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Abstract: This paper describes our experimental investigation of the end user physical characteristics (e.g., gender,
height, weight, dominant hand, and skill at sport) that can be successfully estimated solely from sensor data obtained
during daily activities (e.g., walking and dish washing) from body-worn accelerometers. For this purpose we use the
huge quantities of data that we have collected, which include 14,880 labeled activities obtained from 61 subjects. Our
proposed method tries to estimate various kinds of characteristics based on our simple idea ‘When the activity sensor
data of two users are similar, the physical characteristics of the two users may also be similar.’ We consider that es-
timating the end user’s physical characteristics will enable us to realize new kinds of applications that automatically
recommend information/services to an end user according to her estimated physical characteristics such as gender and
weight.
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1. Introduction

Advances in sensing and wireless communication technologies
have led to the low cost production of small wireless body-worn
and environment-embedded sensor devices that are used to rec-
ognize human daily activities. In the near future, end users will
wear small accelerometers and/or accelerometer-embedded de-
vices such as wristwatches, cellphones, and shoes [16], and their
daily lives will be continuously recorded by these sensors.

In this paper, we try to estimate information about an end user’s
physical characteristics such as height, weight, gender, domi-
nant hand, and age solely by employing acceleration data ob-
tained from accelerometers attached to several parts of her body
and/or accelerometers embedded in daily objects. We believe that
the automatic estimation of physical characteristics with accel-
eration sensors will prove very useful in many application do-
mains. We show some examples. (1) We can construct a per-
sonalized recommender system that provides user-specific adver-
tisement/information according to the user’s estimated character-
istics. For example, if an accelerometer is attached to a shopping
basket and physical characteristics of a shopper who carry around
the basket are estimated, a public display or humanoid robot in
the shop can recommend items for him/her according to the esti-
mated characteristics such as gender and age. Such information is
also useful for analyzing customer shopping behaviors according
to their gender and age. Furthermore, recent amusement parks
have introduced RFID sensor bracelets worn by customers for
easy payment. If accelerometers are embedded in such sensor
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bracelets and physical characteristics of the customers are esti-
mated, physical characteristics aware attractions (e.g., according
to gender and age) and recommender systems at souvenir shops
and restaurants will be achieved. (2) If an end user’s estimated
physical characteristics are useful information for the end user
herself, we can simply provide her with the information. For ex-
ample, if the end user is taking tennis lessons, she will definitely
find it useful to receive her monthly progress reports. For exam-
ple, monthly progress in the estimated tennis skillfulness of the
end user is definitely useful. (3) While the evaluation described
below mainly focuses on known (apparent) physical character-
istics such as height, dominant hand, and sports experience, we
consider our method applicable to the automatic estimation of
hidden physical characteristics such as diseases, health indica-
tors, and sporting ability. In particular, the automatic diagnosis
of diseases that affect body movements by using always-on ac-
celerometers could be a significant application of wearable sensor
systems. In fact, several physiology studies have determined the
difference between normal subjects’ gait acceleration signals and
those of subjects with a disease, e.g., between healthy subjects
and subjects with diabetes [17]. (4) If such physical characteris-
tics as age, gender, and height of a person are estimated, these
characteristics can be used as soft biometric features to identify
the person. Assume that accelerometers are embedded into such
daily objects as house shoes in a home environment, and basic
information of house residents such as name, age, gender, and
height are known. By using the estimated physical characteristics
and the known physical characteristics, we can identify a house
resident and provide personalized services to the resident.

We estimate an end user’s physical characteristics by employ-
ing machine learning approaches. That is, we prepare labeled
time-series acceleration data obtained from many other users
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(training users) and information about their physical character-
istics, and construct models that estimate physical characteristics
in advance. (A label attached to acceleration data includes in-
formation about the class label of its related activity and activity
start and end times.) We then estimate the end user’s physical
characteristics by using the models and the end user’s accelera-
tion sensor data. We construct a model that estimates each kind of
physical characteristic, for example height or gender. The model
is based on our idea that when the activity sensor data of two users
are similar, the physical characteristics of the two users may also
be similar. That is, by computing similarities between activities
of training users, we learn the relationship between their activity
similarities and the similarities of their physical characteristics.
For example, ‘write’ activity sensor data obtained from two left-
handed users may be similar. When we know in advance that
one of the two users is left-handed, we can estimate the dominant
hand of the other user by using similarities between the sensor
data from their ‘write’ activities.

In the rest of this paper, we first introduce work related to ac-
celeration data analysis. Then we explain our proposed method
and evaluate it with acceleration sensor data obtained from 61
subjects. The contribution of this paper is that we experimen-
tally investigate various kinds of physical characteristics that can
be successfully estimated from acceleration data obtained from
body-worn sensors by using 147.5 hours of labeled sensor data
obtained from 61 subjects. To the best of our knowledge, our
method is the first method that can estimate various physical char-
acteristics from various activity sensor data based on activity sim-
ilarity.

2. Related Work

We introduce several studies that estimate the properties of an
accelerometer (or its wearer) by analyzing its acceleration data.
Reference [11] estimates the on-body position of an accelerome-
ter by using its sensor data. Reference [11] prepares sensor data
obtained from accelerometers worn on various parts of the body
in advance, and learns the characteristics of the acceleration data
that are peculiar to each on-body position by using discriminative
classifiers such as the Support Vector Machine (SVM) and the
C4.5 decision tree. Many studies estimate the calories expended
in such physical activities as walking and running by using body-
worn accelerometers (and other sensors) [2], [15]. Several studies
employ ‘walk’ acceleration data to achieve biometric gait authen-
tication [5], [14]. Also, Ref. [8] tried to detect drunk walking by
using an accelerometer based on an assumption that the effects of
alcohol intake on gait data are similar for each user. The stud-
ies that come closest to ours involve acceleration-based evalua-
tion systems related to sport training and health care that evaluate
skillfulness in sports and several health indicators. For example,
Ref. [6] evaluates a golf swing by using the estimated angle of
wrist rotation with accelerometers and gyroscopes attached to the
body and a golf club. Reference [21] distinguishes experienced
and inexperienced runners with body-worn accelerometers. Ref-
erence [18] attempts to estimate activity levels of subjects from
the length of ‘walk’ activities in subjects’ daily lives. By contrast,
we investigate various kinds of physical characteristics such as

height, dominant hand, and sport experience in a simple and uni-
fied framework by using large amounts of data. Also, Ref. [23]
tries to estimate basic physical characteristics (gender, weight,
and height) by using an accelerometer on a smartphone. They
directly estimate physical characteristics from only walk sensor
data features. On the other hand, our approach can estimate phys-
ical characteristics from various activity data. (This method will
be compared with our method in the evaluation section.)

In the medical research field, many surveillance studies have
been undertaken concerning the relationship between physical
activity levels obtained from accelerometers attached to subjects
and the physical characteristics of the subjects [7], [22]. For ex-
ample, Ref. [22] investigates age and gender differences in rela-
tion to physical activity levels in the United States. Reference [7]
examines gender, day, and time of day differences in the physical
activity levels of adolescents. Also, as mentioned above, Ref. [17]
investigates the difference between the gait acceleration signals of
subjects with and without diabetes. In contrast, we try to estimate
various kinds of end user physical characteristics by using simi-
larities between activity data.

Our proposed method is similar to collaborative filtering meth-
ods in the information retrieval research field [20] because the
collaborative filtering methods recommend an item to a user
based on the computed similarity between users. Since the col-
laborative filtering methods compute the similarity based on sets
of items that the users have purchased, the similarity is computed
by using the correlation between the purchased items. In contrast,
this study focuses on acceleration sensor data, i.e., continuous
values, and we compute the user similarity based on distributions
of sensor data.

3. Estimation Method

3.1 Assumed Environment
We assume that an end user wears several accelerometers (or

has devices with accelerometers). Sensor data obtained from the
accelerometers are analyzed by an activity recognition system.
That is, the recognition system labels the sensor data. A label in-
cludes information about the class label of its related activity and
activity start and end times. We estimate the end user’s physical
characteristics by using the labeled sensor data.

3.2 Outline of Method
Our method consists of main two procedures; Training and

Physical characteristic estimation as summarized in Fig. 1. In the
Training procedure, we construct a model for each of the physi-
cal characteristics we want to learn/estimate in advance. A model
estimates a given physical characteristic of an end user. In the
Physical characteristic estimation procedure, we estimate a given
physical characteristic of an end user by using her acceleration
data labeled by the activity recognition system. We detail the two
procedures below.

3.3 Training
We obtain labeled acceleration data including various kinds of

activities from many training users in advance. Figure 1 (a) shows
the outline of this procedure. In this procedure, (1) we extract fea-
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Fig. 1 Overview of our method. (a) Training and (b) Physical characteristic estimation.

tures from the sensor data, (2) we compute similarities between
the activities of training users according to each activity class by
using the extracted features and construct rankings of each train-
ing user that include other training users in ascending order of
similarity to the training user, (3) we compute attribute sets from
the rankings to construct a model that estimates a certain kind
of physical characteristic, e.g., height or age, and (4) we then
train the model by using the computed attributes and answers. An
answer corresponds to the training user’s physical characteristic
value that we want to estimate, e.g., height or age. We compute
the attributes from the physical characteristics of other similar
training users based on our idea that when the activity sensor data
of two users are similar, the physical characteristics of the two
users may also be similar. When we want to estimate a height,
for example, we use the heights of similar training users to com-
pute the attributes. We detail the four sub-procedures.
3.3.1 Feature Extraction

Before computing activity similarities, we extract features
from the training users’ sensor data based on existing activity
recognition studies. Because we assume time-series acceleration
data, we compute a feature vector for each sliding time window.
We extract features based on the FFT components of 64 sam-
ple time windows. As features, we use the mean, energy, and
dominant frequency according to the existing activity recognition
studies [1], [24]. The mean is the DC component of the FFT coef-
ficients, and can characterize the posture of parts of the body. For
example, a mean corresponding to a hand posture during tooth
brushing may have particular characteristics. The energy feature
is calculated by summing the magnitudes of the squared discrete
FFT components. Note that the DC component of the FFT co-
efficients is excluded from this summation. The energy can be
used to distinguish low intensity activities such as standing from
high intensity activities such as walking [1], [24]. The dominant
frequency is the frequency that has the largest FFT component,
and it allows us to distinguish between repetitive motions with
similar energy values [13]. We construct a feature vector that
concatenates the above features extracted from the body-worn ac-
celerometers for each time window (time slice).
3.3.2 Computing Similarities

Because the training users’ sensor data are labeled, we can ob-

tain one or more feature vector sequences for each activity class
such as ‘walk’ and ‘run’ for each training user. That is, we can
compute an activity similarity according to a certain activity class
exhibited by two training users by using their feature vector se-
quences.

We first construct a feature vector that concatenates the fea-
tures extracted from sensor data obtained from a training user’s
accelerometers for each time slice. Then, we compute the activ-
ity similarity of each pair of training users by using their feature
vector sequences that correspond to the activity class. We com-
pute activity similarities between training users simply by using a
Gaussian mixture model (GMM). Assume that we wish to com-
pute an activity similarity between the ‘walk’ activities of training
users A and B. We regard user A as a base user and user B as an
object user, and compute the similarity between the object user’s
‘walk’ activity feature vectors and the base user’s ‘walk’ activity
model by using

p(fo |λb) =
M∑

i=0

πiN(fo |μi ,Σi), (1)

where fo is a feature vector of the object user, λb collectively
shows all the parameters of the base user’s GMM, M is a num-
ber of mixtures, which is 32 in our implementation. πi, μi and
Σi are the mixture weight, mean vector and covariance matrix
of the ith multivariate Gaussian distribution of the GMM, respec-
tively. We employ the EM algorithm to estimate the GMM pa-
rameters [3]. We use a GMM to compute the activity similarity
because a GMM is usually used to model a complex data distribu-
tion. For example, ‘wash dishes’ sensor data include data corre-
sponding to ‘rub with a sponge’ and ‘flush with water.’ Therefore,
we use a GMM to capture such a complex distribution of activity
sensor data. The similarity D of the ‘walk’ activity between the
base user and the object user is simply computed as

D =
1
2

⎛⎜⎜⎜⎜⎜⎜⎝
1
Jo

Jo∑

j=0

p(foj|λb) +
1
Jb

Jb∑

j=0

p(fb j|λo)

⎞⎟⎟⎟⎟⎟⎟⎠ , (2)

where Jo and Jb are the number of the object and base user’s
‘walk’ feature vectors, respectively. We compute the similarity
for each pair of training users. By doing so, we can obtain the
activity similarity between the ‘walk’ activities of a training user
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Fig. 3 Example attribute sets and answers for estimating height (cm). A pair consisting of an attribute set
and an answer is computed for each training user.

Fig. 2 Example activity similarity rankings of user A. Each ranking in-
cludes training users in ascending order of similarity to user A. A
ranking is computed for each activity class and each sensor varia-
tion.

(base user) A and those of each other training user. That is, we
can rank training users from the computed similarities. This rank-
ing reflects the similarities of ‘walk’ activities to those of user A.
In our implementation, we define the following six sensor varia-
tions; (1) the right hand, (2) the left hand, (3) the waist, (4) the
thigh, (5) both hands, and (6) both hands, waist and thigh, and
compute the rankings for each sensor variation. (In the experi-
ment described below, subjects wear four three-axis accelerom-
eters; one on each wrist, one on the right thigh, and one at the
waist.) With the fifth variation, for example, we construct a fea-
ture vector that concatenates features extracted from accelerom-
eters on the right and left hands, and compute the rankings with
GMMs. The leftmost column in Fig. 2 shows an example of the
ranking of ‘walk’ activities when we focus on the right hand. In
the example, users D, N, Z, and L are similar to user A in this
order with D being the most similar. We can compute an activity
similarity ranking for each sensor variation and for each activity
class as shown in Fig. 2. As regard to training user A, when we
use six sensor variations and assume fourteen activity classes, we
generate 84 rankings (6 × 14). We compute an attribute set by
using the rankings to learn a model that estimates a certain kind
of physical characteristic.
3.3.3 Computing Attributes and Learning Model

We construct a model that estimates a certain kind of physi-
cal characteristic by using the above rankings and the physical
characteristics of training users. We assume two types of physi-
cal characteristic information; numerical and nominal informa-
tion. Numerical information includes a user’s height, weight,
and age. Nominal information includes a user’s gender, dominant
hand, and sport experience. For example, gender information has
‘male’ and ‘female’ values, and sport experience information has
‘yes,’ ‘somewhat,’ and ‘no’ values.

Here, assume that we construct a model that estimates an end
user’s height. We focus on a training user A and compute a

pair consisting of an attribute set and an answer as shown in the
first row (User A’s row) in Fig. 3. The answer corresponds to
the height of user A. We compute the attribute set by using the
heights of similar users in the activity similarity rankings shown
in Fig. 2. This is based on our idea that when the activity sen-
sor data of two users are similar, the physical characteristics of
the two users may also be similar. In each ranking, we compute
attribute values by using the physical characteristics of the top-
n similar training users. When we deal with numerical physical
characteristics such as height and age, we employ the average
value for the top-n similar users as an attribute. For example, the
first attribute value of user A corresponds to the height of the most
similar user as regard to the right hand in the ‘walk’ activity class,
i.e., user D as shown in the leftmost column of Fig. 2. The second
attribute value of user A corresponds to the average height for the
top-3 similar users, i.e., users D, N, and Z as listed in the leftmost
column of Fig. 2. In our implementation, each attribute value are
computed from its corresponding activity similarity described as

Acn =
1
n

n∑

i=1

ac(ui) (3)

where n = 1, 3, 5, 7, 9, ui shows the ith ranked user in the activity
similarity ranking, and ac(u) shows the value of physical charac-
teristics c (e.g., height).

When we deal with nominal physical characteristics such as
gender and dominant hand, we employ a simple majority voting
protocol. Assume that we focus on gender. When n is 3 and the
top-3 similar users consist of two males and one female, for ex-
ample, we use ‘male’ as an attribute value. We use five n values
(1, 3, 5, 7 and 9) same as numerical characteristics, and com-
pute an attribute for each n value. As above, we can compute
attributes from any kinds of physical characteristics information
by using activity similarity rankings.

Here, it is unclear which kind of attribute is useful for esti-
mating a certain kind of physical characteristic, e.g., height and
gender. Therefore, we learn a model that estimates the physi-
cal characteristic by using large numbers of pairs consisting of
an attribute set and an answer with machine learning approaches.
When we want to estimate nominal physical characteristics such
as gender and dominant hand, we use such classifiers as the Naive
Bayes classifier and the SVM. When we want to estimate numer-
ical physical characteristics such as height and age, we use such
models as regression models and neural networks.
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3.4 Physical Characteristic Estimation
Unlabeled acceleration data obtained from an end user are

given. Figure 1 (b) shows the outline of this procedure. In this
procedure, (1) we extract features from the sensor data, (2) an ac-
tivity recognition system labels the feature vectors, (3) we com-
pute activity similarities between the end user and each training
user according to each activity class and each sensor variation
by using the labeled data, and construct rankings of the end user
that include training users in ascending order of similarity to the
end user, (4) we compute an attribute set from the rankings, and
(5) we then estimate a certain kind of physical characteristic by
using its corresponding model learned in the Training procedure
and the attribute set. The first, third, and fourth sub-procedures
are identical to those in the Training procedure. In the fifth sub-
procedure, by using the attribute set, the model learned in the
Training procedure estimates the value of the end user’s physical
characteristics. We explain the second sub-procedure below.
3.4.1 Activity Recognition

We classify an extracted feature vector at each time slice in
an appropriate activity class by employing supervised machine
learning techniques. That is, we first model each activity by us-
ing labeled training data, and then recognize test data with the
learned models. We learn an activity class with a left-to-right
hidden Markov model (HMM) where the values of its observed
variables correspond to extracted feature vectors, and we repre-
sent its output distributions by using Gaussian mixture densities.
We learn an activity model for each activity class that we want to
recognize.

4. Experiment

4.1 Dataset
We collected sensor data with our developed wireless sensor

nodes equipped with three-axis acceleration sensors and sampling
rates of 30 Hz. Each subject wore the sensor nodes on the wrists
of both hands, the waist, and the right thigh. Here, the most
natural data would be acquired from the normal daily lives of
the subjects. However, obtaining sufficient samples of such data
from many subjects is very costly. Therefore, we collected sensor
data by using a semi-naturalistic collection protocol [1] that per-
mits greater variability in subject behavior than laboratory data.
In the protocol, the subjects perform a random sequence of ac-
tivities following instructions on a worksheet. The subjects are
relatively free about how they perform each activity because the
instructions on the worksheet are not very strict, e.g., “brush your
teeth at the sink” and “vacuum the room with a hand-held vac-
uum cleaner.” During the experimental period, the subjects com-
pleted data collection sessions (10 minutes average) that included
a random sequence of the activities listed in Table 1. Most of
the activities were basically selected from those reported in exist-
ing activity recognition studies [1], [12], [13], [19]. Also, we col-
lected ‘draw on whiteboard’ and ‘write in notebook’ data because
we wanted to try to estimate subjects’ writing dominant hand. We
collected ‘play pingpong’ data because we try to estimate a user’s
sport experience. Each subject completed ten sessions in total in
our experimental environment.

To annotate the collected data, a companion recorded the sub-

Table 1 Activities performed in our experiment.

A stand F descend stairs K draw on whiteboard
B walk G bicycle L write in notebook
C run H brush teeth M play pingpong
D sit I wash dishes N vacuum
E ascend stairs J use PC

Table 2 Physical characteristic information used in our experiment.

name value
gender {male, female}
age numerical
height numerical
weight numerical
dominant hand {right, left}
(writing)
dominant hand {right, left, both}
(brushing)
dominant hand {right, left}
(pingpong)
pingpong experience {yes(2), somewhat(1), no(0)}

Fig. 4 Distribution of physical characteristics of our subjects (selected).

jects with a web camera during the experiment. The web camera
was connected to a mobile computer carried by the companion.
The sensor data from the four sensor nodes attached to the sub-
ject were also sent to the mobile computer. We describe how
several of the activities in Table 1 were performed in detail. In
activity J, we instructed the subjects to enter several sentences on
the computer keyboard. In activities K and L, we instructed the
subjects to write some sentences in a notebook and on a white-
board, respectively. In activity M, each subject played pingpong
with a worker in our laboratory. We collected a total of 14,880 la-
beled activities from the 61 subjects. Note that in our experiment,
several activities were performed at different places, e.g., ‘wash
dishes’ at kitchen, ‘ascend stairs’ at stairs, and ‘play pingpong’ at
gym. Therefore, when a participant walked between the places,
‘walk’ activities were collected, and thus multiple ‘walk’ labels
were included in a session.

Each subject also filled out a questionnaire that asked for infor-
mation about the physical characteristics listed in Table 2. We se-
lected various kinds of physical characteristics related to the sub-
jects ranging from basic information such as weight and gender
to information about the activities listed in Table 1. The activity-
related information included the dominant hand used in several
activities. Figure 4 shows the distribution of the physical char-
acteristics of our subjects. As shown in Fig. 4, the subjects were
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well-balanced in terms of gender. The subjects ranged from 22 to
58 years old. Also, the height and weight of the subjects covered
a wide range. There were few left-handed subjects because there
are few left-handed people.

4.2 Evaluation Methodology
We evaluated our method using ‘leave-one-subject-out’ cross

validation. That is, we regarded one subject as an end user and the
remaining subjects as training users. We iterated the procedure so
that each subject became an end user once, and we computed the
estimation accuracies of the physical characteristics listed in Ta-
ble 2. Note that when we trained activity models that labeled the
unlabeled acceleration data of an end user, we used the labeled ac-
celeration data of all the training users as the training data. That
is, we can recognize the activities and estimate the physical char-
acteristics of an end user without needing her labeled acceleration
data.

As mentioned above, when we estimate nominal physical char-
acteristics such as ‘gender’ and ‘dominant hand,’ we use discrim-
inative classifiers. In the evaluation, we tested the C4.5 decision
tree, SVM, Naive Bayes classifier (NB), and multinominal logis-
tic regression (Logi) implemented in Ref. [25]. When we esti-
mated such numerical physical characteristics as height and age,
we tested the sequential minimal optimization algorithm for re-
gression (SMOreg), linear regression (Linear), and least median
squared linear regression (LMS). We use parameters and hyper-
parameters of the machine learning methods that yielded good
performance in our preliminary test using small data. Also, as for
SVM and SMOreg, we use a polynomial kernel with the SMO
algorithm.

Note that ‘pingpong experience’ has ordered values. That is,
the level of experience decreases in the order; ‘yes,’ ‘somewhat,’
and ‘No.’ We also regard the information as numerical informa-
tion. We consider that each nominal values of the information
shown in Table 2 correspond to numerical values associated with
the nominal values in the table.

In addition, we prepare naive methods for estimating physical
characteristics and then compare them with our methods. A naive
method for estimating nominal characteristics simply outputs the
major nominal value among all training users. For example, when
we want to estimate ‘gender,’ and the respective numbers of male
and female training users are 10 and 20, the method outputs ‘fe-
male.’ A naive method for estimating a numerical characteristic
simply outputs the average value for all the training users.

Furthermore, we prepare baseline methods that are designed
based on Ref. [23]. Here we briefly explain a method proposed
in Ref. [23]. The method also employs training users’ sensor data
and their physical characteristics information. The method first
extracts feature vectors obtained from an end user’s acceleration
sensor data in the same way as our method. Then the method
finds a feature vector from a training user that is most similar to
each feature vector from the end user (i.e., 1-NN search). That
is, a similar training user is retrieved for each feature vector of
the end user. Finally, the method computes the average phys-
ical characteristics value for the retrieved similar training users
(e.g., average height). The average value will be the estimation

Table 3 Accuracies (percentages) of nominal physical characteristics.

gender
dominant dominant dominant pingpong

hand hand hand expe-
(writing) (pingpong) (brushing) rience

naive 52.5 88.5 78.7 73.8 44.3
base1 62.3 88.5 72.8 75.4 39.3
base2 61.6 89.3 78.1 71.2 39.1
C4.5 59.0 98.4 93.4 91.8 26.2
SVM 80.3 98.4 96.7 90.2 39.3
NB 86.9 98.4 96.7 90.2 39.3
Logi 77.0 95.1 93.4 83.6 34.4
NB(100) 91.8 96.7 95.1 88.5 49.2

of the method. (When we estimate nominal physical character-
istics, a simple majority voting protocol is employed.) We call
the baseline method base1. We also prepare an activity-aware
baseline method based on Ref. [23]. The method first identifies
an activity class that each feature vector belongs to. Then, the
method performs an 1-NN search for each activity class. Note
that the 1-NN searcher is prepared for each activity class. That is,
the method can retrieve a similar user for each feature vector by
taking account of its activity class. However, the method cannot
learn which kind of activity class is useful for estimating a cer-
tain kind of physical characteristic because the method outputs
the average physical characteristics value for the retrieved similar
training users. We call the baseline method base2. On the other
hand, our method can learn which kind of activity class is useful
for estimating a certain kind of physical characteristics because
we train a classifier by using features prepared for each activity
class. (The classifier learns the importance of a feature by using
training data.)

4.3 Results
4.3.1 Estimation Accuracy for Nominal Information

Table 3 tabulates the classification accuracies of nominal phys-
ical characteristics for each method. The accuracy means the per-
centage of correctly classified instances (end users).
[Gender] We first focus on ‘gender’ results. We had considered it
very difficult to estimate a subject’s gender using only accelerom-
eters. Contrary to our expectation, the accuracies of SVM, NB,
and Logi methods were good and much higher than the accu-
racies of the naive and baseline methods. The accuracy of NB
was approximately 87%. Figure 5 shows the accuracies for each
physical characteristic obtained with the NB method, which pro-
vided the best results in three of the five categories. As shown in
Fig. 5 (a), the accuracy for female subjects was better than that for
male subjects. This may be because there were fewer male sub-
jects. Here, we investigate which extracted feature contributed to
the estimation of the subject’s gender. We evaluated the worth
(contributions) of attributes by using the ReliefF evaluator, which
can deal with both numerical and nominal values. ReliefF evalu-
ates an attribute by using a sampled attribute set and its k-nearest
neighbors from both the same and different classes. For more
detail, see Ref. [10]. With the ReliefF evaluator, we found that
the features computed from the ‘walk,’ ‘run’ ‘vacuum,’ and ‘play
pingpong’ activity similarities contributed greatly to estimating
the subject’s gender. With ‘walk,’ the activity similarities com-
puted from all of the four sensors were important contributors.
This may be caused by gender differences in a physique. With
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Fig. 5 Accuracies for subjects for each physical characteristic value (NB method).

Table 4 Mean absolute errors (MAEs) of numerical physical
characteristics.

age
height weight pingpong
(cm) (kg) experience

naive 7.95 6.56 8.01 0.71
base1 7.95 6.00 8.00 0.71
base2 7.95 6.27 7.64 0.73
SMOreg 7.44 4.30 4.50 0.61
Linear 7.13 4.62 4.81 0.61
LMS 7.41 4.63 4.73 0.63
SMOreg(100) 7.28 4.01 4.34 0.61

the ‘run’ activity, we also found a gender difference regarding
the thigh acceleration data. The average dominant frequencies
of the male and female subjects in the x-axis data were 2.54 and
3.04 Hz, respectively. We confirmed a significant difference be-
tween the two average frequencies with a two-tail t-test (p < .05).
With ‘vacuum,’ we found the gender differences in using a vac-
uum cleaner. Many female subjects vacuumed with a stoop and
held the nozzle of the canister vacuum with both hands (76.2%).
On the other hand, many male subjects vacuumed standing up-
right and held the nozzle with one hand (84.0%). As regard
to ‘play pingpong,’ the ratio of female subjects with no ping-
pong experience (53.1%) was higher than that for male subjects
(34.5%). Men are reported to participate in sport more frequently
than women [9].
[Dominant hand] With ‘dominant hand (writing),’ the accuracies
of the C4.5, SVM, and NB methods were high, and better than
those of the naive and baseline methods as shown in Table 3. As
shown in Fig. 5 (b), the results with the NB method were better
for both right- and left-handed subjects. With ReliefF, we con-
firmed that the features computed from the ‘draw on whiteboard’
and ‘write on notebook’ activity similarities contributed greatly
to estimating a subject’s dominant hand when writing. As regard
to ‘dominant hand (pingpong),’ the accuracies of the SVM and
NB methods were good and much higher than the accuracy of
the naive method. As shown in Fig. 5 (c), the accuracies for both
right- and left-handed subjects were high. The features computed
from the ‘play pingpong’ and ‘brush teeth’ activity similarities
contributed greatly to estimating a subject’s dominant hand in
pingpong. With 90.2% of subjects, the dominant hand for ping-
pong and brushing teeth were the same. With ‘dominant hand
(brushing),’ the accuracy of the C4.5 method was good as shown
in Table 3. However, the accuracy for both-handed (ambidex-
trous) subjects was zero in Fig. 5 (d). This is because there were
only two ambidextrous subjects. Note that an ambidextrous sub-
ject means a subject who switches the toothbrush from one hand
to the other while brushing her teeth.
[Sports experience] With ‘pingpong experience,’ the accuracy
of the naive method outperformed our methods. With ReliefF,
the features computed from the ‘vacuum’ and ‘run’ activity sim-
ilarities were listed as high contributors. This means that our
approach could not successfully capture characteristics of body
movements related to ‘pingpong experience.’ However, when we
used training data with manual activity labels, the accuracy of NB
increased to 54.1%. That is, we consider that the activity recog-
nition performance decreased the accuracy. (The F-measure of
activity recognition was 0.855, and that of ‘play pingpong’ was

0.743.)
In the above classification results, NB outperformed the other

methods as shown in Table 3. This may be because NB deals well
with highly dimensional data and does not require huge amounts
of training data.
4.3.2 Estimation Accuracy for Numerical Information

Table 4 shows mean absolute errors (MAEs) for numerical
physical characteristics for each method. A smaller MAE indi-
cates a higher estimation accuracy.
[Basic physical characteristics (age, height, and weight)] We
first focus on ‘age’ results. Linear achieved the lowest MAE,
namely an error of about seven years. However, we found no
significant difference between the MAE of SMOreg and that of
the naive method with a two-tail t-test (p > .05). The scatter
chart in Fig. 6 (a) shows the relationship between an actual phys-
ical characteristic value and the value estimated for each subject.
The x-axis shows an actual physical characteristic value and the
y-axis shows an estimated value. That is, points closer to the
dashed line in the chart have better corresponding estimated re-
sults. As shown in the chart, the estimated results for subjects
around 25 years old were poor. We consider it to be difficult to
estimate a subject’s age with high accuracy using only her activ-
ity similarities. Note that our ‘age’ data do not have a decimal
part, and thus this limitation can have a negative effect on the es-
timation results. However, because the estimation error is larger
than seven, we believe that the effect of the limitation of our data
is small.

With ‘height,’ the MAEs of SMOreg, Linear, and LMS were
very small (approximately 4.5 cm), and much smaller than the
MAEs of the naive and baseline methods as shown in Table 4. In
fact, we could find significant differences between the MAEs of
these methods and the MAEs of the naive and baseline methods
using a two-tail t-test (p < .05). It is surprising that we could es-
timate a subject’s height with an average error of approximately
4.5 cm by using an acceleration-based approach. Figure 6 (b) is
a scatter chart showing the SMOreg estimation results. While
the results for ‘height’ seem to be better than those for ‘age,’ the
results for subjects around 155 cm tall were poor. By using the
ReliefF evaluator, we found that the features computed from the
‘draw on whiteboard’ and ‘walk’ activity similarities contributed
considerably to estimating a subject’s height. The relationship
between the ‘walk’ activity and the subject’s height is convincing
because the lengths of the arms and legs are relatively propor-
tional to the height, and so the hand acceleration data obtained
from subjects with similar arm lengths may also be similar. In
fact, the features computed from accelerometers on the hand and
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Fig. 6 Scatter charts showing relationships between actual numerical physical characteristic values and
estimated values.

thigh were important contributors. However, it is hard to under-
stand why the ‘draw on whiteboard’ activity contributed to esti-
mating the subjects’ heights. In particular, the features computed
from accelerometers on the hands contributed significantly. We
consider that the tall subjects wrote on a whiteboard with a stoop,
and so the postures of their hands may be different from those of
the short subjects.

As regard to ‘weight,’ the MAE of SMOreg was the lowest and
much smaller than that of the naive method as shown in Table 4.
We found that there was significant difference between the MAE
of SMOreg and the MAEs of the naive and baseline methods us-
ing a two-tail t-test (p < .05). Figure 6 (c) is a scatter chart show-
ing the estimation results obtained with SMOreg. These results
appear to be good. The features computed from the ‘vacuum’ and
‘walk’ activity similarities were important contributors. In partic-
ular, the features computed from accelerometers on the hand were
important, which were also important in estimating ‘height.’ This
may be because ‘weight’ and ‘height’ have a strong correlation.
In the ‘run’ activity, the features computed from accelerometers
on the waist made a particularly important contribution. We con-
sider that the lower halves of relatively heavy subjects’ bodies are
stable and so the subjects move with less waist movement. This
is reflected in the waist acceleration data. In fact, during the ‘run’
activities, the average x-axis energy value of the lighter subjects
(lighter than 50 kg) was about 1.33 times larger than that of the
heavier subjects (heavier than 70 kg).
[Sports experience] With ‘pingpong experience,’ the MAEs of
SMOreg, Linear, and LMS were better than that of the naive
method as shown in Table 4. However, we could not find a signifi-
cant difference between the MAE of SMOreg and that of the naive
method using a one-tail t-test (p > .05). Figure 6 (d) shows a scat-
ter chart giving the SMOreg estimation results. As shown in the
chart, it was difficult to distinguish the subjects whose pingpong
experience was ‘no (0)’ from the subjects whose pingpong expe-
rience was ‘somewhat (1).’ However, the estimated values of the
subjects whose pingpong experience was ‘yes (2)’ were relatively
larger than those of other subjects in the chart. This may be be-
cause it was not very difficult to find subjects who were very good
at playing pingpong by using their acceleration data. Note that
these results are derived from only ‘play pingpong’ sensor data.
Investigating sensor data of other sports and the effectiveness of
our method on the data is one of our important future work. When
we deal with sensor data of sports with multiple players such as
football, we should consider the difference of sensor data among
different roles (positions). For example, sensor data of a goal-

keeper and those of an offensive player are completely different.
Therefore, we should distinguish different roles.

In the above classification results, SMOreg outperformed Lin-
ear and LMS as shown in Table 4. This may be because SMOreg,
which employs a polynomial kernel, is a non-linear regression
method. Meanwhile, Linear and LMS are linear regression meth-
ods. We believe that non-linear methods are suitable for this prob-
lem.
4.3.3 Estimation with Few Activity Data and Small Num-

bers of Sensors
The above results show the estimation performance when we

used sensor data of all 14 activities. Also, we used all four sen-
sors. Here we show the estimation performance when we used
sensor data of fewer activities from fewer sensors in Table 6. To
compare estimation performance with the above results, we used
Naive Bayes classifier (NB) and linear regression (Linear) for es-
timation.

We first show results obtained when using fewer activities.
When we used only ‘walk’ sensor data from all four sensors,
the classification accuracy for ‘gender’ was 83.6%. It was not
very different from that of when we used sensor data of all activ-
ities from all four sensors. Also, estimating the dominant hand
of a person by using only ‘walk’ sensor data was difficult. When
we used only ‘walk’ sensor data from all of the four sensors, the
MAEs related to ‘age,’ ‘height,’ and ‘weight’ were 7.49, 4.63 cm,
and 5.29 kg, respectively. These results were somewhat poorer
than those of when we used sensor data of all activities from all
four sensors. When we used only ‘run’ sensor data from all of
the four sensors, the estimation accuracies were somewhat poorer
than those when using ‘walk’ sensor data. The ‘walk’ activity is
very common in our daily life and we found that it is useful for
estimating basic physical characteristics such as gender, height,
and weight.

We then show results obtained when using fewer sensors.
When we used only sensor data from both hands, while the ‘gen-
der’ and ‘dominant hand’ estimation accuracies were fine, the
estimation accuracies for the other physical characteristics were
poor. Meanwhile, when we used only sensor data from the waist
and thigh, while the ‘gender’ estimation accuracy was poor, the
accuracies for ‘age,’ ‘height,’ and ‘weight’ were somewhat fine.
We believe that the wrist sensor data are useful for estimating
‘gender’ and the body sensor data (waist and thigh) are useful
for estimating body-related physical characteristics (height and
weight).

Table 6 also shows estimation results obtained when we used
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Table 5 Activity recognition accuracies.

precision recall F-measure
A: stand 0.892 0.917 0.904
B: walk 0.953 0.950 0.951
C: run 0.951 0.950 0.950
D: sit 0.877 0.919 0.897
E: ascend stairs 0.746 0.770 0.758
F: descend stairs 0.794 0.809 0.801
G: bicycle 0.948 0.950 0.949
H: brush teeth 0.714 0.735 0.724
I: wash dishes 0.837 0.828 0.833
J: use PC 0.833 0.852 0.842
K: draw on

0.835 0.836 0.836
whiteboard

L: write in
0.850 0.787 0.818

notebook
M: play

0.744 0.742 0.743
pingpong

N: vacuum 0.742 0.716 0.728

Table 6 Estimation performances by NB and Linear using fewer sensors and activities.

gender
dominant hand pingpong

age height weight
(writing) experience (nominal)

only walk 83.6 88.5 49.2 7.49 4.53 5.29
only run 68.9 86.9 36.1 7.12 5.51 6.58

only wrists 83.6 98.4 36.1 7.91 4.89 6.99
only waist

77.0 88.5 47.5 6.83 4.84 5.31
and thigh
only non-

70.5 100.0 44.3 7.83 5.45 7.57
dominant

only walk and
65.6 88.5 49.2 7.81 6.04 7.06

non-dominant
only run and

57.3 88.5 39.3 7.56 5.76 7.98
non-dominant

only walk
77.0 88.5 45.9 7.95 5.53 7.00

and wrists
only walk

59.0 86.9 42.6 7.95 5.30 7.14
and waist
only walk

65.6 88.5 44.3 7.10 5.23 5.86
and thigh
only run

73.8 88.5 31.1 7.27 5.58 8.16
and wrists
only run

63.9 86.9 42.6 7.66 5.94 7.64
and waist
only run

73.8 86.9 47.5 7.71 6.15 7.35
and thigh

sensor data from the non-dominant hand. So, we assume that
we use an accelerometer embedded in a smart watch. However,
the classification accuracy for ‘gender’ and the MAEs related to
‘age,’ ‘height,’ and ‘weight’ were very poor. This may be because
our participants mainly used their dominant hands to perform the
activities.

We show results obtained when using fewer sensors and fewer
activities. When we used only ‘walk’ sensor data from both
hands, the classification accuracy for ‘gender’ was 77.0%. It
was about 10% lower than that of when we used sensor data of
all activities from all four sensors (86.9%). When we used only
‘walk’ sensor data from the waist, the classification accuracy for
‘gender’ was 59.0%. Also, when we used only ‘walk’ sensor
data from the thigh, the classification accuracy for ‘gender’ was
65.6%. That is, walk sensor data from the hands contributed to
estimating ‘gender.’ However, when we used only ‘walk’ sen-
sor data from the non-dominant hand, the classification accuracy
for ‘gender’ was only 65.6%. In contrast, when we used only
‘walk’ sensor data from the dominant hand, the classification ac-
curacy for ‘gender’ was 83.9%. From these results, we believe
that ‘walk’ sensor data from the dominant hand are useful for es-
timating ‘gender.’ Thoroughly investigating the reason why sen-
sor data from the dominant hand are useful is our important future
work.

When we used only ‘walk’ sensor data from both hands, the
MAEs related to ‘height’ and ‘weight’ were 5.53 cm and 7.00 kg,
respectively. Also, when we used only ‘walk’ sensor data from
the waist, the MAEs related to ‘height’ and ‘weight’ were 5.30 cm
and 7.14 kg, respectively. In addition, when we used only ‘walk’
sensor data from the thigh, the MAEs related to ‘height’ and
‘weight’ were 5.23 cm and 5.86 kg, respectively. That is, ‘walk’
sensor data from the thigh contributed to estimating ‘height’ and
‘weight.’

Meanwhile, when we used only ‘run’ sensor data from few sen-

sors, the estimation accuracies were somewhat poorer than those
of ‘walk’ sensor data as shown in Table 6. We believe that ‘walk’
sensor data are more useful than ‘run’ sensor data for estimating
physical characteristics.
4.3.4 Accuracy of Activity Recognition

Here we discuss the effect of the accuracy of activity recog-
nition on the physical characteristics estimation. Table 5 shows
the accuracy of activity recognition. As shown in the results, we
can recognize the activities with high accuracies, and this result is
comparable to previous activity recognition studies [1], [13], [19].
Also, the row of ‘NB(100)’ in Table 3 shows the accuracies of
nominal physical characteristics when we assume that the ac-
tivity recognition accuracy is 100%. In addition, the row of
‘SMOreg(100)’ in Table 4 shows the accuracies of numerical
physical characteristics when we assume that the activity recog-
nition accuracy is 100%. As shown in the results, even when the
activity recognition accuracy is 100%, the estimation results are
not very different from the other methods. Therefore, we believe
that a further improvement of the activity recognition cannot im-
prove the physical characteristics estimation accuracy so much.
Note that the classification accuracy of NB(100) for ‘pingpong
experience’ is much higher than the accuracies of the other meth-
ods. This may be because the activity recognition accuracy of
‘play pingpong’ is poor as shown in Table 5.

5. Conclusion

In this paper, we experimentally investigated the kinds of phys-
ical characteristic that can be successfully estimated from activ-
ity acceleration data by using vast amounts of sensor data ob-
tained from 61 subjects. As a result, we were able to estimate
such physical characteristics as the dominant hand in an activ-
ity that are easy to detect using accelerometers with very high
accuracies. In addition, we were able to estimate such character-
istics as gender, height, and weight that are not directly apparent
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to accelerometers with good accuracies by employing our activ-
ity similarity-based approach. Estimating physical characteristics
permits us to realize new applications that automatically change
the services provided to an end user according to her estimated
physical characteristics (e.g., characteristics-based recommender
applications).

As a part of our future work, we plan to develop a shopping
basket with an accelerometer to estimate physical characteristics
of shoppers. Note that the ways of carrying a basket can depend
on shoppers, e.g., carrying a shopping basket in the hand or in the
crook of the arm, and thus the collected sensor data also depend
on the ways of carrying. To cope with this problem, we should
prepare an estimation model for each way of carrying, and switch
the model depending on the way of carrying. In order to distin-
guish the ways of carrying a basket, we can utilize previous stud-
ies detecting the sensor (smart phone) position (e.g., pants pocket
vs. breast pocket) [4].
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