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Abstract: CAPTCHAs distinguish humans from automated programs by presenting questions that are easy for hu-
mans but difficult for computers, e.g., recognition of visual characters or audio utterances. The state of the art research
suggests that the security of visual and audio CAPTCHAs mainly lies in anti-segmentation techniques, because indi-
vidual symbol recognition after segmentation can be solved with a high success rate with certain machine learning al-
gorithms. Thus, most recent commercial CAPTCHAs present continuous symbols to prevent automated segmentation.
We propose a novel framework that can automatically decode continuous CAPTCHAs and assess its effectiveness with
actual CAPTCHA questions from Google’s reCAPTCHA. Our framework is constructed on the basis of a sequence
recognition method based on hidden Markov models (HMMs), which can be concisely implemented by using an off-
the-shelf library HMM toolkit. This method concatenates several HMMs, each of which recognizes a symbol, to build
a larger HMM that recognizes a question. Our experimental results reveal vulnerabilities in continuous CAPTCHAs
because the solver cracks the visual and audio reCAPTCHA systems with 31.75% and 58.75% accuracy, respectively.
We further propose guidelines to prevent possible attacking from HMM-based CAPTCHA solvers on the basis of
synthetic experiments with simulated continuous CAPTCHAs.
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1. Introduction

CAPTCHAs (Completely Automated Public Turing tests to tell
Computers and Humans Apart) are programs that distinguish hu-
mans from automated programs by presenting tasks that humans
can easily solve but computers cannot [1]. Many websites use
CAPTCHAs to prevent their services from various abuses such
as flooding from spam accounts. While they have been widely
used in recent web services, even CAPTCHAs in popular web
services (such as Google, Microsoft, Yahoo!) are sometimes eas-
ily solved by simple machine learning algorithms [2], [3]. This
fact immediately threatens the quality of many web services with
unauthorized accesses by malicious programs. Thus, there has
been a huge demand to organize guidelines for the design of se-
cure CAPTCHAs by examining breaking techniques.

This paper discusses the attacking techniques on both visual
and audio CAPTCHAs. While most CAPTCHAs display images
of characters, famous CAPTCHA services also provide audio ver-
sions for accessibility reasons. Because a user that solves either a
visual or audio question is authorized by the CAPTCHA, some-
times audio CAPTCHA systems provide another loophole for
malicious programs. The security of both types of CAPTCHAs
should be equally examined.

In both visual and audio CAPTCHAs, recent systems protect
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Fig. 1 Visual CAPTCHAs of Google (upper left), Yahoo! (upper right),
Microsoft (lower left), and Amazon (lower right). Characters are
connected except for Microsoft CAPTCHA.

against automated programs by presenting continuous symbols.
For example, visual CAPTCHAs of Google, Yahoo!, and Ama-
zon present continuous characters as shown in Fig. 1. This is be-
cause continuous symbols make the segmentation task difficult
for machines but easy to manage for humans. In accordance with
Bursztein et al., using continuous symbols so far is the best option
to avoid automatic segmentation [4].

Here, we discuss a framework that automatically solves contin-
uous CAPTCHAs and is applicable to both visual and audio ones.
The framework formulates the decoding process with a well-
known sequence recognition method based on hidden Markov
models (HMMs) [5] that has been successfully used in automatic
speech recognition (ASR) and cursive handwriting recognition
systems [6], [7].

We tested the efficiency of our framework with actual
CAPTCHA data collected from Google’s reCAPTCHA *1. The
solvers cracked the current version of the visual reCAPTCHA
with 31.75% accuracy and that of the audio reCAPTCHA with
58.75% accuracy (as of July 2013), which means continuous

*1 reCAPTCHA [8] is an application programming interface (API) pro-
vided by Google to embed the CAPTCHA system, which has been used
by various web services including Google, Twitter, and Facebook.
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CAPTCHAs are no longer safe.
The HMM-based sequence recognition method discussed here

has been black-boxed and is easily available in an off-the-shelf li-
brary called the HMM toolkit (HTK) [9]. Therefore, our method
may further threaten the security of continuous CAPTCHAs.

The rest of this paper is organized as follows. Section 2
summarizes previous works on CAPTCHA breaking. Sec-
tion 3 outlines the HMM-based framework to crack continu-
ous CAPTCHAs that is applicable for both visual and audio
CAPTCHAs. Sections 4 and 5 describe the implementation of the
visual and audio reCAPTCHA solvers based on our framework.
Section 6 presents experiments to evaluate the performance of the
reCAPTCHA solvers. Sections 7 and 8 demonstrate synthetic ex-
periments using simulated continuous CAPTCHAs to find out the
weakness of our framework for various kinds of popular defen-
sive techniques. Section 9 discusses guidelines to design better
CAPTCHAs that are based on our experimental results. Finally,
Section 10 concludes the paper.

2. Related Works on Breaking CAPTCHAs

This section describes how continuous CAPTCHAs have be-
come the mainstream CAPTCHA system. We then explain the
contributions of our paper.

Hindle et al. [10] summarized the attacking process of auto-
mated programs as three steps: preprocessing, segmentation, and
classification (Fig. 2). The preprocessing stage reduces redundant
information on the question such as background clutter and noise.
The segmentation stage divides the preprocessed information into
regions of single symbols. Finally, the classification stage labels
each symbol with a certain supervised method.

Based on this attacking process, numerous security as-
sessments have been undertaken on both visual and audio
CAPTCHAs. Recent comprehensive assessments have been con-
ducted by Bursztein et al. [4], [11] for visual CAPTCHAs from
15 web services and audio CAPTCHAs from six web services,
including Google, Yahoo, eBay, etc., with a breaking tool called
Decaptcha.

Many previous works concluded that the strength of a
CAPTCHA depends on the difficulty of its segmentation, since
given a perfect segmentation, a machine often attains superior
accuracy of classification to humans [12], [13]. Thus, recent
CAPTCHAs attach much importance to anti-segmentation tech-
niques where a question is presented with continuous symbols
(Fig. 1), which makes use of Sayre’s paradox: a word can-
not be segmented before being recognized and cannot be rec-

Fig. 2 Attacking process of automated programs. CAPTCHAs are in most
cases broken into three stages: preprocessing, segmentation, and
classification.

ognized before being segmented [14]. The above-mentioned
works [4], [11] also concluded that continuous CAPTCHAs are
unsolvable with their methods or were not even applied to con-
tinuous CAPTCHAs.

Specifically in the field of visual CAPTCHAs, heuristic seg-
mentation methods for continuous CAPTCHAs have been pro-
posed by Yan et al. [15] and Cruz et al. [16]. Although these
methods perform well on specific CAPTCHAs, they fail in their
robustness for configurations of CAPTCHAs such as font types.

The contribution of this paper is to construct a general frame-
work to break continuous CAPTCHAs. Our work is advanta-
geous in the following ways.
• Based not on heuristic segmentation but on HMMs, our

framework is robust against various configurations of
CAPTCHAs.

• Our framework can be made applicable to both visual and
audio continuous CAPTCHAs by modifying an HMM-based
sequence recognition method where the solver simultane-
ously conducts segmentation and classification.

• We demonstrate the effectiveness of our framework with at-
tacking experiments using actual data of the reCAPTCHA,
one of the most secure CAPTCHA systems.

• Based on synthetic experiments in which our solvers
break simulated continuous CAPTCHAs, we propose sev-
eral workarounds for possible attacks from HMM-based
CAPTCHA solvers.

3. HMM-based CAPTCHA Solver Frame-
work

3.1 Overview
Figure 3 depicts the overview of a CAPTCHA solver based on

HMMs. Given the target CAPTCHA, the solver finds the optimal
answer sequence of labels Ŵ, out of all possible answers L. (Basi-
cally, all possible answers of a CAPTCHA can be described with
a generation language as shown in Fig. 4.) The question’s signal
is represented as a sequence of feature vectors O = o1, . . . , oT ,

Fig. 3 Solver overview. Input question is converted into a sequence of fea-
ture vectors and labeled by decoder. Decoder consists of a language
to describe possible answers and set of HMMs, each of which corre-
sponds to each label.

Fig. 4 Example of Backus-Naur form to generate language L. Start symbol
is < captcha > and terminal symbols are digit labels. This grammar
meets schema of CAPTCHA that consists of three or four digits.
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Fig. 5 N-state linear HMM. Observed sequence O is generated by sequence
of hidden states Z. Z has the form of Markov chain in states S . Each
HMM corresponds to each label in this framework.

e.g., the sequence of pixel values for each column.
This problem is formulated as Eqs. (1) to (3), which means the

problem can be broken down into the computations of P(W) and
P(O|W):

Ŵ = arg max
W∈L

P(W |O) (1)

= arg max
W∈L

P(W)P(O|W)
P(O)

(2)

= arg max
W∈L

P(W)P(O|W) (3)

where Eq. (2) is obtained with Bayes’ theorem. The denomina-
tor, P(O), may be left out because it is always the same for given
feature vectors O. Thus, we can obtain Eq. (3).

We assume that P(W) is equal for all possible answers:

P(W) =
1
|L| , (4)

where |L| is the number of sentence patterns generated from the
generation language of L. This is because an answer is randomly
given in most ordinary CAPTCHAs.

From Eqs. (3) and (4),

Ŵ = arg max
W∈L

P(O|W). (5)

Thus, the rest of the problem is the likelihood P(O|W), which
is computed by the decoder. The rest of this section gives an
overview of how the decoder labels a sequence of feature vectors
O after it describes the mechanism of an HMM and a concate-
nated HMM.

3.2 HMM
As depicted in Fig. 5, an HMM is a probabilistic model for

a sequential observation. Given an observed sequence, O =

o1, . . . , oT , an HMM, λ = {π, A, B} outputs the likelihood, P(O|λ).
O is assumed to be generated by a sequence of hidden states
Z = z1, . . . , zT , which has the form of a Markov chain in states
S = {s1, . . . , sN}, i.e., zt ∈ S . An observation value, ot, is gener-
ated by a state, sn, with probability bsn (ot). Thus, an HMM λ is
defined with three parameters:
• An initial probability vector of hidden states: π = [πn|1 ≤

n ≤ N].
• A transition matrix of hidden states: A = {ai, j|1 ≤ i, j ≤

N} where each element ai, j corresponds to P(s j|si), which
means the transition probability from state si to s j.

• Observation likelihood functions: B = {bs(o)|s ∈ S } where o

Fig. 6 Concatenated HMM. By connecting several HMMs to recognize
characters, a larger HMM to recognize a word is obtained.

may be a continuous value by defining bs(o) as a continuous
density function.

The probability that hidden state Z generates observation O can
be calculated with the parameter of HMM λ:

P(O,Z|λ) = P(O|Z, λ)P(Z|λ) (6)

=

⎛⎜⎜⎜⎜⎜⎝ T∏
t=1

bzt (ot)

⎞⎟⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎜⎜⎝πz1

T−1∏
t=1

azt ,zt+1

⎞⎟⎟⎟⎟⎟⎟⎠ . (7)

Thus, P(O|λ) is obtained as:

P(O|λ) =
∑

Z

P(O,Z|λ) (8)

=
∑

Z

⎛⎜⎜⎜⎜⎜⎝ T∏
t=1

bzt (ot)

⎞⎟⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎜⎜⎝πz1

T−1∏
t=1

azt ,zt+1

⎞⎟⎟⎟⎟⎟⎟⎠ . (9)

We can efficiently calculate the summation over Z in Eq. (9) by
using the forward algorithm [5].

The decoder has a set of HMMs {λl1 , . . . , λlM } where M is the
number of labels, and HMM λl corresponds to a label l. An HMM
λl is supposed to return higher likelihood given a part of the ques-
tion’s feature sequence representing l.

3.3 Concatenated HMM and Decoder
As depicted in Fig. 6, several HMMs are concatenated to build

a larger HMM that recognizes a sequence of labels. For exam-
ple, the concatenation of HMMs λa, λl, λb, λo, λv, λe, and λd

is expected to return a higher likelihood for a feature sequence
representing “alboved.” In the following, the concatenated HMM
corresponding to the answer W is represented as ΛW .

To enable the concatenation, the non-emission states, the ini-
tial state sinitial and the final state sfinal, are appended to the head
and tail of each HMM. No state transits to sinitial and sfinal has no
transition to a next state:

P(sinitial|sn) = 0 (1 ≤ n ≤ N), (10)

P(sn|sfinal) = 0 (1 ≤ n ≤ N), (11)

A concatenated HMM is created, the final state of an HMM be-
comes the initial state of the next one, and the process continues.

For an arbitrary possible answer W, the concatenated HMM
ΛW to calculate P(O|W) can be made up in this way. There-
fore, the optimal answer Ŵ is obtained by searching it from
the set of all possible answers L to maximize P(O|W). In gen-
eral for HMM-based sequence recognition methods, this search-
ing task is enabled by constructing a network of concatenated
HMMs [17], [18] where a certain sentence W corresponds to a
path in the network.

The parameters of the HMMs are obtained with the concate-
nated training [19] based on the Baum-Welch algorithm [20]. In
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Fig. 7 Training framework of CAPTCHA solvers. User manually annotates
dataset downloaded from target CAPTCHA. HMMs are trained with
annotated data using concatenated training.

this setup, the training data are provided as pairs of a sequence
of feature vectors and the corresponding label transcription. Note
that the pairwise data do not necessarily include manual align-
ment.

3.4 Training Framework
The HMMs are trained with actual data of the target

CAPTCHA. As outlined in Fig. 7, the training set of questions is
downloaded and stored in the database (DB). The data are man-
ually annotated for each question by the solver’s user. Then, the
HMMs are trained with the feature sequences extracted from the
data in the DB and corresponding transcriptions using the con-
catenated training [19].

4. Visual reCAPTCHA Solver

This section shows how our framework is applied to visual
CAPTCHAs.

4.1 Visual reCAPTCHA Schema
An example of the visual reCAPTCHA questions is shown in

upper-left of Fig. 1 *2. A question consists of six to eight alpha-
betic characters including both upper and lower cases. When all
characters of the question are correctly estimated, the CAPTCHA
is solved (or equivalently broken using a certain algorithm), i.e.,
the visual reCAPTCHA confirms that the user is a human.

To prevent segmentation from automated programs, the visual
reCAPTCHA removes the space between characters of a ques-
tion. The experimental results in Section 6 demonstrate that our
framework efficiently cracks this anti-segmentation technique.

In addition, the visual reCAPTCHA distorts the image of the
question. The distortion is applied in two steps: the linear trans-
formation, which transforms the image with an affine filter, and
the wavy transformation, which waves the image. Effective pre-
processing techniques for these distortions are discussed later in
this section.

To increase usability, the visual reCAPTCHA regards a re-
sponse as correct even when one of the characters in a question
is misestimated in terms of Levenshtein distance. For example,
a question whose correct answer is “abcdefg” may be labeled as
“bbcdefg,” “bcdefg,” or “aabcdefg.”

*2 Although an actual question of the visual reCAPTCHA presents two im-
ages of words, a control word and an unknown word [8], we ignore the
unknown word. This is because the user have only to answer the control
word to pass a reCAPTCHA question.

Fig. 8 Decoding process of visual reCAPTCHA solver. Question is de-
coded in three steps: preprocessing, feature extraction, and HMM-
based recognition.

Fig. 9 Preprocessing of visual reCAPTCHA solver. Input image (upper
left) is binarized (upper right), nonlinearly reshaped (lower left), and
linearly reshaped (lower right).

Fig. 10 Center line detection. Image is nonlinearly reshaped to straighten
detected line.

In summary, the visual reCAPTCHA adopts the following de-
fensive techniques: using continuous characters, randomized text
length, linear transformation, and wavy transformation. The vi-
sual reCAPTCHA also adopts an additional idea to ensure usabil-
ity by allowing an off-by-one error to when labeling a question.

4.2 Solver Overview
Figure 8 depicts the pipeline of the visual reCAPTCHA solver.

The input to the solver is an image of the question, and the solver
outputs the answer label sequence of the word. The solver de-
codes an input in three steps: (1) the input image is nonlinearly
reshaped, and then linearly reshaped (preprocessing); (2) the pre-
processed image is converted into a sequence of feature vectors
(feature extraction); and (3) the feature sequence is labeled with
the HMM-based sequence recognition method (HMM-based se-
quence recognition).

4.3 Preprocessing
Figure 9 shows the images through preprocessing. First, the

input image is binarized by thresholding. The solver uses a fixed
threshold that is defined as the intermediate value between maxi-
mum and minimum pixel intensities. Then the linear transforma-
tion and the wavy transformation should be reshaped to reduce
the horizontal overlap between each character before the ques-
tion is recognized by the HMMs. This is because the HMM-based
recognition method implicitly performs vertical segmentation of
the image.
4.3.1 Nonlinear Reshaping

Suppose that each pixel value of the binarized image in the
question is represented as I(x, y) where x and y is the horizontal
and vertical positions of the pixel respectively:

I(x, y) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 if (x, y) belongs to the text area,

0 otherwise.
(12)

First, as shown in Fig. 10, the center line of the distorted word
c(x) is detected:

c(x) =

∑
w≥|x−x′ |{y · I(x′, y)}∑
w≥|x−x′ | I(x′, y)

, (13)
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Fig. 11 Finding the optimum linear reshaping parameter θ.

where w is the window size. In this study, we set w = 20. The
reshaped image J(x, y) is obtained by vertically aligning each col-
umn of I(x, y) to straighten the detected center line:

J(x, y) = I

(
x, y − c(x) +

h
2

)
, (14)

where h is the height of the image.
4.3.2 Linear Reshaping

As shown in Fig. 11, the linear reshaping can be represented as
a transformation matrix A that has one parameter θ as the follow-
ing equation:

A =

⎛⎜⎜⎜⎜⎝1.0 tan θ
0.0 1.0

⎞⎟⎟⎟⎟⎠ . (15)

The solver finds the optimum reshaping parameter θ that mini-
mizes the horizontal projection of the text area.

4.4 Feature Extraction
A sliding window along the horizontal axis is used to extract

feature vectors. The window size is set to five columns in this
study, and the height of each reCAPTCHA image is 57 pixels.
Thus, a 285-dimensional vector is extracted for each window.
The feature vectors are decomposed into 25 dimensions with a
sparse principal component analysis (sparse PCA) [21].

4.5 HMM Topology
A character is modeled as a left-to-right HMM. Each HMM

has 20 states including the initial and final states. The observa-
tion likelihood function is a 25-dimensional Gaussian distribution
for each state.

5. Audio reCAPTCHA Solver

This section shows how our framework is applied to audio
CAPTCHAs.

5.1 Audio reCAPTCHA Schema
5.1.1 Current Version of Audio reCAPTCHA

Figure 12 shows the waveform of an audio clip from the cur-
rent version of audio reCAPTCHA as of April 2013. A question
consists of three utterances, which we refer to as clusters, with
distinct intervals, and a cluster contains three or four digit utter-
ances spoken in English. Digit utterances in a cluster overlap at
random intervals. When all digits in a question are correctly esti-
mated, the CAPTCHA is solved.

Fig. 12 Waveform of audio reCAPTCHA question. Question consists of
three clusters, and each cluster contains three or four overlapping
digits. If all digits in question are correctly identified, audio re-
CAPTCHA is solved.

Fig. 13 Waveform of previous version of audio reCAPTCHA question. In-
tervals between clusters are completely silent.

The audio reCAPTCHA also protects against automated pro-
grams with two types of noise: additive stationary noise and non-
additive convolutive noise. The former covers the entire audio
signal of the question to prevent both clusters from being de-
tected and recognized. On the other hand, the latter is applied for
each digit. Figure 14 shows an example spectrogram of a digit
voice distorted with the convolutive noise of the reCAPTCHA
that is pronounced “zero” (left), comparing it to that of a clear
digit voice (right). Some of the distorted digit’s features collapse,
especially in the high frequency range. Although the convolutive
noise seems to prevent clusters or digits from being recognized,
it degrades usability since it is often too strong even for humans
to hear, in the authors’ opinion.

Similarly to the visual reCAPTCHA, the audio reCAPTCHA
regards a response as correct even when one of the digits in a
question is deleted or replaced to increase usability. For exam-
ple, a question whose correct answer is “012 345 6789” may
be labeled as “012 345 678” or labeled as “112 345 6789.” On
the other hand, the audio reCAPTCHA does not allow insertion
errors, and the question should not be mislabeled as “0012 345
6789.”

In summary, the audio reCAPTCHA adopts four defensive
techniques: overlap of target voices, random number of target
voices in a cluster, a stationary noise signal that entirely covers
a question, and filtering that collapses high frequency features of
digits. The audio reCAPTCHA also adopts an additional idea to
ensure usability by allowing an off-by-one error when labeling a
question while disallowing insertion errors.
5.1.2 Previous Version of Audio reCAPTCHA

Figure 13 shows an audio clip from the previous version of
reCAPTCHA, which had been used until February 2013. As this
version did not adopt the additive stationary noise, the intervals
between clusters were completely silent. In Section 8, we eval-
uate the solver’s accuracy both for the previous and current ver-

c© 2015 Information Processing Society of Japan 818



Journal of Information Processing Vol.23 No.6 814–826 (Nov. 2015)

sions to assess the efficiency of the additive stationary noise.

5.2 Solver Overview
Figure 15 depicts the audio reCAPTCHA solver. The input to

the solver is a question’s audio signal of the reCAPTCHA, and the
solver outputs the question’s answer. The system solves a ques-
tion in three steps: (1) the input question is segmented into three
clusters with a voice activity detection algorithm (preprocessing);
(2) each cluster’s audio signal is converted into feature vectors
(feature extraction); and (3) the feature vectors of each cluster
are labeled with the HMM-based sequence recognition method
(HMM-based sequence recognition). Note that, because digits
are connected for each cluster, the recognition method is applied
not for questions but for clusters.

5.3 Preprocessing
This component segments a question audio signal into three

clusters. Clusters are extracted with a power-based algorithm for
voice activity detection. The question audio signal, f1, . . . , fN , is
split into segments of length l and is subsampled as Power(t):

Power(t) =
1
l

t+l−1∑
n=t

( f̄ − fn)2, (16)

where f̄ is the mean of ft, . . . , ft+l−1.
Figure 16 plots the power analysis of a question. There are

three cluster segments between four noise segments in which ev-
ery power value is less than a threshold, θ. First, this component
removes the four longest segments in which every window has a
lower power than the threshold, θ, and it then returns the remain-
ing three segments as clusters. We set l = 512 and θ = 0.01 where

Fig. 14 Comparison of spectrograms for distorted digital voice of re-
CAPTCHA (left) and clear digital voice (right). Both are pro-
nounced “zero.”

Fig. 15 Audio reCAPTCHA solver. Preprocessing module splits question
into three clusters. Feature extraction module converts each clus-
ter into a feature sequence, and HMM-based sequence recognition
method labels the feature vectors of each cluster.

Fig. 16 Power analysis of question. Power does not reach threshold θ in
non-utterance sections.

the sampling rate of the question audio signal is 16 kHz and the
amplitude of the input waveform is normalized to 1.0.

5.4 Feature Extraction
We adopt the Mel-frequency cepstral coefficient (MFCC) [22].

MFCC is one of the best transformation techniques successfully
used in recent ASR systems that is based on the mechanism for
human auditory perception. An MFCC vector is extracted for
each short time window of the source audio signal. In addition,
the first and second derivatives of MFCC are called a delta MFCC
and a delta-delta MFCC, both of which are also effective temporal
representations [23].

A feature vector consists of a 13-dimensional MFCC, a
13-dimensional delta MFCC, and a 13-dimensional delta-delta
MFCC, and is in total a 39-dimensional vector. We set the win-
dow size to 25 ms and the frame shift to 10 ms.

5.5 HMM Topology
A digit is modeled as a linear HMM whose transition matrix

meets the following condition:

P(s j|si) = 0 if i � j and i + 1 � j, (17)

where P(s j|si) is the transition probability from state si to s j.
Each HMM has 20 states including the initial and final states.

The observation likelihood function is a 39-dimensional Gaus-
sian distribution for each state. In addition, we adopt the triphone
model [24], [25], [26]; thus, each HMM denotes each triplex pat-
tern of digits.

6. Solver Evaluation

We evaluated our solvers’ performances for both the visual and
the audio versions of reCAPTCHA.

6.1 Data
As listed in Table 1, the experiments were performed with two

datasets. In dataset A-1, 2000 questions downloaded from the ac-
tual visual reCAPTCHA as of July 2013 what used to evaluate
the performance of the visual reCAPTCHA solver. In dataset A-
2, 400 questions downloaded from the actual audio reCAPTCHA
as of April 2013 what used to evaluate the performance of the
audio reCAPTCHA solver.

6.2 Metrics
6.2.1 Strict Accuracy and Off-by-one Accuracy

We evaluated the solvers’ performance with two metrics (strict
accuracy and off-by-one accuracy) defined as follows.
• Strict accuracy is the ratio of strictly correct questions:

{strict accuracy} = Tstrict

R
, (18)

where R is the number of questions, and Tstrict is the number
of strictly correct questions.

Table 1 Datasets for evaluating reCAPTCHA solvers.

Dataset Version Amount Collected date

A-1 Visual (current) 2,000 questions July 2013
A-2 Audio (current) 400 questions April 2013
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Table 2 Average performance of visual reCAPTCHA solver.

Closed test Open test

Strict accuracy 18.38% 10.50%
Off-by-one accuracy 44.94% 31.75%

Fig. 17 Relationship between visual reCAPTCHA solver’s accuracy and
data size. Performance saturated when data size reached around
1,500.

• Off-by-one accuracy evaluates the actual vulnerability of the
reCAPTCHA:

{off-by-one accuracy} = Toff-by-one

R
, (19)

where R is the number of all questions, and Toff-by-one is the
number of correct questions. Here, a question is regarded as
correct when the Levenshtein distance between the solver’s
output and the correct answer is less than two. This ex-
cludes the case of insertion error for the evaluation of the
audio reCAPTCHA solver, because the audio reCAPTCHA
disallows insertion error as described in Section 5.1.

Note that the actual vulnerability of the reCAPTCHA is repre-
sented by off-by-one accuracy, because the reCAPTCHA regards
a response as correct even when there is an off-by-one error.
6.2.2 Open Test and Closed Test

The solver was trained with four-fifth of the entire dataset.
Open test used the remaining one-fifth data for the evaluation.
This test measured the practical performance of the system be-
cause it used unknown data excluded from the training. We per-
formed this five times to obtain the average performance, which
is called five-fold cross validation. Closed test used the same data
as used in the training phase to check whether over-training has
not occured.
6.2.3 Transition of Performance

The transition of the solver’s performance was also evaluated.
We changed the number of training data at intervals of 100 sam-
ples for the visual reCAPTCHA solver and 20 samples for the
audio reCAPTCHA solver.

6.3 Performance of reCAPTCHA Solvers
Table 2 lists the average results when all data in dataset A-1

were used. The solver cracked the current version of the visual
reCAPTCHA with 31.75% accuracy. Figure 17 plots the trend
in terms of strict accuracy and off-by-one accuracy. The solver’s
performance saturated when the data size reached around 1,500.

Table 3 lists the average results when all data in dataset A-2
were used. The solver cracked the current version of the audio
reCAPTCHA with 58.75% accuracy. Figure 18 plots the trend
in the performance. The performance saturated when the data
size reached around 200. Note that the closed accuracy is almost

Table 3 Average performance of audio reCAPTCHA solver.

Closed test Open test

Strict accuracy 22.06% 22.50%
Off-by-one accuracy 59.50% 58.75%

Fig. 18 Relationship between audio reCAPTCHA solver’s accuracy and
data size. Performance saturated when data size reached around
200.

the same as the open accuracy. This means that the solvers did
not over-trained and have appropriate complexity for the given
datasets.

To evaluate the computational costs of our reCAPTCHA
solvers, we used an Amazon AWS M1.medium instance that has
one virtual CPU and 3.75 GB of memory (the physical processor
was Intel Xeon E5645, 2.4 GHz). Our audio reCAPTCHA solver
takes 0.86 seconds to solve one audio reCAPTCHA. This com-
putational time is sufficiently reasonable since it is as fast as a
human solves an audio reCAPTCHA. Our visual reCAPTCHA
solver takes 11.3 seconds to solve one visual reCATPCHA. The
breakdown of the time is: 11.2 seconds for preprocessing and 0.1
seconds for feature extraction and HMM decoding.

7. Bottleneck Evaluation of Visual CAPTCHA
Solvers

To clarify effective countermeasures against the HMM-based
method, we carried out two synthetic experiments for visual
CAPTCHAs. In the first experiment, the solver attacked vari-
ous defensive techniques one by one. The second experiment
was conducted to prove that one of the defensive techniques of
using multiple fonts, which showed fine defensive performance
in the first experiment, can be easily broken by a simple counter
technique.

We evaluated the following defensive techniques adopted by
recent CAPTCHA systems in popular web services as listed in
Table 5. They have been also known as being practical against
previous breaker frameworks [4].
• Using multiple fonts and large set of characters is effective

for anti-classification methods. They slightly affect perfor-
mances of most classification methods.

• Conjunction of overlapping characters and obscuring their
segmentation point with randomized factors (e.g., random
font size, random text length, and character rotation) is one
of the best anti-segmentation techniques.

• The linear transformation of a word makes vertical segmen-
tation of characters more difficult.

• The wavy transformation of a word increases the difficulty of
finding characters’ positions and prevents automated recog-
nition by nonlinearly distorting their shapes.
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Fig. 19 Simulated CAPTCHA examples. Dataset B-1 was the default configuration; dataset B-2 included
a larger character set; dataset B-3 consisted of randomized text length; dataset B-4 had multiple
fonts; dataset B-5 randomized font sizes; dataset B-6 rotated characters; dataset B-7 used the
linear transformation; and dataset B-8 adopted the wavy transformation.

Table 4 Datasets for evaluating robustness of visual CAPTCHA solver.

Dataset Character set Text length Font Font size Rotation Linear transformation Wavy transformation

B-1 a-z 6 characters 1 kind 50 point N/A N/A N/A
B-2 a-zA-Z 6 characters 1 kind 50 point N/A N/A N/A
B-3 a-z 6 to 8 characters 1 kind 50 point N/A N/A N/A
B-4 a-z 6 characters 10 kinds 50 point N/A N/A N/A
B-5 a-z 6 characters 1 kind 30 to 50 point N/A N/A N/A
B-6 a-z 6 characters 1 kind 50 point −45◦ to 45◦ N/A N/A
B-7 a-z 6 characters 1 kind 50 point N/A adopted N/A
B-8 a-z 6 characters 1 kind 50 point N/A N/A adopted

Table 5 Defensive techniques in popular services.

Name Description

reCAPTCHA

Six to eight continuous characters,
lower/upper case alphabets,
linear transformation, and
wavy transformation.

Yahoo!

Five to seven continuous characters,
lower case alphabets,
multiple fonts, and
character rotation.

Microsoft

Eight to ten non-continuous characters,
lower/upper case alphabets and digits,
multiple fonts,
random font size, and
character rotation.

Amazon
Six continuous characters,
upper case alphabets and digits, and
character rotation.

7.1 Experiment 1: Bottleneck Defensive Techniques
The experiment was conducted with eight types of simulated

visual CAPTCHA whose examples are shown in Fig. 19. We
evaluated the solver’s performance for each configurations of the
simulated CAPTCHA listed in Table 4.

The default configuration of the simulated CAPTCHA (dataset
B-1) was a fixed text length with six lower case letters, single font,
fixed font size, no character rotation, no linear transformation,
and no wavy transformation. The other datasets were designed to
evaluate each defensive technique described above in isolation.
Dataset B-2 included both lower and upper case letters. Dataset
B-3 consisted of randomized numbers of six to eight characters.
Dataset B-4 had multiple font faces. Dataset B-5 varied font sizes
from 30 to 50 points. Dataset B-6 rotated each character with a
random angle from −45◦ to 45◦. Dataset B-7 adopted the linear
transformation, and dataset B-8 did the wavy transformation.

The solver’s strict accuracy for each dataset listed in Table 4
was evaluated with five-fold cross validation. The number of
data varied from 100 to 2,000 in increments of 100. The solver’s
schema was the same as the visual reCAPTCHA solver described
in Section 4.

Figure 20 shows the trend of open strict accuracy for each
dataset. The solver cracked almost all questions of the default

Fig. 20 Effectiveness of visual defensive techniques for our framework.
Solver cracks almost all questions of default configuration (dataset
B-1). Multiple fonts (dataset B-4), randomized font sizes (dataset
B-5), linear transformation (dataset B-7), and wavy transformation
(dataset B-8) greatly degrade solver’s performance. Character ro-
tation (dataset B-6) requires many training samples to obtain satu-
rated performance. Large character set (dataset B-2) and random
text length (dataset B-3) scarcely contribute to security.

configuration, which simply overlapped characters (dataset B-1).
Among the other configurations, multiple fonts (dataset B-4), ran-
domized font size (dataset B-5), linear transformation (dataset B-
7), and wavy transformation (dataset B-8) greatly degraded the
solver’s performance. While character rotation (dataset B-6) was
less effective with the maximum DB size, it required many train-
ing samples to obtain the saturated performance. Large character
set (dataset B-2) and random text length (dataset B-3) scarcely
contributed as a defensive technique compared with the other
techniques.

7.2 Experiment 2: Counter Attack on Multiple Fonts
This experiment proved that even multiple fonts can be com-

promised by a simple counter technique: composing a solver with
multiple sub-solvers each of which recognizes a single font. Fig-
ure 21 depicts the overview of the counter technique against mul-
tiple fonts. The feature sequence O is passed into sub-solvers
φ1, . . . , φi, . . . , φI , where i means the index of the i-th font, and I

means the number of font types. Given the feature sequence O, a
sub-solver φi outputs the label sequence Wi and the accompany-
ing likelihood P(O|Wi; φi). Finally, the solver outputs the best one
among all answers of sub-solvers that has the highest likelihood.

In the following, we refer a solver as a parallel solver if
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it adopts the counter technique described in this section and
as a non-parallel solver otherwise. We also refer a simu-
lated CAPTCHA system with multiple fonts as a multi-font
CAPTCHA and as a single-font CAPTCHA otherwise.

To prove the effectiveness of a parallel solver, the performance
evaluation was carried out in the following three conditions:
Condition 1 A multi-font CAPTCHA generated 2,000 ques-

tions. A non-parallel solver was trained with 1,600 of the
questions. The solver’s open strict accuracy was evaluated
with the other 400 questions.

Condition 2 For each font listed in Table 6: a single-font
CAPTCHA generated 2,000 questions; a non-parallel solver
was trained with 1,600 of the questions; and its open strict
accuracy was evaluated with the other 400 questions.

Condition 3 In the training process, each sub-solver of a par-
allel solver was trained with 1,600 questions generated by
each single-font CAPTCHA. In the evaluation process, the
solver’s open strict accuracy was evaluated with 400 ques-
tions generated by a multi-font CAPTCHA.

Table 6 shows the solvers’ performance for each single-font
CAPTCHA under condition 2. Each single-font CAPTCHA
was solved with adequate accuracy: from 82.75% to 100.00%
(95.30% on average).

Table 7 shows the solver’s performance against multi-font
CAPTCHA under conditions 1 and 3, and the average perfor-
mance against single-font CAPTCHAs under condition 2. The
result of condition 3 proves that just by adopting a parallel solver,
the multi-font CAPTCHA is broken with almost the same ac-
curacy as that for single-font CAPTCHAs. Hence, the defen-
sive technique of using multiple fonts is easily surpassed by the

Fig. 21 Parallel CAPTCHA solver to deal with multiple fonts. Feature se-
quence is passed into sub-solvers. Parallel solver outputs best an-
swer among sub-solvers in terms of likelihood.

Table 6 Example of simulated single font CAPTCHAs and performance of
non-parallel solvers.

Font example Accuracy Font example Accuracy

99.50% 95.75%

100.00% 99.25%

98.00% 94.25%

82.75% 96.00%

90.50% 100.00%

Table 7 Solvers’ performance for each experimental conditions in
Section 7.2.

CAPTCHA type Solver type Accuracy

Condition 1 multi-font non-parallel 55.50%
Condition 2 single-font non-parallel 95.30%
Condition 3 multi-font parallel 90.80%

HMM-based method.

8. Noise Evaluation of Audio CAPTCHA
Solvers

As described in Section 5, there are two defensive techniques
specific to audio CAPTCHAs: additive noise, which covers the
entire part of a question to prevent target voices being detected
and recognized, and convolutive noise, which distorts each tar-
get voice with an unknown filtering process to collapse a part
of the spectral feature. Specifically, additive noise is adopted in
most famous commercial audio CAPTCHAs including those of
Microsoft and Yahoo!; thus, this section evaluates our solver’s
robustness for various kinds of additive noise with simulated au-
dio CAPTCHAs. Convolutive noise, on the other hand, is not
discussed here because this noise is adopted only in the audio
reCAPTCHA and the unknown filtering process is difficult to re-
produce on a simulated CAPTCHA.

We conducted two experiments. The first experiment
compared the solver’s performance for the current audio re-
CAPTCHA, which adopted the additive stationary noise, and the
previous audio reCAPTCHA, which did not adopt the additive
noise, to show that the additive stationary noise in the audio
reCAPTCHA scarcely contributes to the security. The second
experiment examined the robustness for several types of addi-
tive noise with simulated CAPTCHAs that were generated by
adding those kinds of noise to the previous version of audio re-
CAPTCHA.

8.1 Data
As listed in Table 8, the experiments were performed with

three datasets. Dataset C-1 was a set of questions downloaded
from the current version of audio reCAPTCHA that was the same
as dataset A-2 in Table 1. Dataset C-2 was that from the previous
version. We downloaded 400 questions both from the previous
and the current versions. (As described in Section 5, the differ-
ence between the previous and current versions of reCAPTCHA
was that the current version adopted the additive stationary noise
that entirely covered a question.) Dataset C-3 was obtained by
segmenting dataset C-2 into clusters. The first experiment was
carried out with datasets C-1 and C-2. The second experiment
was conducted with dataset C-3.

8.2 Experiment 1: Effectiveness of reCAPTCHA’s Additive
Noise

We compared the performance of our solver for the current ver-
sion of audio reCAPTCHA (dataset C-1) with that for the previ-
ous version (dataset C-2). We evaluated the open accuracies for
both datasets with five-fold cross validation. The solver’s schema
was the same as that of the audio reCAPTCHA solver described
in Section 5.

Table 8 Datasets for evaluating robustness of audio CAPTCHA solver.

Dataset Version Amount Collected date

C-1 Audio (current) 400 questions April 2013
C-2 Audio (former) 400 questions December 2012
C-3 Audio (former) 1200 clusters December 2012
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Table 9 Performance for current version of audio reCAPTCHA (dataset C-
1) and that of the previous version (dataset C-2).

Dataset C-1 Dataset C-2

Open strict accuracy 20.00 22.50
Open off-by-one accuracy 56.75 58.75

Table 10 Description of noise signals used in synthetic evaluation for audio
CAPTCHA solver.

Class Name Description

Stationary
White White noise.
Brown Brown noise.
Pink Pink noise.

Semantic

Speech
Spoken audio signal. Noise audio is selected
for each cluster from a corpus of spontaneous
Japanese dialogue [28].

Music
Music audio signal. Noise audio is randomly
clipped from “I Saw Her Standing There” by
the Beatles for each cluster.

Table 9 compares the performances when using all questions
in datasets C-1 and C-2. Both performances were almost the
same; hence the additive stationary noise adopted in the audio
reCAPTCHA is ineffective for preventing the solver’s recogni-
tion.

8.3 Experiment 2: Robustness of Recognition for Various
Kinds of Additive Noise

The result obtained from experiment 1 proved that the HMM-
based recognition method is scarcely disturbed by the station-
ary noise adopted in the current version of audio reCAPTHCA.
In this experiment, we evaluated the robustness of the method
against various kinds of additive noise where the method decoded
several simulated CAPTCHAs.

We generated the simulated CAPTCHAs by adding one of the
noise signals listed in Table 10 to each cluster signal detected
from the previous version of audio reCAPTCHA, which did not
have additive noise. Note that to evaluate the recognition method
in isolation from the preprocessing, the simulated CAPTCHAs
were generated not from questions but from clusters. This was
intended to make the comparison straightforward; the parameter
for the preprocessing should be suitably configured depending on
the strength of the noise signals.

We tested five kinds of noise that can be divided into two
classes: stationary noise, such as white noise, and semantic noise.
Semantic noise has characteristics more similar to CAPTCHA’s
target voices like those in spoken audio. (A typical exam-
ple of semantic noise is a male voice when the target is a fe-
male voice.) This has been known to be an effective technique
that defends against the classification of non-continuous audio
CAPTCHAs [11]. We tested white noise, brown noise, and pink
noise [27] as stationary noise and spoken sentences and music as
semantic noise.

We also examined how the solver’s performance was affected
by various noise levels. The noise level was controlled by chang-
ing the signal-to-noise ratio (SNR) calculated as:

SNR = 10 log10

√∑T
t=1 st∑T
t=1 nt

, (20)

where s1, . . . , sT is the source audio signal and n1, . . . , nT is the

Fig. 22 Relationship between SNR and performance of solver for several
kinds of additive noise. Semantic noise results in lower accuracy
for each value of SNR.

noise signal. Note that the lower the SNR, the stronger the noise.
The SNR ranges from −25 to 25 at five intervals.

We conducted five-fold cross validation for each type of noise
and for each value of SNR. Figure 22 plots the relationship be-
tween SNR and the solver’s per-cluster accuracy for each noise.
Semantic noise resulted in lower accuracy for each value of SNR,
which means semantic noise enables more secure distortion with-
out increasing the strength of noise.

9. Discussion and Guidelines

Our solvers cracked the current version of visual reCAPTCHA
with 31.75% accuracy and that of audio reCAPTCHA with
58.75% accuracy. We conclude that our solvers disclosed the vul-
nerability of the current reCAPTCHA systems in accordance with
the criteria for breaking CAPTCHAs claimed in previous works,
e.g., “automatic scripts should not be more successful than 1 in
10,000” by Chellapilla et al. [29] or “a CAPTCHA schema is bro-
ken when the attacker is able to reach a precision of at least 1%”
by Bursztein et al. [4].

The security of the reCAPTCHA is further threatened by the
fact that the solvers were easily implemented by using an off-the-
shelf library, HTK, and their performance saturated with just a
small amount of training data — 1,500 and 200 questions for the
visual and audio reCAPTCHA, respectively.

On the other hand, we found out several bottlenecks of the
HMM-based method in the synthetic experiments. The rest of
this section discusses the guidelines to design more secure con-
tinuous CAPTCHAs in accordance with those experiments.

9.1 Visual CAPTCHAs
The previous security guidelines of continuous visual

CAPTCHAs have been organized by Burszein et al. [4]: (1)
using continuous characters is considered to be the most se-
cure anti-segmentation technique; and (2) using continuous
characters is only effective with randomized factors such as
the number and size of the characters. In accordance with the
experimental results in Section 7, we propose the following
complementary guidelines for continuous visual CAPTCHAs
against HMM-based attacks.

Guideline 1� �
Continuous CAPTCHAs scarcely prevent HMM-based at-
tacks, even in conjunction with random text length, charac-
ter rotation, large character set, and multiple fonts.

� �
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Random text length, character rotation, and large character set
showed poor defensive performance for the HMM-based method
with enough training data with the result of synthetic evaluation
shown in Fig. 20. Even using multiple fonts, which prevented the
solver’s attack in the first synthetic experiment, turned out to be
ineffective by using a simple counter technique of composing a
solver with multiple sub-solvers.

Guideline 2� �
To prevent HMM-based attacks, continuous CAPTCHAs
should be used in conjunction with random font size, the
linear transformation, and the wavy transformation.

� �
Randomizing font size greatly affected the performance of the

HMM-based method. This is because feature vectors were ex-
tracted as raw pixel information for each column in our solver
while an HMM poorly works with shift-variant observations.

The linear transformation and the wavy transformation also ex-
ceedingly deteriorated the performance of the solver. Essentially,
the HMM-based method is poor at dealing with these distor-
tions, because the HMM-based method implicitly performs ver-
tical segmentation of characters, while the linear transformation
further overlaps horizontal positions of them. Additionally, an
HMM especially with a Gaussian observation likelihood function
is not suitable for recognizing nonlinearly distorted sequences
caused by the wavy transformation.

Note that this guideline may not be applicable in the future.
The preprocessing of our proposed visual reCAPTCHA solvers
uses a naı̈ve technique for linear reshaping and nonlinear reshap-
ing. Sophisticated image processing techniques for text dewarp-
ing and improvement of the features will improve the preprocess-
ing in terms of performance and computational cost.

9.2 Audio CAPTCHAs
Guideline 3� �

For additive background noise, audio CAPTCHAs should
adopt semantic noise rather than stationary noise in favor of
security.

� �
The experimental results shown in Table 9 revealed that the sta-

tionary noise adopted in reCAPTCHA scarcely prevented HMM-
based recognition. In addition, the results in Fig. 22 indicated that
semantic noise was better than stationary noise at deteriorating
the performance of an HMM-based solver.

Semantic noise also can be advantageous because humans can
easily handle such noise even at low SNRs when the target audio
differs semantically from the noise. This is known as the cock-
tail party effect [30]. Thus, we can expect that adopting proper
semantic noise will enhance the security of CAPTCHAs as well
as retain excellent usability.

Guideline 4� �
Additive background noise scarcely prevents automated
segmentation, without similar power level to target voices.

� �
Additive background noise is adopted to prevent not only rec-

ognizing but segmenting target voices. However, they can be eas-

ily segmented by the power-based voice activity detection algo-
rithm described in Section 5.3, as long as there is a clear differ-
ence in sound power. Thus, background noise and target voices
desirably have the same power level.

This paper did not consider the solver’s workaround for the
convolutive noise in the audio reCAPTCHA, since the specific
filtering process of the convolutive noise is unknown other than it
collapses the high frequency range of the original signal’s power
spectrum. Identifying the filtering process and assessing its effec-
tiveness for defense is one future direction.

Auditory characteristics, or auditory illusions, such as phone-
mic restoration [31], [32] might be helpful to develop an audio
CAPTCHA which supports both security and usability at the
same time. The relationship between the level of noise and the
word intelligibility [33] is helpful in designing an optimal level
of noise.

10. Conclusion

We developed and evaluated an HMM-based framework to au-
tomatically solve recent CAPTCHAs. It could overcome one of
the most secure defensive techniques of using continuous sym-
bols.

We demonstrated how our framework was applied for actual
CAPTCHA breakers targeting the current version of Google’s re-
CAPTCHA for both the visual and audio versions. Our solvers
cracked the visual and audio reCAPTCHA systems with 31.75%
and 58.75% accuracy, which threatens the security of recent
CAPTCHAs.

We also conducted synthetic experiments to find out the weak-
ness of our HMM-based method. The experimental results led
us to the principles in Section 9 to protect against our HMM-
based CAPTCHA solver. Future works will involve user testing
on each noise and/or distortion technique, to enrich the guidelines
with quantitative discussion on the trade-off between security and
usability.
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