
Journal of Information Processing Vol.24 No.1 141–151 (Jan. 2016)

[DOI: 10.2197/ipsjjip.24.141]

Regular Paper

A Type Safe Access to Key-value Stores from
Functional Languages

Katsuhiro Ueno1,a) Atsushi Ohori1,b)

Received: April 6, 2015, Accepted: July 28, 2015

Abstract: This paper presents a scheme comprising a type system and a type-directed compilation method that enables
users to integrate high-level key-value store (KVS) operations into statically typed polymorphic functional languages
such as Standard ML. KVS has become an important building block for cloud applications because of its scalability.
The proposed scheme will enhance the productivity and program safety of KVS by eliminating the need for low-level
string manipulation. A prototype that demonstrates its feasibility has been implemented in the SML# language and
clarifies issues that need to be resolved in further development towards better practical performance.

Keywords: key-value store, functional programming, SML#

1. Introduction

Cloud storage, such as Google BigTable [2] and Amazon
S3 [3], has been attracting attention as a data access framework
for highly reliable data storage infrastructures. Such storages usu-
ally organize large amounts of data as Key-value stores (KVSs), in
which keys are mapped to values. Every value in a KVS is paired
with a unique key. Users search for a key in a KVS and obtain
a value corresponding to that key. Because all key-value pairs in
a KVS are naturally independent of each other, data stored in a
KVS can be distributed and replicated over a cluster of network
nodes. As a result of this property, KVS is widely used in data
storages that require high performance, scalability and fault tol-
erance.

Whereas studies have been conducted on KVS with the objec-
tive of achieving efficient data distribution and replication, to the
best of our knowledge, high-level programming techniques using
KVS have not been elucidated. KVS-based storage servers pro-
vide network protocols and APIs for data access. However, both
of the protocols and APIs only support string data. Consequently,
in order to store data other than strings in KVS, programmers
have to first serialize those data in a network-safe format that can
interact with KVS through the string-based APIs. This simple
approach works effectively when the program in question dealing
with values of basic types such as integers and Booleans; how-
ever, it does not scale up to programs that use large and complex
data such as nested records and arrays because of the need to write
low-level string manipulation codes for cumbersome data serial-
ization. This style of programming also undermines the benefit
of type checking in a strongly typed programming language that

1 Research Institute of Electrical Communication, Tohoku University,
Sendai, Miyagi 980–8577, Japan

a) katsu@riec.tohoku.ac.jp
b) ohori@riec.tohoku.ac.jp

ensures the type safety of a program. Thus, if a technique that fa-
cilitates safe and effective utilization of KVS is estabilished, then
programmers would be able to develop highly scalable cloud ap-
plications using KVS without the above disadvantages.

Our general objective is to develop a framework and com-
pilation method that realizes high-level and type-safe access to
KVS in an ML-style functional language. Pursuant to this goal,
this paper proposes a high-level KVS scheme that allows users to
store compound data such as arrays and tuples in a KVS through
type-consistent operations in ML, without any string manipula-
tion. The high-level KVS scheme comprises a language exten-
sion of ML and a type-directed compilation algorithm for the ex-
tension. Both the language extension and compilation algorithm
can be straightforwardly merged into an ML compiler equipped
with record polymorphism [9]. In this paper, we use SML#, a
variant of Standard ML, as an example of such an ML compiler.
SML# has already achieved type-safe and easy-to-use access to
relational databases [10]. Consequently, combining the proposed
scheme with the database access of SML# facilitates the develop-
ment of applications that can seamlessly integrate local databases
and distributed data storages.

The proposed scheme is closely related to data serialization
methods in typed functional languages in the sense that both the
techniques and KVS externalize internal data structures without
losing their structures and type consistency. Examples of such
serialization methods include user-level combinator libraries for
serialization [4], [7], memory dumps annotated with type infor-
mation [1], [8], and type inference on memory graphs [6]. These
research works focus on serialization of the entire data all at once
and effcient checking of the type safety of the data. In contrast,
we focus on utilization of string-based KVS in typed functional
languages; the objective is to realize features important in prac-
tice, such as portable data representation and partial access to
large data structures in KVS.

c© 2016 Information Processing Society of Japan 141

Journal of Information Processing Vol.24 No.1 141–151 (Jan. 2016)

The remainder of this paper is organized as follows. Section 2
discusses the problems to be solved and outlines our strategy.
Section 3 defines the type system of KVS that yields high-level
KVS. Section 4 presents the language extension for high-level
KVS and their implementation strategy. Section 5 outlines our
prototype implementation of high-level KVS in SML#. Section 6
discusses issues identified that need to be resolved for better prac-
tical performance. Section 7 concludes this paper.

2. Problems and Our Strategy

With the exception of the implementation details of KVS, such
as key-value pair distribution and fault tolerance, a KVS can be
regarded as an abstract data structure characterized by the follow-
ing operations in ML:

new : string × string→ unit
get : string→ string
put : string × string→ unit

The type string denotes the set of keys and values. new(k,v)
creates a new pair comprising a key k and value v in KVS. If k al-
ready exists in KVS, then new(k,v) raises an exception. get(k)
searches for k in KVS and returns the value that is currently paired
with k. put(k,v) updates the value of k with v. Both get(k) and
put(k,v) raise an exception if k does not exist in KVS. This ab-
stract view of KVS is sufficient to understand the problem. Note
that this simple outline does not directly correspond to KVS im-
plementations in the real world, which organize key-value pairs
in more sophisticated ways; for example, BigTable uses a triple
of row, column and timestamp as a key; and Amazon S3 orga-
nizes key-value pairs in a set of buckets, each of which is a set of
key-value pairs. These methodologies can be regarded as varia-
tions of the key structure and therefore are covered by the above
abstraction.

Obviously, the above operations can be implemented as library
functions in any programming language; therefore, there is no
technical issue with integration of these operations into a lan-
guage. As stated in Section 1, KVS implementations provide
APIs corresponding to the above abstraction. While these op-
erations can be used easily for easy-to-serialize data such as in-
tegers, they are not suitable for dealing with complex and large
data structures.

A natural way to represent a complex data structure in KVS
through the above string-based operations is to encode the data
structure into key strings using a character that is not used by the
user. Let / be such a reserved character. For example, the follow-
ing set of key-value pairs represents a pair of key A and an array
of 10 integers:

Key Value

A/0 1st element

· · · · · ·
A/9 10th element

where n is the string representation of integer n, and A/i is the
string A followed by / and i. Because the length of a key is
not limited, array structures of any length can be encoded in key
strings. In this encoding, get(A/i) is the operation used to ob-

tain the i-th element of array A.
Nested data structures can also be represented in KVS by defin-

ing similar encoding rules inductively. For example, a 10×10 ma-
trix M can be represented by including two indices in key strings
as follows:

Key Value

M/0/0 (1, 1)th entry

· · · · · ·

M/9/9 (10, 10)th entry

To obtain the (i + 1, j + 1)th entry of matrix M, the opera-
tion get(M/i/ j) is performed. This key structure can also
be regarded as a one-dimentional array, with each element also
a one-dimentional array; M/0, . . . ,M/9 are the keys of the
1st, . . . , 10th element of M, and the value of each of these keys
has a similar key structure to M.

As seen in the above examples, compound data structures can
be represented in KVS by encoding their structures in key strings.
However, implementing such encodings using the string-based
APIs would make programs complicated and vulnerable because
such implementations usually consist of large amounts of untyped
code, which may include potential errors that the type checker of
a compiler cannot detect statically. In addition, it would make it
difficult to interoperate data stored in KVS with other data in the
heap.

To overcome the above issues, KVS must therefore be seam-
lessly integrated with the type system of high-level programming
languages. The major requirements for the seamless integration
of KVS and a programming language are the following:
(1) High-level data access operations for KVS. Basic operations

on typical compound data structures must be available for
data in KVS as well as those in memory without writing
cumbersome and unsafe key encoding codes by hand.

(2) Type-safe access to KVS. Type safety must hold even in pro-
grams that utilize KVS.

Hereafter, we refer to the KVS satisfying the above requirements
as high-level KVS.

For the first requirement, similar to the above examples, we
represent a compound value v paired with a key k as a set of
key-value pairs S such that the structure of v is encoded in the
keys of S and all keys in S begin with k. In a typed language,
the structure of a value v is statically determined in the type of
the expression that will evaluate to v; therefore, all keys in S are
generated at compile time. For example, the type of M in the
above example is τ array array in ML, where τ is the type of
an entry of the matrix. From the structure of this type term, the
ML compiler statically determines that each key in the key-value
pairs representing M must include two indices, as stated above.
This means that the high-level data access operations can be re-
alized by extending the compiler with a compilation scheme that
automatically generates string-based codes that manage the key
encoding and data serialization from the type of KVS access op-
erations.

The second requirement is the main issue of the integration.
ML compilers compute the types of all data structures that the

c© 2016 Information Processing Society of Japan 142

Journal of Information Processing Vol.24 No.1 141–151 (Jan. 2016)

program potentially generates and consumes. This is the proce-
dure performed by the type checker of ML to ensure the type
safety of low-level memory operations. If programs using KVS
dealt only with strings, then the above definitions of new, get,
and put would be enough for type-safe KVS operations. To ex-
tend those operations to types other than strings, however, the
type system of ML must be extended so that it can compute the
types of data structures stored in KVS.

In the sense of the above key encoding schemes, the string-
based KVS can be regarded as a low-level data representation for
higher-level compound data structures. This directly corresponds
to the fact that all data structures in ML are stored in memory as
low-level binary data whose structures are statically determined
by types. This immediately yields the following strategy. As in
ML, we define a type system for KVS as a set of derivation rules
that computes the types of all compound data structures encoded
in string-based KVS. The type-safe and high-level KVS opera-
tions are realized in ML by extending ML with the type system
for KVS.

The only remaining issue is definition of the model of KVS
that captures real usage of KVS as well as makes the type system
sound. If a KVS is occupied by a program and used as an internal
heap area that is allocated and freed at the start and end of the pro-
cess, we can regard each key-value pair in the KVS as a mutable
memory similar to the ref type of ML. However, KVS is usually
used as a storage that is independent of programs and therefore
it may be manipulated by other processes. In addition, because
KVS is an untyped storage, the meaning of the values stored in
KVS depends on the interpretation of each program. For exam-
ple, at the same time a program is reading an integer value from
key k, another program may delete k and create a new k paired
with a Boolean value. Therefore, compile-time type checking of
a program cannot ensure that KVS is always consistent with re-
spect to the typing of a program. This issue is not limited to KVS
but is in fact a general issue associated with the use of external
data in a typed programming language.

One approach to dealing with external persistent data in a typed
language is to include type information in the external data and
checking the type consistency by comparing the type information
to the types of the program at runtime. The type system of dy-
namic types proposed by Abadi et al. [1] realizes this approach.
Their proposed system introduces a special type dynamic that de-
notes external objects whose type cannot be determined statically
and defines rules to create and use the external objects. We sum-
marize the rules as two expressions create and use whose typ-
ing rules are given as follows:

Γ � e : τ

Γ � create(e) : dynamic

Γ � e : dynamic

Γ � use e as τ : τ
where dynamic is the type of the externalized data, create(e)
externalizes the value of e coupled with metadata representing
the type information τ of e, and use e as τ reads externalized
data e as a value of τ if the metadata of e is equivarent to τ. This
equivalence check is performed at runtime. If the check fails, this

expression raises a runtime error. If the check passes, the exter-
nalized data are read as a value of type τ and therefore the system
holds the type safety.

We combine the system of dynamic and the above key encod-
ing schemes to realize high-level KVS independent of programs
and type-safe operations for high-level KVS data access in ML.
These high-level operations allow programmers to enjoy KVS
programming with the same type safety as string-based KVS but
without cumbersome string manipulations.

3. A Type System for High-Level KVS

This section defines the data model of high-level KVS and cor-
responding type system that are independent of any specific pro-
gramming language. The type system yields a strategy for realiz-
ing high-level KVS on the top of string-based KVS as well as a
foundation for interoperation between KVS and typed langauges.
On the basis of this type system, in the next section, we design a
polymorphic interface from ML to high-level KVS.

3.1 Structure of String-based KVS
To define the model and type system of KVS, we introduce the

following assumptions and notations. We consider a string-based
KVS as a finite map over strings. Let S be a meta-variable in-
dicating a string-based KVS. Let Σ and Σ+ be the given set of
characters and strings. Let k and v range over the set of keys and
values in string-based KVS, i.e., Σ+. {k1 �→ v1, . . . , kn �→ vn} is the
extensive notation of a KVS. dom(S) is the set of keys in S , and
S (k) is a value corresponding to k in S if k ∈ dom(S). We some-
times consider S as a set of key-value pairs. We define S 1 ∪ S 2

as the union of S 1 and S 2; that is, the union set of key-value pairs
of S 1 and S 2. S 1 ∪ S 2 is defined only if S 1(k) = S 2(k) for any
k ∈ dom(S 1) ∩ dom(S 2). For simplicity, we implicitly assume
this condition when we write S 1 ∪ S 2.

We additionally define the following related to keys:
• Let / be a reserved character used to encode the data struc-

ture in key strings. As we shall present in Section 4, the user
is not allowed to include / in key strings of high-level KVS.
k1/k2 is the concatenation of k1, / and k2.

• We write the string representation of integer n and type σ as
n and σ. The function n and σ are injective. These repre-
sentations are used for the data structure encoding and meta-
information of externalized data.

3.2 Types and Their Semantics
Let b range over the set of basic types such as integers (int),

Booleans (bool) and floating-point numbers (real). The set of
data types stored in high-level KVS (ranged over by σ) is given
by the following syntax:

σ ::= b | Pair(σ,σ) | Array(σ)

Pair(σ1, σ2) is the type of pairs of values of type σ1 and σ2.
Array(σ) is the type of arrays of values of type σ. This set of
types is large enough to analyze the issues of the type system of
the high-level KVS.

We define the data representations in KVS of the above types
in the following strategy. In general, the data representation of a

c© 2016 Information Processing Society of Japan 143

Journal of Information Processing Vol.24 No.1 141–151 (Jan. 2016)

Fig. 1 Data model of high-level KVS.

new type is introduced as a new data constructor combined with
values of existing types as with the variant types in ML; however,
we cannot follow this approach because the data model of our
high-level KVS must be constructed on top of the existing model
of string-based KVS, which allows us to use only string pairs and
the key encoding. We therefore derive the model of the types di-
rectly from the string-based low-level representation. Each of the
types of KVS is either a basic type or a possibly nested compound
type. For data of a basic type b, we use their string representa-
tions as the model of b because this is the commonly accepted
way to store basic values in KVS. Consequently, we assume that
there is a system-independent and network-safe standard string
data representation for each b, denoted by E(b). For data of a
compound type, we represent their structures as the a set of key-
value pairs. In the heap memory, the model of a compound type
is tree-structured data consisting of pointers and memory blocks
that represent the (possibly recursive) structure of the model. In
KVS, we design similar data representation to the heap memory
by encoding the recursive structures in key strings and pairing the
keys with values that the structure contains.

Following the above strategy, we define the data model R(σ)
of type σ as a set of pairs (k, S) of key k and KVS S that realizes
the structure of values of type σ. Figure 1 shows the definition
of R(σ). In the case of basic types, the value paired with k is in
the standard string representation. We assume that the standard
string representations of basic types are different from each other.
In the case of compound types, k represents the root of the data
structure that S realizes. k is paired with σ, which is the string
representation of type σ, for runtime type checking. We also as-
sume that the string representation of types is not identical to the
standard string representation of any data. By this assumption,
the type information of a basic type value is uniquely determined
from its standard string representation. Each element of a com-
pound type data is stored in a key containing the identifier of the
compound data. For example, in Fig. 1, the structure of a value of
type R(Pair(σ1, σ2)) is represented in the following three keys: k

for its type information, k/1 for its left element, and k/2 for its
right element. The data structures of k/1 and k/2 are recursively
represented by S 1 and S 2, respectively. The KVS representing
the entire pair is the union of S 1, S 2 and {k �→ Pair(σ1, σ2)}.

We say that key k has type σ under S , denoted by S � k : σ,
if there is some S ′ such that S ′ ⊆ S and (k, S ′) ∈ R(σ).
The following is an instance of k and S satisfying S � k :
Pair(int,Pair(real, bool)):

S = { k �→ Pair(int,Pair(real, bool)),
k/1 �→ n,

k/2 �→ Pair(real, bool),
k/2/1 �→ r,

k/2/2 �→ l }

where n, r and l are values of int, real, and bool, respectively.
The type check of KVS can be carried out independently from any
program; therefore, this model enables the runtime type check
performed at the use expression in the dynamic type system.

4. Type-safe Access to High-level KVS

Access operations from a program to a high-level KVS must
be functions that realize the data encoding presented in Section 3.
Those functions must also be used polymorphically for any data
types that can be stored in the high-level KVS. In this section, we
define the functions in the following three steps. Firstly, we de-
fine monomorphic functions for each type σ that reads and writes
a value of σ in KVS. Secondly, we extend the functions to poly-
morphic ones based on the idea of the type-directed compilation
for polymorphic records [9] and present a compilation scheme for
them. Lastly, we refine the presented scheme to ones that can be
used in practice in ML.

4.1 Monomorphic Access Operations
The host language has its own set of types including basic

types, tuples and arrays. For simplicity, we use the type terms
of KVS defined in Section 3 as those of the host language. We
write τ1 × τ2 instead of Pair(τ1, τ2) to represent the fact that pairs
of τ1 × τ2 are consumed in the host language and are not relevant
to KVS. In the discussion below, we let σ also range over the set
of types of the host language except for type variables.

The type-safe access functions from the host language to high-
level KVS must be the following:

createσ : string × σ→ unit
updateσ : string × σ→ unit
findσ : string→ σ

These three functions correspond to the three low-level KVS ac-
cess functions presented in Section 2. createσ and updateσ
create the structure defined through R(σ) in KVS from the given
key and value of type σ. findσ reads a value of σ from the given
key k if k exists in KVS and the meta-information of k stored in
KVS is equivalent to σ. To preserve the consistency of high-level
KVS, keys given to these functions never include the / character,
which is reserved for internal use by high-level KVS. For sim-
plicity, we omit the check for / in the given keys in the discussion
below.

The function updateσ performs runtime type checking simi-
lar to findσ to prevent overwriting of the value of a key with a
value of a different type from the type of the key. As discussed
in Section 2, KVS is an untyped storage thus the user can change
the type of the keys without any restrictions. In contrast, as seen
in the ref type in ML, destructive update operations in a typed
functional language do not usually change the type of the updated
value. Introduction of an update operation that may change the

c© 2016 Information Processing Society of Japan 144

Journal of Information Processing Vol.24 No.1 141–151 (Jan. 2016)

Fig. 2 Monomorphic KVS access operations.

type requires careful and detailed consideration in a type theory,
which is beyond the scope of this paper. For this reason also, we
do not consider delete operations. Hereafter, for simplicity, we
assume that the user never changes the types of existing keys and
therefore omit their check.

The implementation of these functions are naturally derived
from the structure of σ because the structure R(σ) is defined in-
ductively on the structure of σ. Figure 2 shows the implemen-
tations of createσ, updateσ, and findσ in an ML-like pseudo
language that includes the following syntax:
• |a| denotes the number of elements in array a.
• [e1, . . . , en] constructs an array with elements e1,. . .,en.
• let n be e1 in e2 is the expression that evaluates e1, binds n to

the value of e1, and evaluates e2.
• (e1; e2) is sequential execution.

The following auxiliary functions are used in the figure:
• new, put, and get are the string-based access operations

presented in Section 2.
• toStringb and fromStringb convert between the value of

b and its standard string representation. Whereas toStringb

always succeeds, fromStringb raises an exception if the
conversion fails.

• mustEqual raises an exception if the two given strings are
not equal.

updateσ and findσ carry out the runtime type checking us-
ing fromStringb for basic types and mustEqual for compound
types. This runtime type checking is performed recursively on

the structure of the data stored in KVS. This recursive behavior
of updateσ and findσ corresponds to the procedure that derives
type judgment S � k : σ from KVS S and the given key k.

The definition outlined in Fig. 2 is inductive on the structure
of σ with the exception of the generation of σ. If there exists a
function PairTy and ArrayTy on strings such that

Pair(σ1, σ2) = PairTy(σ1, σ2)

Array(σ) = ArrayTy(σ),

then the entire definition in Fig. 2 is inductive on the structure of
σ. This premise of PairTy and ArrayTy is natural if we imple-
ment them in a functional programming language. Henceforth,
we assume that both Pair(σ1, σ2) and Array(σ) satisfy the above
equations. The inductive property of the high-level KVS access
operations is required for extending them to polymorphic func-
tions in the next subsection.

4.2 Polymorphic Access Operations
To execute the monomorphic version of createσ, updateσ,

and findσ presented in the previous subsection, the user must
specify σ explicitly. However, as seen in the definition of these
functions, they are generic operations for any type that can be
stored in KVS. In ML, such generic functions are usually defined
as polymorphic functions. For example, foldr is a typical poly-
morphic function that can be applied to any list of any element
type. Because the three functions above are generic operations,
they should also be defined as polymorphic functions in ML. The
polymorphic version of the KVS access operations should look
like functions of the following types:

create : ∀t. string × t → unit
update : ∀t. string × t → unit
find : ∀t. string→ t

However, because the behavior of each of the three functions
varies as a result of the type instances of t, none of these functions
can be implemented as a single code instance. Therefore, there is
no parametric polymorphic function that realizes their behaviors.

We observe that this problem is in essence the same as the case
of the record field selectors in the polymorphic record calculus
proposed by Ohori [9]. In general, field selectors are defined only
for those records whose label sets are statically determined. For
example, the semantics of field selector #L2 depends on the type
of the given record. If the given record is {L1: int, L2: int},
then #L2 reads the second word of the record. If the record
is {L2: int, L3: int}, then #L2 reads the first word of the
record. In the polymorphic record calculus, to realize these vari-
ous behaviors of field selectors without losing polymorphism, the
compiler generates codes that pass field index information deter-
mined at type instantiation to polymorphic functions. The field
index information is computed statically by introducing a single-

ton type whose value is uniquely determined. We refer to this
compilation strategy as type-directed compilation. For example,
the polymorphic record calculus gives #L2 the following type:

∀t1.∀t2 :: {{L2 : t1}}.t2 → t1

c© 2016 Information Processing Society of Japan 145

Journal of Information Processing Vol.24 No.1 141–151 (Jan. 2016)

where t2 :: {{L2 : t1}} signifies that t2 may be any record type that
has at least L2 field. Hence, t2 may be instantiated to a record
type such as {L1: int, L2: int} and {L2: int, L3: int}.
The field index for #L2 is generated by the compiler from the
instance of t2.

We apply this approach to the KVS access operations to make
them polymorphic. In the sense of KVS, the field selector and
field index correspond to the access functions and a meta-object
specifying a variation of the behavior of the access functions, re-
spectively. We introduce a new singleton type to generate the
meta-object from type instantiation.

Following the above strategy, we present the polymorphic KVS
access operations and a compilation scheme for them as follows.
For simplicity, in this subsection, we consider them based on a
language with explicit type abstractions and type instantiations.

The KVS access operations must behave polymorphically only
for types that can be stored in KVS; therefore, the type system
must disallow their application to other data types such as first-
class functions. To represent the type of such polymorphic behav-
iors, we introduce a type system with type kinds that restrict the
set of type instances of a type variable. The set of monomorphic
types (ranged over by τ) in the host language is given as follows:

τ ::= t | b | Pair(τ, τ) | Array(τ) | · · ·

where t ranges over the given set of type variables. We omit types
used only in the host language such as record and function types.
In contrast to σ, in τ, type variables may appear in Pair(τ1, τ2)
and Array(τ). A polymorphic type in the host language is of the
form ∀t1 :: d1. . . .∀tn :: dn. τ, which indicates that bound type
variables t1, . . . , tn have type kinds d1, . . . , dn respectively. A type
kind is either the universal kind U denoting the set of all types
or KVS denoting the set of types compatible with KVS. A kind

assignment ranged over by K is a finite map from type variables
to type kinds. We say that type τ has kind d under K , denoted by
K � τ :: d, if it is derivable by the following kinding rules:
• K � τ :: U for any τ.
• K � b :: KVS.
• K � t :: KVS iff K(t) = KVS.
• K � Pair(τ1, τ2) :: KVS iff K � τ1 :: KVS and K � τ2 ::

KVS.
• K � Array(τ) :: KVS iff K � τ :: KVS.

By definition, K � σ :: KVS holds for any σ.
The type of the polymorphic KVS access operations are given

as follows:

create : ∀t :: KVS. string × t → unit
update : ∀t :: KVS. string × t → unit
find : ∀t :: KVS. string→ t

We realize the semantics of the above polymorphic functions
in the following strategy. Based on the idea of the type-directed
compilation, we introduce a singleton type M(τ) and its unique
value M(τ) for any τ of KVS kind. M(τ) is a meta-object con-
taining essential information that signifies the behaviors of the
above three functions. For any σ, M(σ) is a unique value of
M(σ). By the type-directed compilation, the compiler compiles a

type abstraction term

(Λt ::KVS. e1) : ∀t ::KVS. τ1

to a function with an extra meta-object parameter

(Λt ::KVS. λI : M(t). e1
′) : ∀t ::KVS.M(t)→ τ1,

and a type instantiation term for a type variable of KVS kind

(e2 : ∀t ::KVS. τ2) {σ} : τ2[σ/t]

to a function application term with a meta-object corresponding
to the type instance

(e2
′ : ∀t ::KVS.M(t)→ τ2) {σ} M(σ) : τ2[σ/t].

If a bound type variable t2 with KVS kind is instantiated to another
type variable t1 with KVS kind, as in the following example,

Λt1 ::KVS. · · · (e3 : ∀t2 ::KVS.τ3) {t1}) · · · ,

the compiler searches for a bound variable I1 whose value is the
meta-object corresponding to the instance of t1 from the context
and generates codes that pass I1 as follows:

Λt1 ::KVS. λI1 : M(t1).
· · · (e3

′ : ∀t2 ::KVS.M(t2)→ τ3) {t1} I1) · · ·

See [9] for the details of how the compiler searches for I1. In the
above compilation scheme, the polymorphic version of create,
update, and find must be the functions that perform the fol-
lowing steps: (1) Obtain a meta-objectM(τ), where τ is the in-
stance of the bound type variable t, through the extra parame-
ter I inserted by the type-directed compilation; (2) extract infor-
mation from the meta-object that corresponds to the behavior of
createτ, updateτ, and findτ; and (3) evaluate the information.

The following is required to implement the above behavior:
(1) M(τ) must include sufficient information for the polymor-

phic access operations to behave similar to the correspond-
ing monomorphic version.

(2) The compiler must be able to generateM(τ) from any τ of
KVS kind.

(3) M(τ) must be inductive on the structure of τ so that beta
reduction on terms includingM(τ) preserves types.

If τ is limited to σ, which contains no type variable, then the
above requirements are satisfied by defining the meta-object as a
4-tuple of createσ, updateσ, findσ, and σ as the following:

M(σ) = { create : string × σ→ unit,
update : string × σ→ unit,
find : string→ σ,
ty : string }

M(σ) = { create = createσ,

update = updateσ,

find = findσ,

ty = σ }

The ty field is needed for inductive construction of the three other
fields. From this definition and Fig. 2, the meta-objects of com-
pound types are derived from the meta-objects of their element
types. For example, create of M(Pair(σ1, σ2)) is computed

c© 2016 Information Processing Society of Japan 146

Journal of Information Processing Vol.24 No.1 141–151 (Jan. 2016)

fromM(σ1) andM(σ2) as follows:

#createM(Pair(σ1, σ2)) =
λ(k, (v1, v2)).

(new(k,PairTy(#tyM(σ1), #tyM(σ2)));
#createM(σ1) (k/1, v1);
#createM(σ2) (k/2, v2))

This construction of meta-objects for type σ is naturally extended
to type τ by adding the case for type variable t to σ and the def-
initions shown in Fig. 2. As stated above, the type-directed com-
pilation algorithm is able to search for a variable I of type M(t)
from the context. Therefore, the cases for t are given by using
this I as follows:

createt = #create I

updatet = #update I

findt = #find I

t = #ty I

where #l selects the l field of the given record. The compilation
algorithm T for create, update and find is given below:

T (create) = Λt ::KVS. λI : M(t). #create I

T (update) = Λt ::KVS. λI : M(t). #update I

T (find) = Λt ::KVS. λI : M(t). #find I

Figure 3 shows an example how create and its application
are compiled. The underlined part in Fig. 3 is the difference from
the previous compilation step.

4.3 Practical KVS Access Operations
The KVS access operations presented above have the follow-

ing two issues in practice.
The first issue is that the implementation of the polymorphic

KVS access operations in ML without any modification is not
straightforward. One reason for this is that, in ML, type abstrac-
tions and type instantiations are implicit and are inferred auto-
matically. To implement the polymorphic KVS access operations
in ML, we need to realize the semantics of create, update, and
find only with inferred type abstractions and type instantiations.
From this point of view, there is a problem in find. To clarify the
problem, consider the following example. A user writes a copy
function that copies the value of k1 to k2 as follows:

copy = λ(). create ("k1", find "k2")

This copy function appears to be a polymorphic function that
copies the values of any type. This is true if the type inference
algorithm inserts type abstractions and instantiations as follows:

Λt ::KVS. λ(). create {t} ("k1", find {t} "k2")

and infers the type of copy as ∀t ::KVS. unit→ unit. However,
the ML compiler infers it as unit → unit and therefore copy
is not a polymorphic function. Thus, the compiler cannot com-
pile copy to codes that behave as we expected. In this case, the
type-directed compilation algorithm chooses a certain type, such
as int, for the type of create and find. This behavior of the

Fig. 3 Sample compilation of the polymorphic KVS access operations.

compiler is rather different from what the user would expect from
the source code.

The second issue is that the access operations do not allow us
to obtain or update a part of the data stored in KVS. KVS usu-
ally contains a huge volume of data that is much larger than heap
memory. In our high-level KVS, such a huge volume of data
should be a huge array of huge tuples. However, the access oper-
ations presented thus far only allow us to copy the whole of the
data between KVS and heap memory at once. Hence, we cannot
deal with such huge data in ML using only those access opera-
tions.

To rectify the above two issues, we replace the polymorphic
find operation with the following syntax:

find k as σ

that forces us to specify the type σ of key k and returns a handle
that allows us partial access to the compound data. The typing
rule of this syntax is given as a derivation rule that derives a type
judgment Γ � e : τ indicating that expression e has type τ under
kind assignment K and type assignment Γ as follows:

K , Γ � e : string

K , Γ � find e as σ : Obj(σ)

where Obj(σ) is the type of the handle.

c© 2016 Information Processing Society of Japan 147

Journal of Information Processing Vol.24 No.1 141–151 (Jan. 2016)

Fig. 4 Type of the partial access handle.

Fig. 5 Compilation algorithm for find.

The handle for partial access should be designed as a high-level
data structure considering the user’s convenience. There is flexi-
bility in the design; in this work, we define the handle as a record
of functions in the object-oriented style. As with the monomor-
phic access operations presented in Section 4.1, the implemen-
tations of Obj(σ) are specific for each σ. Figure 4 defines the
definition of Obj(σ). In this definition, we include only primitive
operations; other access functions may be added to the handle for
the user’s convenience. This handle object allows us to read and
write a part of the compound data without copying the entire data
to the memory. The following swap function is an example of
the usage of this handle that swaps the i-th element of an integer
array of the given key arrayKey with new:

fun swap i new =

let

val m = find "arrayKey" as Array(int)
val old = #getElem m i

in

#putElem m (i, new); old

end

Variable m in the above example has the following record type:

m : { getLength : unit→ int,
getElem : int→ int,
putElem : int × int→ unit }

Each function in record m is an operation on the array stored in
KVS with key arrayKey.

The compiler compiles the find expression to codes that per-
form the runtime type check and constructs a record of type
Obj(σ). As with findσ and updateσ in Fig. 2, the implemen-
tations of the functions in Obj(σ) are derived inductively on the
structure of σ. We refer to this compilation algorithm as C. Fig-
ure 5 shows a part of the definition of C. The cases for Array(σ),
which we omit in Fig. 5, can be defined similarly according to
Fig. 2.

5. Prototype Implementation

To demonstrate the feasibility of the proposed scheme, we im-
plemented a prototype in SML#. As we shall discuss in Section 6,
further issues still remain for better practical performance, such
as mutual exclusion. To clarify those issues through the prototype
implementation, we did not implement the type-directed compi-
lation algorithm in the SML# compiler, which requires significant
implementation effort, in order to facilitate flexibility in system
design modification. Instead, we implemented a library that pro-
vides functions to construct M(σ) by hand. We also designed
a common signature for the string-based KVS access operations
and implemented two KVS modules of that signature: a toy im-
plementation for test use that simulates KVS with a binary search
tree, and a binding for the Web APIs of Riak CS [11] servers.
Using the latter module, we successfully connected our imple-
mentation to an actual KVS server.

Figure 6 shows the actual output of an interactive session car-
ried out using this prototype. The first part of the output shows the
signatures of the functions we implemented. The polymorphic
create and find functions are implemented in SML# user-level
codes; hence, they are record-polymorphic functions. intMeta
and arrayMeta are implementations of the base and array case
of algorithm C. In this prototype, instead of find e as σ syn-
tax, the user calls the find function with a meta-object corre-
sponding to type σ. The remaining parts demonstrate the usage
of this prototype library. As can be seen in the output, the user
successfully created an array in KVS and partially updated the
array through the handle. The runtime type check also works as
we expected.

6. Further Issues to be Resolved for Better
Practical Performance

Through the above prototype implementation, we discovered
several issues that are important for the realization of a practi-
cal high-level KVS system. These issues include those that re-
quire further development beyond the type system and compi-
lation technique. We believe that those issues can be resolved
and practical high-level KVS can be achieved by applying tech-
nologies widely used for database transaction management and
data access control to our method. In this section, we discuss
each of the issues identified in each respective subsection.

6.1 Access Control and Transaction Management
To maintain the consistency of the huge volume of data stored

in KVS, a mechanism and algorithm for systematic access con-
trol is essential. In string-based KVS, management of data con-
sistency is carried out only for each string key-value pair in each
network node; maintaining consistency between keys is the pro-
grammer’s responsibility. In high-level KVS, because the user
can store compound data as a value, the system must guaran-
tee the consistency of the compound data represented in the set
of keys. A major technical issue associated with this require-
ment is establishment of a mechanism for transaction manage-
ment that automatically guarantees the consistency of arrays and
tuples when creating and updating them without negatively af-

c© 2016 Information Processing Society of Japan 148

Journal of Information Processing Vol.24 No.1 141–151 (Jan. 2016)

Fig. 6 Interactive SML# session using the prototype implementation.

fecting the scalability and performance of KVS.

6.2 Shareability of Data Structures and Garbage Collection
In high-level KVS, the update operation may produce some

garbage keys — that is, keys that were a part of a compound data
structure but are currently not reachable from any other key struc-
tures. For example, consider a case in which a user overwrites
an array of two elements stored in k with another one-element ar-
ray. In this case, k, k/len, and k/0 are overwritten by this update
operation, but k/1 may remain as garbage. This garbage can be
eliminated by removing keys consisting of the overwritten data
before writing the new data. This operation is safe because no
key is shared among two distinct data structures in our high-level
KVS.

The model of the high-level KVS can be naturally extended to
facilitate sharing of data components among multiple data struc-
tures. This extension can be realized by including a key string to
a data structure as a pointer to a data component. This extension
would make the high-level KVS more efficient and enable rep-
resentation of more complex data structures such as cyclic graph
structures. However, updating a pointer may produce unreachable
components that cannot be eliminated by the above simple strat-
egy. A garbage collection technique for KVS should therefore be
investigated with the objective of overcoming this problem.

6.3 Dealing with Algebraic Data Types
While we only considered arrays and tuples for KVS, there is

a variety of types in functional languages, such as records, lists,
and trees. For high-level KVS to be more practical, these data
types should be supported. Record types can be supported simi-
lar to Pair(σ1, σ2) type. For lists and trees, we need to extend the
data model R and the access handle Obj with support for alge-
braic data types. Here, we only mention possible support for lists
in high-level KVS and will leave the detailed analysis and com-
plete design of the algebraic data type support for future work.
We can add a list type List(σ) to the KVS types as follows. The
data model of List(σ) is given below:

R(List(σ)) =
{
(k,

⎧⎪⎪⎨⎪⎪⎩
k �→ List(σ)
k/tag �→ c

⎫⎪⎪⎬⎪⎪⎭ ∪ S)
∣∣∣ (c, S) ∈ Rcons(k, σ) ∪ {("nil", {})}

}

Rcons(k, σ) =
{
("cons", S)∣∣∣ (k/val, S) ∈ R(Pair(σ,List(σ)))

}

The implementation of create, update, and find can be ob-
tained by extending their definitions based on this model. The
partial access handle Obj(List(σ)) can be implemented in the fol-
lowing strategy. In ML, a value of an algebraic data type is elim-
inated by a case branch. High-level KVS should provide users
with a similar case branch feature for lists stored in KVS. The
most primitive operations for the case branch is to match the given
data with a specific data constructor. Hence, Obj(List(σ)) is given
as follows:

Obj(List(σ)) =
{ getCons : unit→ Obj(Pair(σ,List(σ))) option,
getNil : unit→ unit option }

c© 2016 Information Processing Society of Japan 149

Journal of Information Processing Vol.24 No.1 141–151 (Jan. 2016)

where getCons and getNil return SOME if the value of the
key k/tag is cons and nil, respectively; otherwise, they return
NONE.

While the above construction is a possible candidate for list
support, it may limit the usability of KVS to implement all pos-
sible data types in ML in this way owing to the following rea-
sons. Firstly, the above encoding would be inefficient in dealing
with a linear linked list because the length of the key increases
with the length of the list. In the above list support construction,
because the length of the keys is proportional to the number of
cons cells in the list, it requires O(n2) space to store a list of n

elements and O(n2) steps to enumerate its elements. Secondly,
certain data structures can be implemented directly by using fea-
tures that KVS naturally provides. A typical example of such a
data structure is a map structure, which is usually implemented
using a binary search tree in ML. Because KVS is in essence a
map structure, it is straightforward and efficient to store the map
structure directly in KVS rather than to encode the binary search
tree structure in some key encoding. For more practical high-
level KVS, we have to consider introducing efficient data models
specific to each data type as well as a generic model for glgebraic
data types.

6.4 More Flexible Type Specification in find
The find k as σ expression presented in Section 4.3 re-

quires the user to specify a concrete type σ. On the other hand,
as stated in Section 2, KVS is in essence an untyped storage;
therefore, there may be a multiplicity of possible choices for the
type of k. If the user could specify the type choices in the find
expression, the usability of high-level KVS would increase. An
approach to realizing this is to replace the runtime type check
mechanism of findwith the typecase presented in the dynamic

type system [1]. Using typecase, a program that reads either an
integer or a Boolean can be written as follows:

typecase find k of

(x : int) => x

(x : bool) => if x then 1 else 0

else raise Fail "unexpected type"

Another possible extension of the find syntax is to allow its
type specification to include a type variable, i.e., to use τ as
its type specification instead of σ. A serious technical issue in
the realization of this extension is the definition of the equiva-
lence relationship with respect to Obj(t) and the semantics of a
program including Obj(t) in a style that can be seamlessly in-
tegrated with ML. This issue may be solved by generalizing the
idea of polymorphic record compilation [9] or applying the theory
of intensional polymorphism [5], which is closely related to the
type-directed compilation; however, these approaches may sig-
nificantly change the type-directed compilation scheme.

7. Conclusion

We proposed a scheme for type-safe access to KVS in an ML-
style polymorphic functional language. The proposed scheme
comprises a type system for KVS and a language extension that
enables the storing of compound data structures in KVS with-

out any string manipulation. The access operations are provided
as polymorphic functions and are realized based on the idea of
the type-directed compilation scheme of the polymorphic record
calculus. In addition, we implemented a prototype of the pro-
posed scheme and demonstrated its feasibility. Through the pro-
totype, we briefly explored further developments that would fa-
cilitate better practical performance of the proposed scheme.

The efficacy and practicability of the proposed scheme should
be evaluated following further development of the high-level
KVS. We are currently developing an extension to the SML#
compiler based on the scheme proposed in this paper. One of
the major problems with this development is the question of how
to provide a common infrastructure that allows us to connect var-
ious KVS servers with high-level access control, as discussed in
Section 6. Performance evaluation, including the scale-out per-
formance evaluation, will be conducted following the completion
of this development. We believe that the proposed scheme will be
beneficial to big data analysis when the issues discussed in this
paper are resolved and a practical functional language equipped
with the proposed scheme is realized.

Acknowledgments The authors thank Masanori Endo and
Yuto Mukade for their cooperation in implementing the prototype
reported in Section 5. The authors also thank some members of
the project “Research and Development on Highly Functional and
Highly Available Information Storage Technology” sponsored by
the Ministry of Education, Culture, Sports, Science and Tech-
nology in Japan for discussions. This work has been partially
supported by JSPS KAKENHI Grant Number 25280019.

References

[1] Abadi, M., Cardelli, L., Pierce, B.C. and Plotkin, G.D.: Dynamic Typ-
ing in a Statically Typed Language, ACM Trans. Program. Lang. Syst.,
Vol.13, No.2, pp.237–268 (1991).

[2] Chang, F., Dean, J., Ghemawat, S., Hsieh, W.C., Wallach, D.A.,
Burrows, M., Chandra, T., Fikes, A. and Gruber, R.E.: BigTable: A
Distributed Storage System for Structured Data, ACM Trans. Comput.
Syst., Vol.26, No.2, pp.4:1–4:26 (online), DOI: 10.1145/1365815.
1365816 (2008).

[3] DeCandia, G., Hastorun, D., Jampani, M., Kakulapati, G., Lakshman,
A., Pilchin, A., Sivasubramanian, S., Vosshall, P. and Vogels, W.: Dy-
namo: Amazon’s highly available key-value store, Proc. 21st ACM
SIGOPS symposium on Operating systems principles, SOSP ’07, New
York, NY, USA, pp.205–220, ACM (online), DOI: 10.1145/1294261.
1294281 (2007).

[4] Elsman, M.: Type-specialized serialization with sharing, TFP’05: Re-
vised Selected Papers from the Sixth Symposium on Trends in Func-
tional Programming, pp.47–62 (2005).

[5] Harper, R. and Morrisett, G.: Compiling Polymorphism Using Inten-
sional Type Analysis, Proc. 22nd ACM SIGPLAN-SIGACT Sympo-
sium on Principles of Programming Languages, POPL ’95, New York,
NY, USA, pp.130–141, ACM (online), DOI: 10.1145/199448.199475
(1995).

[6] Henry, G., Mauny, M., Chailloux, E. and Manoury, P.: Typing un-
marshalling without marshalling types, Proc. 17th ACM SIGPLAN in-
ternational conference on Functional programming, ICFP ’12, New
York, NY,USA, pp.287–298, ACM (online), DOI: 10.1145/2364527.
2364569 (2012).

[7] Kennedy, A.J.: Pickler combinators, J. Funct. Program., Vol.14, No.6,
pp.727–739 (online), DOI: 10.1017/S0956796804005209 (2004).

[8] Leroy, X. and Mauny, M.: Dynamics in ML, J. Funct. Program., Vol.3,
No.4, pp.431–463 (1993).

[9] Ohori, A.: A polymorphic record calculus and its compilation, ACM
Trans. Programming Languages and Systems, Vol.17, No.6, pp.844–
895 (1995).

[10] Ohori, A. and Ueno, K.: Making Standard ML a practical database
programming language, Proc. 16th ACM SIGPLAN international con-
ference on Functional programming, ICFP ’11, New York, NY, USA,

c© 2016 Information Processing Society of Japan 150

Journal of Information Processing Vol.24 No.1 141–151 (Jan. 2016)

pp.307–319, ACM (online), DOI: 10.1145/2034773.2034815 (2011).
[11] Riak CS, available from 〈http://basho.com/riak-cloud-storage/〉.

Katsuhiro Ueno was born in 1981. He
received his Doctor of Philosophy (Infor-
mation Sciences) from Tohoku University
in 2009. He is currently an assistant pro-
fessor at Research Institute of Electrical
Communication, Tohoku University. He
is interested in functional programming
languages.

Atsushi Ohori was born in 1957. He re-
ceived his B.A. in Philosophy from the
University of Tokyo in 1981, and his
Ph.D. in Computer and Information Sci-
ence from University of Pennsylvania in
1989. He is a professor of Research Insti-
tute of Electrical Communication, Tohoku
University. He worked at Oki Electric In-

dustry, Co. Ltd. (1981–1993), Research Institute for Mathemati-
cal Sciences, Kyoto University (1993–2000), and School of Infor-
mation Science, Japan Advanced Institute of Science and Tech-
nology (2000–2005) before he moved to Tohoku University in
2005. He is interested in programming languages and database
systems.

c© 2016 Information Processing Society of Japan 151

