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Abstract: We address a declarative construction of abstract syntax trees with Parsing Expression Grammars. AST
operators (constructor, connector, and tagging) are newly defined to specify flexible AST constructions. A new chal-
lenge coming with PEGs is the consistency management of ASTs in backtracking and packrat parsing. We make the
transaction AST machine in order to perform AST operations in the context of the speculative parsing of PEGs. All the
consistency control is automated by the analysis of AST operators. The proposed approach is implemented in the Nez
parser, written in Java. The performance study shows that the transactional AST machine requires 25% approximately

more time in CSV, XML, and C grammars.
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1. Introduction

A parser generator is a standard method for implementing
parsers in practical compilers and many other software engineer-
ing tools. The developers formalize a language specification with
a declarative grammar such as LR(k), LL(k), GLR, or PEGs [4],
and then generate a parser from the formalized specification.
However, in reality, many generated parsers are not solely derived
from a formal specification. Rather, most parsers are generated
with a combination of embedded code, called semantic actions.

The use of semantic actions has been a long tradition in many
parser generators since the invention of yacc[11]. One particu-
lar reason is that a formal grammar itself is still insufficient for
several necessary aspects of practical parser generation. The con-
struction of Abstract Syntax Trees (ASTs) is one of the such insuf-
ficient aspect of a formal grammar. Usually, the grammar devel-
opers write semantic actions to construct their intended form of
ASTs. However, the semantic action approach lacks the declara-
tive property of a formal grammar and reduces the reusability of
grammars, especially across programming languages.

The purpose of this paper is to present a declarative extension
of PEGs for the flexible construction of ASTs. The “declara-
tive” extension stands for no semantic actions that are written in
a general-purpose programming language. The reason we focus
on PEGs is that they are closed under composition (notably, inter-
section and completion); this property offers better opportunities
to reuse grammars.

We have designed AST operators that use an annotation style
in parsing expressions, but allow for a flexible transformation of
ASTs from a sequence of parsed strings. The structures that we
can transform include a nested tree, a flattened list, and left/right-
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associative pairs. Due to a special left-folding operator, the gram-
mar developers can construct a tree representation for binary op-
erators that keep their associativity correct.

We have addressed how to implement AST operators in the
context of PEG’s speculation parsing. The transactional AST ma-
chine is an machine abstraction of AST operations, in which the
intermediate state of ASTs while parsing is controlled at each
fragment of mutation. The AST machine produces the resulting
ASTs in either the full lazy evaluation way (such as in function
programming) or the speculation way at any point of parsing ex-
pressions. Either ways, the produced AST is always consistent
against backtracking. Synchronous memoization is presented as
the integration of the AST machine with packrat parsing, in which
the immutability of memoized results is ensured.

Recently, the use of parser generators has been extensively ac-
cepted for protocol parsers and text-data parsers [2], [13]. Parser
performance, including the time cost of data extraction (i.e., AST
construction in the parser terminology), is an integral factor in
tool selection [15], [19]. We have tested the Nez parser, which is
implemented with the AST machine with the synchronous mem-
oization. We demonstrate that the transactional AST machine
approximately requires approximately 25% more time in major
grammars such as CSV, XML, and C.

This paper proceeds as follows. Section 2 states the problem
with AST constructions in PEGs. Section 3 presents our extended
notations for AST construction. Section 4 presents the transac-
tional AST machine that makes AST construction consistent with
backtracking. Section 5 presents the integration of packrat pars-
ing with the transactional AST machine. Section 6 presnets the
performance study. Section 7 reviews related work. Section 8
concludes the paper. Our developed tools are open and available
at http://nez-peg.github.io/.

123



Journal of Information Processing Vol.24 No.1 123-131 (Jan. 2016)

2. Problem Statement

2.1 Semantic Actions

PEGs, like other formal grammars, only provide syntactic
recognition capability. This means that the parsed result is just a
Boolean value indicating whether an input is matched or not. To
obtain detailed parsed results such as ASTs, the grammar devel-
opers need additional specifications to describe how to transform
parsed results.

Semantic actions are most commonly used in today’s parser
generators in order to program AST constructions with a frag-
ment of embedded code in a grammar. Figure 1 shows an ex-
ample of a semantic action written in Java, a host language of
Rats! [6]. The embedded code {. ..} is a semantic action, com-
bined with a generated parser at the parser generation time and
invoked at the parsing time.

An obvious problem with semantic actions is that the grammar
definition depends tightly on the host language of the generated
parser. This results in a loss of opportunity for reuse in many
potential parser applications such as IDEs and other software en-
gineering tools since the developers often need to write another
grammar from scratch.

2.2 Consistency Problem

The PEGs’ flexibility come from the speculation parsing strat-
egy. Typically, backtracking requires us to control the consis-
tency management by means such as discarding some part of
the constructed ASTs; otherwise, the ASTs may contain unnec-
essary subtrees that are constructed by backtracked expressions.
In Fig. 1, for example, it is undecided whether a Node object be-
comes a part of the final ASTs. The developer adds the Action
constructor for consistency when backtracking. This problem is
not new for PEGs but is common for semantic actions being exe-
cuted in speculative parsers such as Refs. [17] and [10]. However,
the consistency still relies largely on the developer’s management
of semantic actions.

Another consistency problem arises in packrat parsing [3], a
popular and standard technique for avoiding PEGs’ potential ex-
ponential time cost. Roughly, packrat parsing uses memoization
for nonterminal calls, represented by (N, P) — R, where N is a
set of nonterminals in a grammar, P is a parsing position over an
input stream, and R is a set of intermediate parsed results. As a
part of the additional parsed results, we need to represent an in-
termediate state for ASTSs, constructed at each nonterminal. More
importantly, all memoized results have to be immutable in pack-

constant Action<Node> LogicalAndExpressionTail =
"&&":Symbol right:BitwiseOrExpression {
yyValue = new Action<Node>() {
public Node run(Node left) {
Node e = GNode.create("Expr",left, right);
e.setLocation(location(yyStart));
return e;
}
};
}

Fig. 1 Example of AST constructions in Rats!.
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rat parsing. Accordingly, we need to analysis the immutability of
ASTs from the static property of grammars with semantic actions.

2.3 Parsing Performance and Machine Abstraction

Recently, the applications of formal grammars have been ex-
panded from programming languages to protocol parsers and data
analysis [13], [15], [19]. Parsing performance becomes a signifi-
cant factor in parser tool selection. In this light, semantic actions
written in functional languages would provide a very consistent
solution to the AST construction but not to our option.

One of the research goals of the Nez parser generator is high-
performance parsing for “Big Data” analysis. In the context of
text-data parsing, the AST construction roughly corresponds to
data extraction and transformation tasks. For the sake of en-
abling dynamic grammar loading, the Nez parser generates not
only parser source code but also byte-compiled code for the spe-
cialized parsing runtime. The machine abstraction is demanded
for the AST construction instead of local variables and recursive
calls in a recursive decent parsing.

3. Extending AST Construction

3.1 ASTs

An AST is a tree representation of the abstract structure of
parse results. The tree is “abstract” in the sense that it contains
no unnecessary information such as white spaces and grouping
parentheses. Figure 2 shows an example of ASTs that are parsed
from an if-condition-then expression. Each node has a tag, pre-
fixed by #, to identify the meaning of the tagged node. A parsed

substring is denoted by a single quotation * ’. For readability,
we omit any parsed substrings in non-leaf nodes.

For convenience, we introduce a textual notation of ASTs,
which is exactly equivalent to the pictorial notation. Here is a

textual version of Fig. 2:

#I1£[
#GreaterThan[#Variable[’a’] #Variable[’b’]]
#Return[#Variable[’a’]]
#Return[#Variable[’b’]]

]

To be precise, the syntax of the textual notation of ASTs, de-
noted 7', is defined inductively:

T:i==#[T] | #[...7] | TT

where #f is a tag to identify the meaning of 7 and a parsed sub-
string written by ... . A whitespace concatenates two or more

Input: if(a > b) return a; else { return b; }

#If
#GreaterThan #Return #Return
#Variable #Variable #Variable #Variable
g b Y b’
Fig. 2 Pictorial notation of ASTs.
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Table 1 PEG/AST operators.

PEG Type Operate  Proc.  Description

v Primary PEG 5 Matches text

[ 1] Primary PEG 5 Matches character class
. Primary PEG 5 Any character

A Primary PEG 5 Non-terminal application
#t Primary AST 5 Tagging

(e) Primary PEG 5 Grouping

{e} Primary AST 5 Constructor

$(e) Primary AST 5 Connector

{$e} Primary AST 5 Left-folding

e? Unary suffix PEG 4 Option

ex Unary suffix PEG 4 Zero-or-more repetitions
e+ Unary suffix PEG 4 One-or-more repetitions
&e Unary prefix PEG 3 And-predicate

le Unary prefix PEG 3 Negation

ejer Binary PEG 2 Sequencing

ej/e;  Binary PEG 1 Prioritized Choice

PEG: PEG operators, AST: AST operators

nodes as a sequence. In this paper, we assume that the parsed
result always starts with a non-sequence form of #¢[T].

Note that our AST definition is a minimalist; we drop any la-
beling for subnodes, like if(cond, then, else). While the labeling
may be convenient when accessing subnodes, the sequence pre-
serves the order of subnodes, providing sufficient semantics to
distinguish them.

3.2 PEG Operators

A PEG is a collection of productions, mapping from nontermi-
nals to expressions. To write productions, we use the following
form:

A=e

where A is the name of a nonterminal and e is a parsing expres-
sion to be evaluated. Parsing expressions are composed by PEG
operators. AST operators are designed to create and mutate ASTs
in the parsing context of PEGs. Table 1 shows a summary of the
PEG/AST operators.

To begin, we recall the interpretation of PEG operators. The
string "abc’ exactly matches the same input, while [abc]
matches one of these characters. The . operator matches any
single character. The lexical match consumes the matched size
of characters and moves forward a position of matching. The e?,
ex, and e+ expressions behave as in common regular expressions,
except that they are greedy and matches until the longest posi-
tion. The e; e, attempts two expressions e; and e, sequentially,
backtracking the starting position if either expression fails. The
choice e /e; first attempt e; and then attempt e; if e; fails. The
expression &e attempts e without any character consuming. The
expression le fails if e succeeds, but fails if e succeeds. A more
formal definition is detailed in Ref. [4].

3.3 AST Operators

The design of the AST operators was inspired by the substring
capturing commonly used in extended regular expressions such
as Perl and PCRE [7]. Instead of ( ...
a substring that we want to capture as an AST node. Here are

), we use { e } to specify

two expressions that capture the same substring 34 in an input
123456.
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Value = { [0-9]+ }
Number = { [0-9]+ } #Int
Value 12

#token [’12°]

Number :: 12
#Int [’12°]

Fig. 3 Example of tagging and its constructed AST nodes.

Regular Expression: 12(34)56
Paring Expression: ’12" { 34’ } ’56’

The major difference from the substring capturing in regu-
lar expressions is that we enhance the structural construction of
nodes. To start, we introduce a global state reference, called the
left node. The left node is implicit in notations but simply refers
to an AST node that is constructed on the left hand of a parsing
expression. To the left node, we define the following structural
constructors:

e tagging, # — tagging the specified # to the left node;

e appending, $e —appending an e’s constructed node to the left

node; and

The tag #t is introduced to identify the meaning of nodes.
Grammar developers are allowed to define a set of tags that they
want. The tagging operator is used to specify such a tag on the
left node. Untagged nodes are #tree and #token as default tags
for tree nodes and leaf nodes respectively.

Figure 3 shows an example of tagging. We use A :: s to rep-
resent an input s for the production A. Since the left node is a
global state, we can specify the tagging across nonterminals. In
addition, the new left node is set at the position of opening brace
{. The Number production can be equally specified in the follow-
ing ways:

Number = Value #Int
Number { #Int [0-9]+ }
Number = { [0-9]+ #Int}

An annotation style of tagging is introduced to be flexible for
the meaning of nodes depending on the parse results. Consider
the following case where the type of numbers are decided on the
suffix [L1] followed by numbers. We can specify the structure
of AST nodes without any modification of the original parsing
expressions [0-9]+ [L1]?. Note that duplicated tagging is re-
garded as overridden.

Number = { [0-9]+ #Int ([L1] #Long)? }

The $(e) operator connects two nodes in a parent-child rela-
tion. The prefix $ is used to specify a child node and append it to
the left node as the parent. This is followed by the natural order
of the top-down parsing. Figure 4 shows some examples of the
$(e) operator and its constructed AST nodes.

Note that the $(e) operator works under the assumption that a
new node is created by e. In reality, many grammar developers of-
ten connect an uncreated expression. In this case, we treat it as an
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Additive = { $(Number) '+’ $(Number) #Add }
AdditiveM = { $(Number) (’+’ $(Number)+ #Add }
Additive :: 1+2

#Add[ #Int[’1’] #Int[2] ]

AdditiveM :: 1+2+3+4
#Add[ #Int[’1’] #Int[2] #Int[3] #Int[4] ]

Fig. 4 Example of tree constructions by $(e).

Expr = List / Term
List { $(Term) (’,’ $(Term) )+ #List}
Term = {[A-z] #Term}

Fig. 5 Construction of a flattened list [A, B, .., C, D].

Expr = Pair / Term
Pair = { $(Term) ’,’ $(Expr) #Pair }
Term = { [A-z] #Term }

Fig. 6 Construction of right-associative pairs [A, [B, ... [[C,D]]]].

error due to avoiding a cyclic structure by self-referencing nodes.
More importantly, the error can be easily detected at runtime by
comparing the left node of $(e) and the result node of e. If both
nodes are the same, we ignore such an erroneous connection.

3.4 Left Folding

In the previous subsection, we present a tree construction with
AST operators. Basically, the AST operators can transform the
parsed substring into a tree structure. That is, we can specify
whether a subtree is either nested, flattened, or ignored. As shown
in Figs. 5 and 6, we make the construction of a flattened list and
right-associative pairs from a sequence A, B, C, D. On the other
hand, we have to pay a special attention to the construction of
left-associative pairs. For example, the following is the construc-
tion of a left-associative paris although the grammar contains left-
recursion.

Expr = Pair / Term
Pair { $(Expr) ’,’ $(Term) #Pair }
// left-recursion!!

Term = { [A-z]+ #Term }

Left-recursion is a major restriction of PEG. Although there
is a known algorithm for eliminating any left-recursion from a
grammar (as shown in Ref. [21]), this elimination does not ensure
the left associativity.

Left-folding is additionally defined as constructing a left-
associative structure from the repetition. Left-folding {$ e} is
creating a new node that contains the left node as the first child
node. That is, e;{$ e>} is equivalent to { $(e;) e>}. Usually, we use
the left-folding with a repetition (e {$ e2}x), or (e;...{$ e2)($ e2}.
Note that e;{$ e,}* is equivalent to A = { $(A) e>} / e; although A
is left-recursive.

Figure 7 is the construction of left-associative pairs from A,B,
..., C, D. As the name implies, left-folding is chiefly used for
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Term {$ (’,’ $(Term)) #Pair }*
{[A-z] #Term}

Expr
Term

Fig. 7 Construction of left-associative pairs [[[A, B], ..., C], D] with left-

folding.
Expr = Sum
Sum = Product {$ ( '+’ #add / ’-’ #sub ) $(Product) }*
Product = Value {$ ( ’*’ #mul / ’/’ #div) $(Value) }*
Value = { [0-9]+ #Integer } / '’ Expr ')’

Fig. 8 Example of basic mathematical operators.

e ti= € : empty
| A : nonterminal
| ’a’ : terminal character
| ee : sequence
| ele : prioritized choice
| e? : option e/e
| ex : repetition A = eA/e
| &e : and predicate
| le : not predicate
| {e} : constructor
| $(e) : linking child
| {$e} :left-folding
| #T : tagging

Fig. 9 Syntax of PEGs with AST operators.

constructing left-associative binary operators. Figure 8 shows
the basic mathematic operations with AST operators.

3.5 Operational Semantics

Finally, we define the operational semantics of AST operators
in parsing expressions. To begin, we define several notations used
in the semantics. Let x,y,z € ¥ be a sequence of characters and
xy be a concatenation of x and y. We write T for a node of ASTs.
#t[x] is a newly created node with a default tag #t and a substring
x. T[T’] stands for adding a child 7" to the parent 7. T /#t stands
for the replacement of the tag of 7" with the specified #z.

The semantics of e is defined by a state transition (xy, T') 5
(y,T"), which can be read: the expression e parsing the input
stream xy consumes x and transforms the left node 7 into 7’.
If T = T’ in the transition, then the node is not mutated.

Figure 9 is an abstract syntax of parsing expressions with the
AST operators. Due to space constraints, we highlight core pars-
ing expressions, which only contain €, a, e; ey, ej/ey, and le.
Other expressions, including character class, option, repetition,
and-predicate, can be rewritten by these core expressions [4].
Figure 10 shows the definition of the operational semantics of
e. We write e for a special failure state. Any transitions to e
suggests the backtracking to the alternative if one exists.

PEG operators and AST operators are orthogonal to each other.
In other words, AST operators do not influence the operational se-
mantics of PEG operators. On the contrary, AST operators only
use a substring that is matched by an expression e.

4. Transactional AST Machine

A transactional AST machine is a machine-based implemen-
tation to make the AST construction consistent with AST opera-
tors. All operations are recorded as instruction logs to be canceled
when backtracking. In this section, we describe the transactional
AST machine.
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Fig. 10 Operational semantics.

4.1 Machine and Instructions

For simplicity, we start by assuming the absence of backtrack-
ing. An AST machine has the following three states:

e p, aparsing position at which the parser attempts next,

e left, a node reference to the left node that is operated by AST

operators, and

e anode stack to store a parent child relation of AST nodes

The AST machine provides the following instructions to oper-
ate the above three states:

e push(left) — push the /eff node onto the node stack

e left « pop — pop the top node as left

o left < new — create an new node as left

o open(left, p) — set p as the starting position of left

e close(left, p) — set p as the ending position of left

o tag(left, s) — tag the left node with the specified s

e link(left) — link the left node into the stack top node

e left «— swap(left) — swap the left node and the stack top node

Note that the substring of a node is represented with the start-
ing position and the end position over the input stream.

The PEG parser moves over an input stream. From viewpoint
of the AST machine, the parser itself can be viewed as a blackbox
function. We write p « parse(e, p) for the parser function —
parsing the input stream with e where the character consumption
is represented by its resulting moved position of p.

Let 7(e) be a compile function that converts from parsing ex-
pressions to a sequence of AST instructions. The function 7(e) is
defined inductively in Fig. 11.

The compiled instructions ensure that the stack top is always
a parent node at the execution time of 1link. This is easily con-
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left « new
open(left, p)
T(e)

close(left, p)
T(#r) = tag(left, t)
7($(e)) = push(left)

7(e)

link(left)

left « pop
push(left)

left « new

left « swap(left)
link(left)
open(left, p)
T(e)

close(left, p)

p « parse(e, p)

({e})

{$e}) =

7(e) =

Fig. 11 Definition of a compile function for AST machine.

firmed in the way that the 1ink instruction is compiled between
push(left) and pop.

4.2 AST Construction with Backtracking
Backtracking requires the rollback handling of the instruction
executions, since some executions could be unnecessary when
backtracking. Suppose { #7 e; } / e», for example. Before evaluat-
ing e, we need three AST instructions (new, open, and tag) to be
executed. However, if the expression e; fails, these instructions
are unnecessary before attempting alternatives e,.
The transactional AST machine provides the lazy evaluation
mechanism for the execution of AST instructions. The lazy eval-
uation means that we cannot perform any instructions until we
reach a point where backtracking no longer occurs.
The lazy evaluation can be simply achieved by logging instruc-
tions in a stack-based buffer. Let i be a position of the latest stored
instruction log on the buffer. The buffer is operated by the follow-
ing transactional instructions:
e Jog push|pop|..[swap — log an AST instruction to the instruc-
tion buffer i =i + 1);

e { « save —save i for the beginning of a transaction (¢ = i);

e commit(f) — execute instruction logs stored between ¢ and i
(i = 1), and then expire them; and

e abort(z) — expire the instruction logs stored between ¢ and i
(i=1).

In the above, we take an instruction form to represent the trans-
actional operations. This is based on the implementation of a Nez
interpreter-based parser. In practice, one could not necessarily
implement these operations as instructions. Instead, the AST ma-
chine only provides APIs to control the save, commit and abort
operations for the parser.

The abort operation is fully automated on a PEG parser. At
the time of any failure occurrences, the parser aborts the trans-
action to the save point 7. The save points are exactly the same
points where the parser saves a parser position (over the input)
to attempt alternatives when backtracking. To be precise, the |
below indicating the save point for the transaction.

e (lofe,

e (U9,

e (I oF

o &l o),
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o (e

Now we may commit the transaction at the any point in parsing
expressions. However indiscriminate commitments may result in
the speculative AST instantiation if backtracking occurs. As dis-
cussed in the next section, the speculative instantiation is also
consistent against backtracking, although no unused instantiation
is ideal. It is still unknown whether a certain point of the parser
context never backtrack. The simplest solution is to invoke the
commit when the whole input is parsed. This gives us the benefit
of a full lazy evaluation as in functional programming languages.

5. Packrat Parsing with ASTs

Packrat parsing [3] is an essential technique to avoid the poten-
tial exponential time cost of backtracking. This section describes
the safe integration of the transactional AST machine with pack-
rat parsing.

5.1 Laziness vs. Speculation

Packrat parsing [3] is a memoization version of the recursive
decent parsing. Since all the intermediate parse results of nonter-
minal calls are memoized at each distinct position, we can avoid
redundant calls, which lead to exponential time costs in the worst
case. In the context of AST constructions, we additionally need
to memoize the intermediate state of ASTs.

We consider two strategies: lazy-full and speculation. The
lazy-full strategy involves memoizing instruction logs to take full
advantage of lazy evaluation. The speculation strategy involves
memoizing an AST node that is instantiated despite the fact that
the instantiated node may eventually be unused and discarded.
We choose the speculation strategy, after the following compari-
son of the pros and cons of both strategies.

The lazy-full strategy is natural and very compatible with the
transactional AST machine. An obvious advantage is that we take
full advantage of lazy evaluation of AST constructions. However,
a disadvantage is also clear; we need to copy a large number of
instruction logs to be memoized. Although the memoized logs
can be reduced to a subsequence of logs that are only added by
a given nonterminal, the size of the copy is roughly proportional
to the size of input characters that the nonterminal has consumed.
Since packrat parsing is based on the constant memoization cost
in the size of the input, the memoized logs may invalidate the
linear time guarantee.

The advantage of the speculation strategy is that the reduced
overhead of the memoization. Note that the instantiation costs of
ASTs are not an actual overhead since we need the instantiation
at least once even in the lazy-full strategy. Due to memoization,
we can avoid the repeated instantiation of the same nodes. As a
result, the overheads are the unnecessary instantiation and discard
costs for the sake of eventually unused nodes. However, we con-
sider that a modern garbage collector is efficient enough to handle
such memory iterations.

Another disadvantage is that we require the immutability anal-
ysis for the memoization point. To illustrate, we suppose that
the production Symbol that overrides the tag of a Name-produced
node.
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7($e)

push(left)
left « lookup(m)
ifnon(left, L)
t « save()
7(e)
left « commit(r)
memo(m, left)

L link(left)
pop(left)

Fig. 12 Synchronous memoization version of 7($(e)).

Name

= { NAME #Name }
Symbol =

Name #Symbol

Following the speculation strategy, an AST node is instantiated
after Name to be memoized. The same node can be memoized at
Symbol, but it is mutated by a different tagging #Symbol. As a
result, the lookup of the memoization table for Name is different,
as we have memoized at at Name.

In general, it is not easy to analyze the mutable region of nodes
in parsing expressions with semantic actions. Fortunately, AST
operators have restricted semantics in terms of the mutation of
nodes. In addition, there is no method to mutate to a child node
of the left node. Accordingly, the mutable region is surrounding
by $(e).

5.2 Synchronous Memoization

The memoization of an AST node is performed not at arbitrary
nonterminals, but at a safe point where we ensure that the instan-
tiated node is immutable. Let m; be an identifier that uniquely
represents such a memoization point. Let s; be a starting point
for the instantiation of the node for m;.

Synchronous memoization is a memoization that synchronizes
with a transactional instantiation of an AST node. The following
pseudo code illustrates the algorithm of the synchronous memo-
ization of (s;, m;).

left = Lookup(m;)

if(l1is not found){
/ * s; : begin of transaction * /
left is created and the mutated
/ = m; : end of transaction x* /
left = Commit(s;, m;)
Memoize(m;, left);

Before the instantiation of a node, we use Lookup(m;) to find
an already instantiated node from the memoization table. If
found, we set it to the left node and never attempt any mutations
for the set node. Otherwise, we start a transaction that instanti-
ates a new node. During the transaction, the node mutations are
all logged in the transactional AST machine. When backtracking
occurs, the mutations are automatically aborted. If we reach at the
m; point, we commit the logged instructions by Commit(s;, m;)
and then obtain an instantiated node. Memoize(m;) is called to
store the instantiated node in the memoization table.

Figure 12 illustrates the synchronous memoization version of
7($(e)). The memoization point m is an unique number for ev-
ery distinct subexpression e, which is derived from the grammar
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Table 2 Summary of grammars and data sets.

Grammars  Operation ~ Productions ~ Memo Points | File Size  Latency [ms]  Backtrack ~ Memo Effects ~ # of Nodes  # of Unused
CSvV PEG 3 2 8.8 MB 914 0 0
CSv AST 3 1 8.8 MB 2102 0 0 1,480,777 0
XML PEG 14 7 | 11.6MB 1276 0.03528 0
XML AST 14 5| 11.6MB 1777 0.03528 0 568,668 0
C PEG 153 120 | 1.31MB 857 0.96852 0.13472
C AST 153 110 | 1.31MB 1193 0.97237 0.38985 160,301 66,366
JS PEG 127 49 247KB 294 12.689 0.26216
JS AST 127 58 247KB 499 15.43039 0.69062 32,475 97,993
analysis. Core 17, 4 MB of L3 Cache, 8 GB of DDR3 RAM, on Mac OS

Note that nonterminal calls in general are not memoized in the
synchronous memoization. However, this may reduce the number
of memoization points and decrease the effect of packrat parsing.
On the other hand, nonterminals involving no AST operations
have no side effect for node constructions. In the Nez parser, we
use such nonterminals for another available memoization point.

5.3 Garbage Collection

Another problem with the speculation strategy is how to dis-
card unused nodes. Unused nodes inevitably occur since the in-
stantiated nodes are temporarily stored on the 1ink logs before
their parent nodes are instantiated. (Note that the 1ink logs can
be always expired by backtracking). The memoization table on
the other hand has to keep the expired nodes from the logs in
order to avoid the reinstantiation of the same node.

The conventional packrat parsers keep all memoized results un-
til the whole parser process ends [3]. This suggests that the heap
consumption considerably increases when we add all intermedi-
ate AST nodes. Worse, it is impossible in general to determine
the point at which a memoized node is no longer used [18].

One practical solution is the use of a sliding window to range
the memoization table over the input position. In the sliding win-
dow, memoized nodes are expired if the parse moves forward in
the window size. Our previous work [16] confirms both the linear
time parsing and the constant memory consumption if the win-
dow size is large enough to cover the length of backtracking. The
Nez parser uses the sliding window for memoization, and allows
the garbage collector to collect expired nodes. This results in the
reduced memory pressure.

6. Experimental Results

This section describes the results of our performance study on
AST constructions on the Nez parser.

6.1 Parser Implementation

Nez is a PEG-based parser generator that has a language sup-
port for the AST operators. The Nez parser is written in Java,
and integrated with enhanced packrat parsing with sliding win-
dow, presented in Ref. [16], and the transactional AST machine
with synchronous memoization, described in Sections 4 and 5.

In this experiment, we run the Nez parser as an interpreter
mode, although it can generate parser source code. The Nez
interpreter is highly optimized with several techniques includ-
ing grammar inlining, partial DFA-conversions, and superinstruc-
tions.

The test environment is Apple Mac Book Air, with 2 GHz Intel
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X 10.8.5 and Oracle Java Development Kit version 1.8. All mea-
surements represent the best result of five or more iterations over
the same input.

6.2 Grammars and Datasets

The grammars we have investigated are selected from the same
set[16] in such a way that we can examine the variety of back-
tracking activity. Data sets are chosen to demonstrate a typical
parser behavior for the given grammar. We label the pair of tested
grammar and dataset as follows.

e (CSV - a simple grammar that involves no backtracking and
many flattened AST nodes. The tested data come from an
open data file offered by the JapanPost.

e XML - a typical grammar for data formats that involves
low backtracking activity and many nested AST nodes.
The tested data are obtained from the XMark benchmark
project [23].

e C — alanguage grammar that involves moderate backtrack-
ing activity. The tested data are derived from Google NSS
Cache project.

e JS —alanguage grammar that involves high backtracking ac-
tivity and then shows an exponential time cost, as reported in
Ref. [16]. The tested data are an uncompressed jquery source
file.

Table 2 shows a summary of grammars and datasets. The
left side of the table indicates the static properties of grammars.
The column labeled “Production” stands for the number of pro-
ductions, and Column “Memo Points” stands for the number of
memo points. The right side of the table indicates the statistics
of internal parser behaviors when we parse the data sets. Col-
umn “Backtrack” stands for the backtrack activity, measured by
the ratio of the total backtracking length by the input size. Col-
umn “Memo Effects” is measured by the hit ratio of memoized
results. Column “Nodes” stands for the number of nodes that the
final ASTs contain, and Column “Unused” stands for the number
of eventually unused nodes.

6.3 Performance Study

Now we will turn to the performance study. Figure 13 shows
the parsing time in each dataset. The data point labeled “Recog-
nition” stands for paring time without AST construction, and
“R+Allocation” stands for a cumulative time of “Recognition”
and a simple instantiation time of AST nodes. The instantia-
tion time is estimated by the elapsed time of the duplication of
ASTs, whose size are the same as constructed in “AST Construc-
tion”. It takes roughly 3 milliseconds to instantiate every 10,000
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Fig. 13 Latency of AST Constructions in CSV, XML, C, JS.

Table 3 AST construction time costs in millisecond.

Grammar Nez Rats!  PEG.js
CSv 1,188 13,452 2,121
XML 510 7,766 1,466
C 205 390 469
JS 336 1,895 3,048

nodes. The differential time between “R+Allocation” and “AST
Construction” implies a pure overhead of the transactional AST
machine. We confirm that the transactional AST machine raises
the time costs by 26%, 16%, 25% and 59% to the “R+Allocation”
time in CSV, XML, C, and JS. The reason why the JS dataset
shows the larger time cost may be the minor degradation of pack-
rat parsing, which is indicated by the increased backtracking ac-
tivity in Table 2.

Table 3 shows a performance comparison of other PEG-based
parser generators. We have chosen Rats! and PEG.js since they
notably produce notably efficient parsers and are accepted in sev-
eral third-party projects. Rats! runs on Java8 as well as Nez,
while PEG js tested in the node.js environment including a V8-
based JIT-compiler. To highlight the time cost of the underly-
ing AST construction, we show the time difference between the
“AST Construction” time and the “Recognition” time in millisec-
ond. The experiment indicates that Rats! is weak at parsing CSV
and XML that contains many AST nodes. PEG.js shows good
performance in total but is weak at parsing JavaScript that in-
volves many backtracking. While the strength/weakness char-
acteristic varies in datasets, Nez indicates the lowest time costs
in all datasets. We confirm that the transactional AST machine
achieves fast AST construction in contexts of PEG parsing.

7. Related Work

In a rich history of parser generators, many researchers have
extended the construction of ASTs without semantic actions [5],
[12]. In total, our declarative approach has been inspired by SDF2
and Stratego/XT [1], [14]. ANTLR [20] provides both semantic
actions and an additional support for AST construction, based on
filtering from parse trees. These previous studies are not based on
PEGs, but they suggest a substantial demand for declarative AST
constructions in parser generators.

Since Ford presented a formalism of PEGs[4], many re-
searchers and practitioners have been developed PEG-based
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parser generators: Leg/Peg (for C), Rats! [6], Mouse [22] (for
Java), PEG.js (for JavaScript), and LPeg [9] (for Lua). Basically,
these tools rely on language-dependent semantic actions for AST
construction. Notably, LPeg provides the substring capturing,
similarly to our approach, but other AST constructions can de-
pend on semantic actions written in Lua programming languages.
In semantic actions, the consistency management is the user’s re-
sponsibility.

Waxeye [8] is a unique exception in terms of unsupported se-
mantic actions; it provides automated AST construction based on
filtering parse trees. Likewise, Rats! and some other PEGs tools
provide similar options that enable filter-based tree constructions.
However, the filtering parse tree is limited to the construction of
the left-associative structure.

8. Conclusion

This paper presented a declarative extension of PEGs for flexi-
ble AST constructions in such a way that AST can be transformed
into nested trees, flattened lists, and left/right-associative pairs.
The transactional AST machine is modeled to allow for the con-
sistent AST construction with backtracking. In addition, the syn-
chronous memoization is presented, integrating the packrat pars-
ing to avoid potential exponential time costs. A transactional AST
machine with the synchronous memoization is implemented in
the Nez parser written in Java. We have demonstrated that the
Nez parser requires a 25% higher time cost for AST construction
in most cases. In future work, we will investigate a more complex
tree transformation with macro expansions while parsing.
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