of M(2,2);
(1,2) is the third vector (or row) of M(3,2).

Definition 2.9: Given two M-Matrices with the same column
number, M(a,n) and M(b,n) (b > a), we state that M(b,n) is at
a higher level than M(a,n) and the distance between these two
M-Matrices is b− a. If the distance is one, these two M-Matrices
are seen as neighbor M-Matrices of each other.

Example 2.10: The distance between M(1,2) and M(3,2) is
two and M(1,2) is the neighbor matrix of M(2,2).

Definition 2.11: Plus Computation: For a given d, the dis-
tance of two M-Matrices M1 and M2 (M2 is at higher level
than M1), we define Plus Computation (+) as M1 + d =M2.

Example 2.12: For the pair of neighbors M(2,3) and M(3,3),
we have M(2,3) + 1 = M(3,3).

“Plus 1” computation can express the relationship between
neighboring M-Matrices in a simple manner; however, it can-
not describe the inherent relationships of two neighboring
M-Matrices as to the level of coefficient value. We build another
matrix to represent the inherent value relationship between neigh-
boring M-Matrices called Relationship Matrix (R-Matrix).

Before providing a definition of R-matrix, we assign a repre-
sentation for the necessary items. For a given M-Matrix, we rep-
resent the coefficient of the j-th element of the i-th row as c(i,j)
and the i-th row as r(i) (where i > 0 and j > 0).

Example 2.13: For a M(2,3),

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2 0 0
1 1 0
1 0 1
0 2 0
0 1 1
0 0 2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

we have r(2) = (c(2,1),c(2,2),c(2,3)) = (1,1,0)
Definition 2.14: For a pair of neighbor M-Matrices with n

columns (M1, M2, and M1 + 1 = M2), we define R-Matrix,
where coefficient ai,j can be set by the following computation:
1©. For the i-th row of M1, r1(i), we apply “Plus 1” operation on

its j-th element, c1(i,j), and acquire a new vector v.
2©. We find the k-th row of M2, r2(k) that is the same as vec-

tor v.
3©. We set the value of coefficient ai,j as the value of k.

Example 2.15: A more complex example:

for M(2,3),

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2 0 0
1 1 0
1 0 1
0 2 0
0 1 1
0 0 2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, and M(3,3),

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

3 0 0
2 1 0
2 0 1
1 2 0
1 1 1
1 0 2
0 3 0
0 2 1
0 1 2
0 0 3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

R-Matrix is

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 2 3
2 4 5
3 5 6
4 7 8
5 8 9
6 9 10

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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Definition 2.16: Matrix Network is a set of M-Matrices
and R-Matrix defined by the rule: for given M and N, Ma-
trix Network (M,N) is the set of all M-Matrices, M(m,n) with
m � M, n = N, and the R-Matrix of the M-Matrix at the
highest level. The data is represented by the following structure
[M-Matrices |R-Matrix].

Example 2.17: Matrix Network (4,2):

[0 0]

⎡⎢⎢⎢⎢⎣1 0
0 1

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
2 0
1 1
0 2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

3 0
2 1
1 2
0 3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

4 0
3 1
2 2
1 3
0 4

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
|

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 2
2 3
3 4
4 5
5 6

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
Example 2.18: Matrix Network (2,3):

[0 0 0]

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
1 0 0
0 1 0
0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2 0 0
1 1 0
1 0 1
0 2 0
0 1 1
0 0 2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
|

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 2 3
2 4 5
3 5 6
4 7 8
5 8 9
6 9 10

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
2.1.2 Features of Matrix Network
(1) M-Matrices of Matrix Network

In a Matrix Network, a higher-level M-Matrix will indirectly
contain all the information of a lower-level M-Matrix. From
a higher-level M-Matrix, a lower-level M-Matrix can be calcu-
lated directly by deducting the value of their distance on the first
column of the higher-level M-Matrix and removing the rows con-
taining a negative number.
(2) R-Matrix of Matrix Network

In a Matrix Network, R-Matrices of higher-level M-Matrices
are longer than R-Matrices of lower-level M-Matrices. A longer
R-Matrix contains all the information of a lower R-Matrix di-
rectly, without additional computation. Therefore, in a Matrix
Network, we only keep the longest R-Matrix to represent all the
relationships of the neighboring M-Matrices.
(3) Graph of Matrix Network

Definition 2.19: A Graph of a Matrix Network is a graphic
representation of a Matrix Network. For a given Matrix Network,
the graph can be drawn under the rule:
1©. We draw each row of each M-matrix as a vertex.
2©. For the i-th row of each Matrix M, rm(i), we take the i-th

row of the R-Matrix, rr(i). The values of the elements of
rr(i) represent the rows of M + 1 that should be linked with
rm(i). Then, we link the related vertices in the graph.

Example 2.20: An example of a Matrix Network (3,3) in
Fig. 1.

The graph of Matrix Network (3,3) is presented in Fig. 1.
The different colored lines represent different columns of the
R-Matrix.

It can be seen that, from left to right, the graph of the Matrix
Network is extended by adding more nodes following the unique
pattern of a regular geometric structure. In Fig. 1, the pattern is
a three-direction path containing red, green, and black lines as
directions. The values of the vertices are changed regularly fol-
lowing the path and then grouped into M-Matrices to become the

Fig. 1 Matrix Network (3,3) and its graph.

main portion of the Matrix Network. Therefore, before using Ma-
trix Network, it is necessary to generate M-Matrix.
2.1.3 Algorithm to Generate M-Matrix

We developed an efficient algorithm to generate M-Matrix. To
build the algorithm with a clear explanation, we must create sev-
eral functions in advance.

Definition 2.21: Given a matrix X, we define a function F(X)
as increasing the coefficients of the first column of X by one.

Example 2.22: For the matrix

⎡⎢⎢⎢⎢⎣1 0
0 1

⎤⎥⎥⎥⎥⎦,
we have F

⎛⎜⎜⎜⎜⎝
⎡⎢⎢⎢⎢⎣1 0
0 1

⎤⎥⎥⎥⎥⎦
⎞⎟⎟⎟⎟⎠ =

⎡⎢⎢⎢⎢⎣2 0
1 1

⎤⎥⎥⎥⎥⎦.
Definition 2.23: Given a matrix X, we define a function Z(X)

as inserting a zero column, that is, where all elements are 0,
onto X as the first column of X.

Example 2.24: For the matrix

⎡⎢⎢⎢⎢⎣1 0
0 1

⎤⎥⎥⎥⎥⎦,
we have Z

⎛⎜⎜⎜⎜⎝
⎡⎢⎢⎢⎢⎣1 0
0 1

⎤⎥⎥⎥⎥⎦
⎞⎟⎟⎟⎟⎠ =

⎡⎢⎢⎢⎢⎣0 1 0
0 0 1

⎤⎥⎥⎥⎥⎦.
Definition 2.25: Given two matrices with the same column

number, X, Y, we define a function C
(

X
Y

)
as combining X and Y

vertically into a new matrix.

Example 2.26: For two matrices:

⎡⎢⎢⎢⎢⎣2 0
1 1

⎤⎥⎥⎥⎥⎦,
⎡⎢⎢⎢⎢⎣1 0
0 1

⎤⎥⎥⎥⎥⎦,

we have C

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
2 0
1 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
1 0
0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2 0
1 1
1 0
0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Using the functions above, we have a function to generate
M-Matrix, M(m,n).

M(m,n) = C
(

F(M(m− 1,n))
Z(M(m,n− 1))

)
, (m, n > 1)

Before using the formula above, these facts must be clear:
1©. The M-Matrix that can be represented as M(1,n) is the iden-

tity matrix with n columns.
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Table 1 Example process of Matrix Network generation for Matrix Net-
work (3,3).

2©. The M-Matrix that can be represented as M(m,1) is the ma-
trix having only one element (a matrix with one column and
row) where the value is m.

Then, the generation function becomes:

M(m,n) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

C
(

F(M(m− 1,n))
Z(M(m,n− 1))

)
, (m, n > 1),

identity matrix with n columns, (m = 1, n > 1),
one element matrix [m], (m > 0, n = 1).

Example 2.27: Using the facts and generation function above
to generate the M-Matrices for Matrix Network (3,3), and the re-
sult is presented in the final column of Table 1.
2.1.4 Time complexity and the space complexity of Matrix

Network
(1) M-Matrix row number
We define a function f (m,n) to express the rows number of the
M-Matrix M(m,n).

According to the definition of M-Matrix and the mathematical
combination method, the rows number of M(m,n) is equivalent
to the number of ways of selecting n − 1 items from a collection
containing n +m − 1 total items. Therefore, we have

f (m,n) = Cm+n−1
n−1

,

which means “n +m − 1 choose n − 1”.
(2) Time complexity
According to our algorithm’s procedure, the M-Matrices will be
generated from lower levels to higher levels, in another word,
when we start to generate M(m,n), we have already generated
the lower M-Matrices, which are M(1,1), M(1,2), M(2,1), . . . ,
M(m,n−1), M(m−1,n). Thus, the process of generating Matrix
Network (m,n) will be done once M(m,n) has been completely
generated. Therefore, we can analyze the computational com-
plexity by analyzing the total work needed to construct M(m,n).

The essence of M-Matrices generation is to generate each sin-
gle row of the matrices. And for each row, there are 2 kinds of
computations:
1©. “Plus 1” on the first element of a row,

2©. Inserting a zero as the first elements of a row.
According to above discussions, the order of the total com-

putation complexity for Matrix Network (m,n) is given by the
order of the total computation time of 1© and 2© of all the row
of M(m,n), because at least one of such operations is performed
at each recursive step and thus we can ignore the time required
for performing recursive calls. It should be noted that we can use
the same memory space for M(m,n) and for M(m,n − 1) and
M(m − 1,n) by appropriately adjusting indices, and thus we do
not need time consuming matrix copy operations.

For 1©, the sum of the elements in each row of M(m,n) is m,
and M(m,n) have f(m,n) rows. Thus, the total number of “plus 1”
operations performed in the whole steps will be mf(m,n).

For 2©, M(m,n) has n columns and thus the total number of
“insert a zero coefficient” of each row will be n. Therefore, the
total computation number of “insert a zero coefficient” operations
performed in the whole steps will be nf(m,n).

Considering the computation time of 1© and 2© together, the
total time complexity of generating Matrix Network (m,n) is

T(m,n) = O((m+ n) f (m,n))

(3) Space complexity
For generating M(m,n), we need to combine M(m − 1,n) and

M(m,n − 1) together. And after we get M(m,n), we do not need
to keep M(m− 1,n) or M(m,n− 1) anymore. In another word, in
combination process for M(m,n), we can use the same space for
M(m − 1,n) and M(m,n − 1) without allocating any new space.
In addition, for generating the whole Matrix Network (m,n),
M(m,n) is known as the highest and largest M-Matrix. It is able
to temporary store other M-Matrices into the space of M(m,n).
For example, along with the generation of M-Matrix M(i,n), the
related M-Matrices M(i,j) where j < n also have been generated.
And all the M-Matrices M(i,j) where j ≤ n can be temporary
stored in the space of M(m,n). Then in the process of gener-
ating next target M-Matrix M(i + 1,n), the related M-Matrices
M(i + 1,j) where j ≤ n can be generated by updating M(i,j) di-
rectly, and M(i + 1,j) can also be stored in the space of M(m,n)
without allocating any new space. Therefore, it is not necessary
to make space for non target M-Matrices, but only for M(m,n).
Then the total space for Matrix Network (m,n):

nf (m,n)

Then the space complexity is

S(m,n) = O(nf (m,n))

2.2 Microstates Enumeration by Matrix Network
Matrix Network is defined to accelerate the computation of

enumeration by utilizing the correlation of the values of the mi-
crostates and geometric pattern (or the geometric structure) of
the map of microstates. Note that the pattern is dependent on the
properties of the reactions and different genetic regulatory net-
works could produce different geometric patterns.

For a genetic network, to enumerate microstates using Matrix
Network, we classify reactions into different types in advance.

Definition 2.28: Type I Reactions are the generation reac-
tions that produce protein directly from DNA (ignore mRNA).
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The possible combinations of protein products can be collected
by Matrix Network directly. We consider the protein products
from a Type I reaction as basic proteins.

Example 2.29: Example of Type I Reactions:
(Gene) -> Protein A;
(Gene) -> Protein B.

Definition 2.30: Type II Reactions are the reactions involving
protein synthesis and other interactions among proteins.

Example 2.31: Example of Type II Reactions:
Protein A + Protein B -> Protein C.

Definition 2.32: Type III Reactions are the reactions that
change the states of DNA, such as when the regulatory proteins
bind to the operator site of a gene.

Example 2.33: Example of Type III Reactions:
Gene + Protein C -> BoundGeneC.

Definition 2.34: A gene state transition network is a finite
graph where, each vertex is the state of a gene and the edge is the
transition of two states. This graph presents the transitions of all
states of a gene. In fact, the transition is a Type III reaction.

Definition 2.35: A protein space or space of proteins is
a set containing all the possible combinations of the protein copy
numbers. In this paper, copy number means the number of
molecules of an element, such as a protein.

For implementation our method, a boundary factor is neces-
sary. In the paper of dCME [8], the boundary condition is defined
as buffer, and we use the same definition in our method. A buffer
is a predefined capacity for containing the generated molecules of
the microstates, which is limited by the memory and disk storage.

Choosing the buffer size should be based on the purpose. In
this paper, since we would like to compare Matrix Network with
a hash table-based method, we used the step increasing buffer
sizes of 100, 200 and 300. Though 300 is not the largest size we
can choose to compute, it is enough to demonstrate the perfor-
mance of microstates generation.

Basically, a larger buffer size will generate more microstates,
thus improve the precision of the microstates probability distri-
bution by dCME. A large buffer can also cause some resource
issues, such as out of memory issue. Therefore, if the purpose is
to compute the very precise microstates probability distribution
and there is no way to choose the buffer size based on network’s
biological features, one strategy is to set a large enough buffer
size without expending the computation resources. Before im-
plementation, it is able to predict the computation volume by the
computation formula of space complexity S(m,n) = O(nf (m,n)).
It should also be kept in mind that, not only the volume of space
complexity, there are also many other factors that can affect mem-
ory usage of the program, such as program language and pro-
gramming style.

According to the above definitions and discussions, the enu-
meration procedure can be described as:
1©. For a given genetic network, we classify all the reactions into

three types.
2©. According to the Type I reactions, we build a Matrix Net-

work to obtain all the possible combinations of protein copy
numbers that can be generated directly from DNA. In gen-
eral, if the buffer of the system is set as b, for n Type I

reactions, we generate Matrix Network (b,n).
3©. The result of 1© contains all the possible combinations of

protein copy numbers generated directly from DNA. It does
not contains, however, the information for other proteins
produced by Type II reaction. Our objective is to generate
the possible combination of all types of protein. Therefore,
we increase the result of 1© by one dimension and add the
information of each protein that is produced by a Type II
reaction. We then calculate the protein space.

4©. We generate the gene state transition network based on
Type III reactions.

5©. We join the results of 3© and 4© to obtain all microstates. We
remove any nonexistent transitions, if necessary.

3. Results

3.1 Case I: Toggle Switch Network
Toggle Switch Network is a small network that is used to study

stochastic behavior [13], [14], [15], [16]. A toggle switch con-
sists of two genes (see Fig. 2). Genes produce two different pro-
teins in this model. The protein product represses the production
of the other gene. This model has six species: GeneA, GeneB,
BoundGeneA, BoundGeneB, ProteinA, and ProteinB. GeneA and
BoundGeneA are the same gene at different states. The only rea-
son that we consider them as different species is to make the fol-
lowing computation and analysis easier. Similarly, GeneB and
BoundGeneB are the same gene at different states.

There are no reactions concerning the interaction among pro-
teins. Based on the definitions of reaction types, we classify re-
actions R1, R2, R3, and R4 as Type I reactions, and reactions R5,
R6, R7, and R8 as Type III reactions.

For a given buffer B (as boundary condition), on one hand, we
generate Matrix Network (B, 2) to represent the possible pairs of
numbers of Protein A and Protein B as the protein space. We
also simulate applying Type III reactions to obtain a small finite
graph as the gene state transition network, which has only four

Fig. 2 Model of Toggle Switch Network.
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Fig. 3 Joined protein space and gene state transition network.

Fig. 4 Separate chaining with linked lists.

Table 2 Results of a Toggle Switch Network using two methods: hash table
and Matrix Network.

vertices. Finally, we combine the results of protein space and
the gene state transition network to obtain all the microstates (see
Fig. 3), details of the combination procedure can be found in A.1.

For comparison with a matrix network, we also use a hash ta-
ble to enumerate the microstates. We employ a commonly used
data structure, hash table, where the structure is separate chaining
with linked lists [17]. For each microstate, we first calculate the
hash key by hash function; then, using the value of the key, we
search for the entry of the list on the chain; finally, we add the mi-
crostate to the list. In the list, there are many independent buckets
containing microstates sorted by left-heavier on the microstate.
The structure of hash table is illustrated in Fig. 4.

The hash function is defined by:

F(m) = (Pa + 1) ∗ (Pb + 1)%C,

where Pa and Pb are the number of protein A and B of some mi-
crostate and C is a constant (that is 10,000 in this experiment).

The results of enumerations using hash table and Matrix Net-
work are presented in Table 2.

The results clearly indicate that the proposed enumeration al-
gorithm using Matrix Network is fast and can achieve superior
performance compared to the method using hash table.

3.2 Case II: Phage Lambda
Phage lambda is a bacterial virus that consists of a head and

a tail and can have fibers [18]. After a Phage lambda infects
the bacterial species Escherichia coli, it chooses two pathways
to develop, lysis or lysogeny. At normal condition, phage lambda
chooses lysogeny to maintain its DNA in the host E.Coli. When
the cell suffers damage, the phage will switch pathway to ly-
sis to release many generations and avoid the risk of extinction.
The lysis-lysogeny selection allows phage lambda to preserve its
species.

The phage lambda network has been seen as the ideal model to
study stochasticity because the pathways are switched automati-
cally by the stochastic reactions of the genetic regulatory network
of phage lambda. For many years, there has been research based
on phage lambda network [19], [20]. Cao et al. have calculated
the probability distribution of the microstates of the network and
analyzed the features of the phage lambda using dCME [12]. The
computational model they used contains 54 biochemical reactions
involving 13 molecular species.

We used a similar computational model to Cao et al. We con-
sidered the reactions of the production of the same protein with
different DNA states as the same reaction, see A.2. We used
the same restricted condition as theirs: the maximum copy num-
ber of net molecules synthesized in the system was set to 50;
they reached approximately 1.7 million microstates. We applied
the proposed enumeration algorithm and obtained 1,695,926 mi-
crostates (see A.1.2), within 94.145 s (including the time con-
sumed to output the data from memory to a file).

4. Discussion

We designed a new data structure called Matrix Network to
represent a type of graph containing the regular geometric pat-
tern obtained from the map of microstates of a genetic regulatory
network. Matrix Network is defined under a theoretical basis and
includes M-Vector, M-Set, M-Matrix, R-Matrix and Plus Com-
putation. Further, Matrix Network can be efficiently generated
using a mathematical method.

Using Matrix Network, we have also provided an efficient al-
gorithm to enumerate microstates. The enumeration algorithm
we built using Matrix Network runs at a high performance level.
The method can improve microstate-based methods by accelerat-
ing the enumeration process.

In the Toggle Switch Network experiment, the results confirm
that the proposed enumeration algorithm runs at a high perfor-
mance level. The phage lambda network is significantly more
complex than the Toggle Switch Network. In the experiment, the
proposed method enumerated 1,695,926 microstates, which com-
pares with 1.7 million microstates in the Cao et al. paper [12].
This result demonstrates the enumeration algorithm using Matrix
Network is also qualified for more complex networks.

Finally, unlike traditional methods that perform enumeration
by simulating reactions, Matrix Network utilizes the correlation
of both the values of the microstates and geometric structure of
the map of microstates. Using Matrix Network, microstate enu-
meration achieved a high performance level. Moreover, the re-
sults of the enumeration potentially provide additional informa-
tion supporting further computation or analysis.
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Appendix

A.1 Microstates Enumeration of Toggle
Switch Network

In Section 3.1, we classified reactions R1, R2, R3, and R4 as
Type I reactions and reactions R5, R6, R7, and R8 as Type III
reactions (see Fig. 2). We do not have Type II reactions in this

Fig. 5 Protein space.

Fig. 6 Gene state transition network.

case. For this network, we generate microstates as follow: (a) We
generate the protein space (possible combinations of proteins) by
Type I reactions. (b) We generate a gene state transition network
using Type III reactions. (c) We join the results of (a) and (b) to
all microstates.

A.1.1 Generate Protein Space (All Possible Combinations of
Proteins)

In this system, according to Type I reactions that produce two
kinds of proteins, we generate Matrix Network (b,2) (b is the
buffer for the boundary limit) as all the possible combinations of
proteins A and B, which are in all rows of all M-Matrices in the
Matrix Network.

A.1.2 Gene State Transition by Type III Reactions
According to Type III reactions, we can generate the gene state

transition network displayed in Fig. 6, which contains the all four
kinds of gene state transitions drawn in different colors. In this
figure, # represents the copy numbers of a specific protein.

A.1.3 Join Protein Space and Gene State Transition Net-
work

For each state in the gene state transition network, we do not
yet have the value of #Pa and #Pb. We input the possible protein
combinations from the protein space into each state of the gene
state transition network.
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Fig. 7 Result of joined protein space with 1st state in gene state transition
network.

Fig. 8 Result of joined protein space with 2nd state in gene state transition
network.

Fig. 9 Result of joined protein space with 3rd and 4th state in gene state
transition network.

a) For state 1, (1,1,0,0,#Pa,#Pb), we input the protein space as
the value of #Pa and #Pb to obtain Fig. 7. Values are dis-
played in the graph as an example.

b) For state 2, (0,1,1,0,#Pa,#Pb − 2), we do the same compu-
tation as above. However, in this case, it should be noticed
that in this state, the number of gene A is zero. Therefore
the reaction of producing Protein A is not available. Thus,
after the same computation as above, we must remove the
unavailable links regarding Protein A producing reactions.
According to the computation of #Pa− 2, we will have some
negative values as illustrated in Fig. 8.

c) For state 3 and 4, we can also acquire the values as in Fig. 9.
From the results (a, b and c) above, we obtain four new

graphs. The points that have the same position in these four
graphs can be converted to each other following the gene
state transition network (Fig. 6). According to the gene state
transition network, we combine the results of the four graphs

Fig. 10 Result of microstates by joined protein space with gene state tran-
sition network.

Fig. 11 Result of enumerated microstates.

Fig. 12 Additional detailed results of enumerated microstates.

above (see Fig. 10).
In the process of inputting the possible combination of

proteins into the gene state transition, negative values can
appear using the computation on Protein Number A or B less

2. The negative values can exist in the mathematical model;
however, these are not possible in an actual reaction system.
Therefore, we remove the unavailable microstates that con-
tain negative value for the number of proteins and then finish
the enumeration of all the microstates (see Fig. 11). Fig-
ure 12 presents a more detailed result.
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Table 3 Portion of results of enumeration of microstates for developmental network of phage lambda by
Matrix Network (maximum copy number of net molecules synthesized is 50).

*1. Microstates: each row is a microstate as a combination of the copy number of each species in the reaction system. The data structure of the microstate is

considered as follows:

(# of ProteinCI, # of ProteinCro, # of ProteinCI2, # of ProteinCro2, #of Gene1, # of Gene2, # of Gene3, # of BGene1CI, # of BGene2CI, # of BGene3CI,

# of BGene1Cro, # of BGene2Cro, # of BGene3Cro),

where # is the copy number.

*2. Transitions of Microstates: Columns represent different reactions (R1, R2, . . . ., R10) (see detail of reactions in A.2.1) and the value is the order number of

the microstate that it will be changed to if the reaction occurs. For example, for the first microstate, if R1 occurs then it will change to the second microstate and

if R2 occurs then it change to the third microstate.

A.2 Microstates Enumeration of Network of
Phage Lambda

A.2.1 Computational Model
In this model, the reaction of the production of the same pro-

tein with different DNA states has been considered as the same
reaction, therefore we have two Type I reactions as follows:
Type I
R1: (Gene with all states) -> Protein CI
R2: (Gene with all states) -> Protein Cro
R1 and R2 represent many reactions (see A.2.2).
Type II
R3: 2 x Protein CI-> Protein CI2
R4: 2 x Protein Cro -> Protein Cro2
Type III
R5: Protein CI2 + Gene1-> BGene1CI
R6: Protein CI2 + Gene2-> BGene2CI
R7: Protein CI2 + Gene3-> BGene3CI
R8: Protein Cro2 + Gene1-> BGene1Cro

R9: Protein Cro2 + Gene2-> BGene2Cro
R10: Protein Cro2 + Gene3-> BGene3Cro

A.2.2 Type I Reactions in the Proposed Model
In the proposed model, Gene1, Gene2, and Gene3 are the three

operator sites on the gene. Each operator site can be separately
bound by CI2 or Cro2. By a simple computation, it is easily
known that the gene in the proposed model has 27 kinds of gene
states. According to the 27 gene states, R1 (which means pro-
duce protein CI) can represent 27 reactions using mathematics
(similarly, R2 also can represent 27 reactions).
1: (Gene1 + Gene2 + Gene3) -> Protein CI
2: (Gene1 + BGene2Cl + Gene3) -> Protein CI
3: (Gene1 + BGene2Cro + Gene3) -> Protein CI
4: (Gene1 + Gene2 + BGene3Cl) -> Protein CI
5: (Gene1 + Gene2 + BGene3Cro) -> Protein CI
6: (Gene1 + BGene2Cl+ BGene3Cl) -> Protein CI
7: (Gene1 + BGene2Cl + BGene3Cro) -> Protein CI
8: (Gene1 + BGene2Cro+ BGene3Cl) -> Protein CI
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9: (Gene1 + BGene2Cro + BGene3Cro) -> Protein CI
10: (BGene1Cl + Gene2 + Gene3) -> Protein CI
11: (BGene1Cl + BGene2Cl + Gene3) -> Protein CI
12: (BGene1Cl + BGene2Cro + Gene3) -> Protein CI
13: (BGene1Cl + Gene2 + BGene3Cl) -> Protein CI
14: (BGene1Cl + Gene2 + BGene3Cro) -> Protein CI
15: (BGene1Cl + BGene2Cl+ BGene3Cl) -> Protein CI
16: (BGene1Cl + BGene2Cl + BGene3Cro) -> Protein CI
17: (BGene1Cl + BGene2Cro+ BGene3Cl) -> Protein CI
18: (BGene1Cl + BGene2Cro + BGene3Cro) -> Protein CI
19: (BGene1Cro + Gene2 + Gene3) -> Protein CI
20: (BGene1Cro + BGene2Cl + Gene3) -> Protein CI
21: (BGene1Cro + BGene2Cro + Gene3) -> Protein CI
22: (BGene1Cro + Gene2 + BGene3Cl) -> Protein CI
23: (BGene1Cro + Gene2 + BGene3Cro) -> Protein CI
24: (BGene1Cro + BGene2Cl+ BGene3Cl) -> Protein CI
25: (BGene1Cro + BGene2Cl + BGene3Cro) -> Protein CI
26: (BGene1Cro + BGene2Cro+ BGene3Cl) -> Protein CI
27: (BGene1Cro + BGene2Cro + BGene3Cro) -> Protein CI

It is possible that not all reactions are available in an actual
biological reaction system. However, these reactions can assist
in building a complete Matrix Network, which contains two sets.
One set contains all the possible microstates (M-Matrices) and
the other contains the transitions between microstates (R-Matrix).
Owing to the data processes, these unavailable reactions will in-
crease the unavailable transitions, which are represented as coef-
ficients in the transitions matrix.

In our case, we provide three solutions to address these un-
available reactions:
1©. Do nothing if only the enumeration of the microstates is re-

quired.
2©. Remove some of the unavailable transitions by replacing the

coefficients in the transitions matrix by zero. Using A.1 as
a reference, in Fig. 8 we remove the unavailable links by set-
ting pertinent coefficients to zero.

3©. Assign these unavailable reactions with a rate of 0.
In this paper, we propose the use of Matrix Network to gener-

ate the microstates. Therefore, we choose the first solution and
enumerate the microstates in the same manner as computing the
Toggle Switch Network.

A.2.3 Example of Results
Under the condition of the maximum copy number of net

molecules synthesized in the system set to 50, the proposed
method enumerates 1,695,926 microstates and the microstate
transitions. A portion of the results can be seen in Table 3.
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