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Abstract: Fail-stop signatures (FSS) provide the security for a signer against a computationally unbounded adversary
by enabling the signer to provide a proof of forgery. Conventional FSS schemes are for a single-signer setting, but in
the real world, there is a case where a countersignature of multiple signers (e.g., a signature between a bank, a user,
and a consumer) is required. In this work, we propose a framework of FSS capturing a multi-signer setting and call
the primitive fail-stop multisignatures (FSMS). We propose a generic construction of FSMS via the bundling homo-
morphisms proposed by Pfitzmann and then propose a provably secure instantiation of the FSMS scheme from the
factoring assumption. Our proposed schemes can be also extended to fail-stop aggregate signatures (FSAS).
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1. Introduction

1.1 Background
The security of many signature schemes is based on computa-

tional assumptions, and their security can be guaranteed as long
as the assumptions hold. In recent years, developments in com-
puter science are remarkable and there are many results in which
several computational assumptions were broken [13], [17]. How-
ever, there now exist various documents that must not be forged,
e.g., financial documents by banks or official documents by gov-
ernments. These documents should be stored for the long term,
and we are aware of the potential vulnerability of the computa-
tional security which may be broken in future. Hence, in order
to protect the documents, we take into account the information-
theoretic security, and it does not require any computational as-
sumption for providing the security. In other words, a scheme
based on the information-theoretic security is secure even against
a computationally-unbounded adversary. Fail-stop signatures
(FSS) [30] that we focus on are a known approach such as a cryp-
tographic primitive. FSS have a valuable property such that even
if a signature is forged, i.e., some computational assumption is
broken, an honest signer can prove a forgery by virtue of the
information-theoretic security. A main idea for the construction
of FSS is that, whereas a signer can output only some signature
on a message for a public key, there potentially exist many sig-
natures which are accepted by a verification test with the mes-
sage and the public key: more precisely, its algorithm outputs a
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public key such that there are a large amount of candidates cor-
responding to its secret key. This construction allows signers to
introduce the choice problem of the secret key corresponding to
the public key, and a space of signatures depends on a given se-
cret key in general. We underline that, unless an adversary knows
the true secret key, the honest signer can generate a signature as
a proof of forgery that is different from one generated by the ad-
versary. Thus, the signer can stop a dangerous situation showing
the proof of forgery even if the adversary has unbounded compu-
tational power. On the other hand, via the computational secu-
rity, a polynomially-bounded malicious signer cannot repudiate
her valid signature as a forgery, and hence security for a verifier
can be guaranteed.

Our main motivation for this work is to consider that most ex-
isting FSS schemes capture only a single signer setting and there
are few applications of such a scenario in the real world. Gen-
erally speaking, applications of the FSS schemes, e.g., financial
documents or official documents, require a countersignature be-
tween multiple entities, i.e., a bank and users or a president and
ministers. We mention that a scenario for collecting individual
signatures generated by each signer may be insufficient. In par-
ticular, for confirmation in decision making in the real world,
there is often an interaction process between all persons associ-
ated with the documents. Namely, we consider that FSS should
take into account a multi-signer setting with such an interaction
process as a functionality of a cryptographic primitive. This is
a cryptographically enhanced approach. Although there are sev-
eral approaches which concern the multi-signer setting, they did
not formalize its model and have slight gaps from the applica-
tions in the sense of a lack of the interaction process between the
signers. Hence, in this work, we realize a framework of FSS for
multiple signers and call this framework fail-stop multisignatures

(FSMS). One of potential applications of FSMS is the digital ne-
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gotiable certificate of deposit (NCD) system [10] as described in
Section 1.4.

The preliminary version of this paper was presented at Asia
Joint Conference on Information Security (AsiaJCIS) 2015 in
May 2015, and this paper is the full version of it. The main dif-
ference between the preliminary version and this paper is that we
propose an instantiation of fail-stop aggregate signatures (FSAS).

1.2 Our Contribution
In this work there are following three contributions: (1) We

define a security model of an FSMS scheme. Our security
model consists of two standpoints, i.e., signers and a verifier.
Such a setting is based on the existing model of FSS for a sin-
gle signer setting [20]. In our model, we furthermore allow an
adversary, who has unlimited computational power, to collude
with all of the signers except a target signer as a feature of the
multi-signer setting. (2) We propose a generic construction of
FSMS. We foresee that a homomorphic-like property for com-
bining signatures is required in order to construct a multisignature
scheme. From such an observation, we focus on the Pfitzmann’s
bundling homomorphisms [25]. The bundling homomorphisms
are collision-resistant algebraic structures and we found the fact
that the bundling homomorphisms potentially include both the
choice problem of secret keys for FSS and the homomorphic-
like property for multisignatures. (3) We propose an instantia-
tion of the FSMS scheme whose signature size is independent
from the number of signers. In this approach, we focus on the
function for the bundling homomorphisms proposed by Mashatan
and Ouafi [20] (the MO function for short) as an instantiation
of the FSMS scheme. We consider that the size of signatures
can be effectively compressed utilizing the MO function with a
common modulus, and propose an efficient and provably secure
FSMS scheme based on the factoring assumption. We further-
more extend the proposed FSMS schemes to an aggregate signa-
ture scheme [5].

1.3 Related Work
The existing approaches for FSS with the multi-signer setting

are the scheme by Mambo and Okamoto [19] (MO94 scheme for
short) and the scheme by Susilo et al. [29] (SSNP99 scheme for
short). The MO94 scheme is a signature-chain based approach
by multiple signers: more precisely, each signer signs each bit
of a message and possesses a pair of the signature chain and the
message. On the other hand, the SSNP99 scheme is a thresh-
old signature scheme, and according to Susilo et al. signers can
generate n-out-of-n signatures as multisignatures. We note that
it is hard to add a new signer to the signing group, because these
shares have to be recalculated when the new signer participates in
the signing group. Namely, we consider that the SSNP99 scheme
is slightly different from standard multisignature schemes. More-
over, there were no formalized security model and security proofs
in both schemes. Thus, we consider that there is no framework
and provably secure construction of FSMS. In the following, we
recall the history of FSS and multisignatures.

The first FSS scheme was proposed by Waidner and
Pfitzmann [30]. Later, van Heyst and Pedersen [14] proposed an

FSS scheme based on the discrete logarithm problem (DLP). It
is known as the most efficient scheme. Pedersen et al. [24] de-
fined the security of FSS, and we briefly review it in Section 2.3.
Mashatan and Ouafi [20], and Schmidt-Samoa [28] proposed FSS
schemes based on the factoring assumption. Our instantiation is
based on that of Mashatan and Ouafi [20]. As the latest work,
Yamakawa et al. [31] have proposed a short FSS scheme with a
variant of bundling homomorphisms.

The first multisignature scheme was proposed by Itakura and
Nakamura [16]. Ohta and Okamoto [23] defined the model for
an attack on the multisignature, called the adaptive-chosen-
message attack and adaptive-insider attack (ACMA&AIA).
Micali et al. [22] discussed the ACMA&AIA including the key-
generation phase. These models are slightly intuitive in the
sense that they do not consider the signing with an interaction
between signers. The first formalized model was proposed by
Boldyreva [4]. As a more advanced multisignature scheme Boneh
et al. [5] proposed an aggregate signature scheme where each
signer is allowed to sign an individual document and any party
can aggregate these signatures into a single short signature. Af-
ter the first aggregate signature scheme was proposed, many re-
searchers have tried to propose an efficient aggregate signature
scheme.

1.4 Application
We describe the negotiable certificate of deposit (NCD) [10] as

a potential application of an FSMS scheme. In short, the NCD is
a special type of fixed deposit which can be transfered to others.
A main advantage of the NCD is that free and fair trading can
be realized by virtue of a negotiation between an assignor and an
assignee. However, generating a countersignature (composed of
the signatures of the assignor, the assignee, a bank, a notary of-
fice, a payment and settlement authority, and other authorities) is
required, and this can be an administrative burden since there are
a large number of complicated trading transactions that involve
imprinting and exchanging relevant documents. In addition, since
the bank which floats the NCD and accepts the trading for the last
time has to manage relevant documents for a long time, an opti-
mization for the paper management is also required. We consider
if our FSMS scheme is useful for the digital NCD system in the
light of the efficiency and the feature. In our observation, each
entity provides a signing data with an interaction process with
each other. These data are concatenated by each entity and all the
entities have a countersignature of the signing group to confirm
an agreement of its members.

1.5 Paper Organization
In this section, we described backgrounds, contributions, re-

lated works and potential applications of this work. In Section 2,
we describe several areas of knowledge for understanding this
work and, in Section 3, we define the syntax and the security of
FSMS. Then we propose a generic construction of FSMS in Sec-
tion 4, and its instantiation from the factoring assumption in Sec-
tion 5. We give only the constructions in these sections, and their
security proofs are given in Appendix A.3 and Appendix A.4,
respectively. We also describe how to extend these schemes to
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aggregate signature schemes in Section 6 and show the full con-
structions in A.5. Finally, we describe the conclusion of this work
in Section 7.

2. Preliminaries

2.1 Notation
We use the following notations throughout this paper. Let

y ← A(x) denote that y is assigned an output of an algorithm
A running on an input x. For any set X, we denote by ||X|| its
cardinality. Let x ∈R X denote x chosen from X according to the
uniform distribution. For any sets X and Y , we denote by X\Y
the difference set {x | x ∈ X ∧ x � Y}. Let Z∗n denote the set
{x | 1 ≤ x ≤ n − 1, gcd(x, n) = 1}. Let ϕ(·) denote the Euler
totient function, and in our scheme, ϕ(n) = (p − 1)(q − 1) holds.
Let |x| denote the binary length of x. Finally, we denote by negl(·)
a negligible function with respect to a security parameter.

2.2 Algebraic Setting
We describe the following security assumption and algebraic

structure that will be used throughout this paper. First, we define
the factorization assumption with a-strong primes [27]. We call a
prime number p a-strong, if p = 2ap′ + 1 for a prime p′ > 2a.
For a = 1, we obtain the traditional definition of strong primes.
We suppose a probabilistic polynomial time algorithm Gen that,
on input a security parameter k, picks an odd integer a and gener-
ates a random a-strong prime p = 2ap′ + 1 and a regular, i.e., not
a-strong, prime number q, such that |p| = |q|. Gen outputs n = pq

and a along with p and q. When we use such a prime number p as
a prime factor of n and the factorization of n is difficult, then we
say that the factorization assumption with a-strong primes holds.
The formal definition is given as follows.

Definition 1 (Factorization Assumption with a-Strong
Primes) Let us consider a probabilistic polynomial time algo-
rithm AFACT which takes as input a modulus n = pq and an odd
integer a, such that p, q, and (p − 1)/2a are all prime numbers,
and outputs p and q. The advantage of AFACT can be defined as
the probability

ε := Pr[(p, q)← AFACT(1k, n, a) | (n, a, p, q)← Gen(1k, a)],

and its execution time t. We say that the (t, ε)-factorization as-
sumption with a-strong primes holds against AFACT with respect
to Gen if AFACT cannot output (p, q) for a given (1k, n, a) within
the execution time t and with a success probability greater than ε.

We note that, due to a release of an integer a such that
a|(p−1)(q−1), a and a modulus n have to be chosen as |a| < |n|/4
in order to prevent the attack by Coppersmith [7]. Throughout
this paper, we set up |a| = 80 and |n|/4 = 512 to achieve 80-bit
security in our scheme, and so there is no problem with respect
to the attack. We refer readers who have more interests in this
consideration to the results by Groth [12].

Second, we recall the definition of a family of bundling ho-

momorphisms [25]. This notion is a kind of collision-resistant
algebraic structure. By utilizing the bundling homomorphisms,
we can construct a signature scheme where the number of secret
keys corresponding to a public key is at least 2τ with respect to a
security parameter τ. The formal definition is given as follows.

Definition 2 (Family of Bundling Homomorphisms) Let
η ∈ I be an index for a family of triples (hη,Gη,Hη) such that for
all possible η ∈ I, (Gη,+, 0) and (Hη,×, 1) are Abelian groups.
Let hη : Gη → Hη. The triple (hη,Gη,Hη) is called a family
of bundling homomorphisms with degree level 2τ and collision-
resistance security of level k if it satisfies:
( 1 ) For every η ∈ I, hη is a homomorphism.
( 2 ) There exist polynomial time algorithms for sampling from

I, computing hη and the group operations in Gη and Hη, for
every η ∈ I.

( 3 ) For any output μ ∈ Hη, ||{x ∈ Gη | μ = hη(x)}|| ≥ 2τ. We call
2τ the bundling degree of the homomorphisms.

( 4 ) It is computationally infeasible for any probabilistic polyno-
mial time algorithm Ã to find collisions, i.e., the probabil-
ity that Ã outputs x1 and x2 such that hη(x1) = hη(x2) and
x1 � x2 hold is negl(k), where the probability is taken among
random choice of η and random coins of Ã.

2.3 Fail-Stop Signatures
We briefly review FSS. When a forgery does not happen, FSS

run an ordinary signing process. However, once a forgery hap-
pens, a signer executes a prove-forgery algorithm which is an-
other signing algorithm to prove that the signature is a forgery,
i.e., a cryptographic assumption has been broken. As described
above, a public key is generated via the choice problem of secret
keys, and so the signer is able to output only one signature for a
pair of the public key and the true secret key. If any forged sig-
nature is different from a valid signature via the true secret key,
there are two acceptable signatures on the same message. This
statement means that the forgery happened.

There are two concepts for the security of FSS, i.e., the signer’s

security and the verifier’s security. An adversary who has un-
bounded computational power can always compute a set of sig-
natures accepted via the verification test. The signer’s security
against such an adversary is achieved by the information-theoretic
security, and the security-level is determined by a security pa-
rameter σ ∈ N. The adversary cannot generate a valid signa-
ture which is exactly the same as one by the signer except with
a probability 2−σ. On the other hand, a verifier should be able to
resist a repudiation of malicious signers. By computing a proof
of forgery, the malicious signers can repudiate signatures gener-
ated by themselves as forgeries. The security in such a situation is
known as the verifier’s security and is based on only the compu-
tational security; more precisely, the probability that signers can
repudiate signatures is negl(k) with respect to a security parame-
ter k.

We mention that in its basic form FSS is one-time signatures.
In order to be able to sign multiple messages, each signer has to
generate at least (N + 1) k-bit strings as secret information where
N is the number of messages. This is an unavoidable fact since
the adversary who has unbounded computational power can de-
duce information of secret keys and reduce its entropy [15]. In
order to apply FSS to the efficient on-line digital payment sys-
tems, we assume the use of collision-free accumulators [1] where
they accumulate many one-time public keys into a single short
public key. Barić and Pfitzmann have proved the security of the
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FSS scheme with accumulators in Ref. [1].
Theorem 1 (Barić and Pfitzmann [1]) If an underlying one-

time FSS scheme is secure, then an FSS scheme with the accu-
mulators is secure.

2.4 General Construction of Fail-Stop Signatures
In this section, we briefly explain the Pfitzmann’s general con-

struction of FSS [25]. The basic idea of this construction is to use
a high bundling degree of the bundling homomorphisms and to
hide a true secret key of a signer. The Pfitzmann’s construction
consists of the following algorithms. Here, we assume that the
key generation algorithm is executed by a signer in conjunction
with a single verifier (or a trusted center). More precisely, the
verifier (or the center) generates a prekey described below, and
then the signer generates a pair of a secret key and a public key
under the prekey. This setting is necessary in order to guarantee
the verifier’s security *1.

PrekeyGen(1k, 1σ) : As a prekey, it picks a random index K for
a bundling homomorphism hη, and sets h := hK , G := GK

and H := HK .
KeyGen(K) : For verification of the prekey, check if h is a

group homomorphism with bundling degree 2τ (e.g., using
zero-knowledge proof) *2. If not, it regenerates a random in-
dex K to obtain such a bundling homomorphism. Once it
is convinced, it outputs a secret key as sk = (sk1, sk2) ∈R

G2, and computes a corresponding public key as pk =

(pk1, pk2) = (h(sk1), h(sk2)) ∈ H2.
Sign(sk,m) : A message spaceM is given as a subset of Z. To

sign a message m ∈ M, it computes s = sk1 + msk2, where
msk2 is m additions of sk2 over G.

Verify(pk,m, s) : It outputs 1 if h(s) = pk1 pkm
2 holds; otherwise

it outputs 0.
ProveForgery(sk,m�, s�) : Given a forgery s� on a message

m� accepted by the verification test, it computes pr = sk1 +

m�sk2 and outputs (m�, s�, pr).
VerifyProof(pk,m�, s�, pr) : It outputs 1 if s� � pr and

h(s�) = h(pr) hold; otherwise it outputs 0.
We say that a signature s is acceptable on a message m if we

have Verify(pk,m, s) → 1. Moreover, we say that a proof pr is
valid on a message m� if we have VerifyProof(pk,m�, s�, pr) →
1.

Next, we briefly explain the security of this construction. One
might think that there are at least 22τ possible secret keys corre-
sponding to the public key (pk1, pk2). However, as the equation
sk1 = s − msk2 must hold in G, then the number of the possible
secret keys reduces to 2τ. The signer can provide a valid proof of
forgery as long as the forged signature s� on a message m� dif-
fers from a proof pr, i.e., a signature generated via the true secret
key, on m�. In order to measure the adversary’s probability of
generating an unprovable forgery, we have to estimate the num-
ber of these possible keys which produce s� on m�. This number

*1 An FSS scheme can be made much more efficient under a single-verifier
setting. This is a common requirement in applications such as digital
payment systems, where a bank is the single verifier.

*2 We note that this is provable via a general zero-knowledge proof for the
NP-language.

is obtained from the size of set

T = {d ∈ G : h(d) = 1 ∧ (m� − m)d = 0}.

In order to provide an upper-bound of the adversary’s success
probability, we consider the worst case. Namely, we must find
the maximum number taken over all possible messages m� � m.
Thus, we can obtain the bound

Tmax = max
m′∈M\{0}

|{d ∈ G : h(d) = 1 ∧ m′d = 0}|.

A more detailed proof and analysis of this construction can be
found in Ref. [25].

Theorem 2 (Security of the Pfitzmann’s Construction [25])
Let (k, σ) be security parameters and let a fail-stop signature
scheme follow the general construction described above. Then
we have
( 1 ) The scheme provides a level of security k for the verifier.
( 2 ) 2τ is chosen such that Tmax/2τ ≤ 2−σ, then the scheme pro-

vides a level of security σ for the signer.
In this paper, we paraphrase (1): let us consider a probabilistic

polynomial time algorithm Ũpol which takes as input K and out-
puts (pk,m�, s�, pr)← Ũpol(K) where K ← PrekeyGen(1k, 1σ).
The advantage of Ũpol can be defined as the probability ε′′ :=
Pr[VerifyProof(pk,m�, s�, pr) = 1] and its execution time t′′.
We say that the scheme is (t′′, ε′′)-secure for the verifier with
respect to PrekeyGen if there is no Ũpol which can output
(pk,m�, s�, pr) such that VerifyProof(pk,m�, s�, pr) = 1 within
the execution time t′′ and with a success probability greater than
ε′′.

2.5 Multisignatures
A multisignature scheme is a cryptographic primitive to gen-

erate signatures by multiple signers on a common message. In
conventional schemes, its definition is that the total size of signa-
tures in a multisignature scheme is less than i times of the size in
a signature scheme with a single signer where i is the number of
signers, and so there are several schemes whose signature size is
O(i). In this paper, we define a multisignature scheme as a signa-
ture scheme whose signature size is O(1) regardless of the number
of signers. Constructions of a multisignature scheme are various,
and these are classified according to methods by which signers
transfer signatures. A construction that we discuss in this paper
is a scheme with an interactive protocol: more precisely, each
signer has a signing function in its local environment and gener-
ates a multisignature via an interaction process with co-signers.
For instance, in a multisignature scheme, each signer generates an
individual partial signature via its own signing function taking a
list of co-signers to generate a multisignature, and broadcasts the
generated partial signature to other co-signers. Then, the signer
receives partial signatures from the other co-signers as response.
Finally, each signer can generate the multisignature by combin-
ing the partial signatures. Note that all the co-signers obtain the
same final multisignature. Meanwhile, the multisignature is ver-
ifiable by one verification test with all public keys of the signers
and the multisignature. The main technical difficulty for mul-
tisignatures is to achieve both an efficient scheme and provable
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security. A multisignature scheme needs an algebraic structure to
combine individually generated signatures into a single short sig-
nature, while such an algebraic structure often makes a forgery
by an adversary easy. Namely, research on multisignatures can
be seen as finding an algebraic structure to support both the effi-
ciency and the security.

The security of multisignatures is to prevent a forgery against
insider attackers in a group of signers. In particular, in the se-
curity model in Ref. [4], an adversary can register signers with
his/her chosen secret and public keys as insider attackers, and
can obtain multisignatures involving target signer’s signature via
interactions between the target signer and the insider attackers.
Finally, the adversary tries to output a signature on a message
which has never been queried to the target signer. The model is
a natural extension of an ordinary signature scheme for a single
signer except for adaptively registering the insider attackers.

3. Definitions of Security

In this section, we define the security of the FSMS scheme.
We firstly discuss some trivial attack on the FSMS scheme
and its restriction to resist the attack in Section 3.1. Then
we describe a syntax of the FSMS scheme and the security
model utilizing an adaptive-chosen-message attack and fail-stop-
multisignatures’ adaptive-insider attack (ACMA&FSMS-AIA).
Our security model is a variant of the security model of FSS and
captures two notions, i.e., the signer’s security and the verifier’s
security. Note that the security model in this section is for the use
of multiple messages.

3.1 Limitation on the Number of Signers
In most FSS schemes, if a collision of signatures, i.e., two ac-

ceptable signatures, can be found, then the computational secu-
rity can be broken. In other words, the most important point is
whether a same public key (generated from different secret keys)
is found or not. For FSMS, we must pay attention to a limitation
on the number of signers. If there are malicious signers who have
the same public keys in the signing group, they can repudiate their
signature even if they have only polynomially-bounded compu-
tational power. This fact means that given multisignatures are
doubtful and a verifier may be damaged by these signatures. In
order to provide a rigorous security for the verifier, we introduce a
new parameter ωmax as a limitation on the number of signers who
can participate in the signature generation. When the probability
that two or more signers have the same public keys is less than
2−σ, we can obtain the inequality 1 − e−ωmax(ωmax−1)/2n ≤ 2−σ by
using the birthday paradox, where n is the range of values of the
public key and n = 2k holds. By using the Taylor expansion and
rearranging, we can obtain ωmax ≤ �

√
2k−σ+1
 as the limitation of

ωmax. In addition, by choosing an appropriate tuple (k, σ, ωmax),
we can show that all signer’s 2σ candidates of the secret keys can
be uniformly distributed in the space with respect to k. This set-
ting also allows FSMS to provide the signer’s security at the same
time. For instance, if k is 2, 048 and σ is 80 for 80-bit security,
this is good enough. We show how to derive the limitation of
ωmax in Appendix A.1.

3.2 Model of FSMS Scheme
We define the model of an FSMS scheme.
Definition 3 (Fail-Stop Multisignatures) A fail-stop mul-

tisignature scheme is a tuple of algorithms (Setup, KeyGen,

MSign, MVerify, ProveForgery, VerifyProof ) such that:
Setup(1k, 1σ, 1ωmax )→ pp : This is a probabilistic algorithm that,
on input of security parameters (k, σ, ωmax), outputs a public pa-
rameter pp.
KeyGen(pp, 1Nmax ) → (sk j, pk j) : This is a probabilistic algo-
rithm that, on input of pp and an integer Nmax, outputs a se-
cret/public key pair (sk j, pk j) which can be used for signing Nmax

times. For the sake of simplicity, the input 1Nmax is omitted if the
scheme is used as a one-time signature scheme.
MSign(pp, sk j,m, 	) → {(m, S , L),⊥} : This is an (probabilistic)
interactive algorithm that, on input of pp, sk j, a message m, and
a counter 	 incremented at each invocation of this algorithm, out-
puts a tuple (m, S , L) where S is a multisignature and L is a set
{pk j}ij=1 of i signers. If i > ωmax, the output is ⊥.
MVerify(pp,m, S , L) → {0, 1} : This is a deterministic (possibly
probabilistic) algorithm that, on input of pp, m, S , and L, outputs
0 or 1.
ProveForgery(pp, sk j,m�, S �, L�) → {pr,⊥} : This is an (prob-
abilistic) algorithm for generating a proof of forgery. Given pp,
sk j, m�, S �, and L�, it outputs a bit string pr as a proof of forgery
or ⊥ in a case of failure.
VerifyProof(pp,m�, S �, L�, pr) → {0, 1} : This is a deterministic
(possibly probabilistic) algorithm that, on input of pp, m�, S �,
L�, and pr, outputs 0 or 1.

We say that a multisignature S is acceptable on a mes-
sage m if we have MVerify(pp,m, S , L) → 1. Moreover, we
say that a proof pr is valid on a message m� if we have
VerifyProof(pp,m�, S �, L�, pr) → 1. MSign and ProveForgery

are interactive algorithms and each signer runs these algorithms
with the inputs described above. Similarly as the conventional
model of multisignatures [2], [4], we assume that the signers are
connected to each other via point-to-point links over which they
can send a message. A different point between these algorithms
is to take the set L or not. Whereas MSign algorithm is an ordi-
nary signing algorithm that is almost the same as that of a normal
(non-FSS) multisignature scheme, ProveForgery algorithm is a
proof protocol against a forgery. Hence, ProveForgery algorithm
should firstly check the validity of the given multisignature and
clearly show the list of problematic signers in order to generate a
corresponding proof. The algorithm takes the set L toward these
capability.

We require for an FSMS scheme to satisfy the following con-
ditions as correctness.

Definition 4 (Correctness of Fail-Stop Multisignatures)
( 1 ) Every honestly generated multisignature is acceptable, i.e.,

for any k, σ, ωmax,Nmax ∈ N and message m ∈ M, we have

Pr[MVerify(pp,m, S , L) = 1] = 1,

where pp ← Setup(1k, 1σ, 1ωmax ), (sk j, pk j) ←
KeyGen(pp, 1Nmax ), and (m, S , L)← MSign(pp, sk j,m, 	).

( 2 ) Every honestly generated proof of forgery is valid, i.e., for
any k, σ, ωmax,Nmax ∈ N, message m� ∈ M and tuple
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(S �, L�), we have

Pr[VerifyProof(pp,m�, S �, L�, pr) = 1

| MVerify(pp,m�, S �, L�) = 1, pr � ⊥] = 1,

where pp ← Setup(1k, 1σ, 1ωmax ),
(sk j, pk j) ← KeyGen(pp, 1Nmax ), and pr ←
ProveForgery(pp, sk j,m�, S �, L�).

3.3 ACMA&FSMS-AIA
We define the adaptive-chosen-message attack and fail-stop-

multisignatures’ adaptive-insider attack, i.e., ACMA&FSMS-
AIA. The basic difference between ACMA&FSMS-AIA and the
conventional security model of multisignatures is whether there is
a computationally unbounded adversary or not. Moreover, the ad-
versary can collude with the other signers against a target signer
in comparison with the conventional model of FSS. Under this
setting, we have to consider if the signer’s security described in
Section 2.3 is satisfied. In addition, we have to consider if the
verifier’s security is satisfied at the same time. In order to capture
these scenarios, we define the following two games, the FSMS
Limited Repudiation (FSMS.LR) game and the FSMS Full Forg-
ing (FSMS.FF) game. These are described as interactions be-
tween an adversary and a challenger in the ACMA&FSMS-AIA
scenario. The FSMS.LR game is related to the verifier’s security.
The goal of malicious signers is to repudiate their valid signature
by generating a proof of forgery, i.e., an acceptable signature. On
the other hand, the FSMS.FF game is related to the signer’s secu-
rity. The goal of the adversary who has unbounded computational
power is to forge a multisignature that includes a partial signature
of the target signer. In both games, we assume the knowledge-
of-secret-key (KOSK) assumption [4] where an adversary has to
provide not only a public key but also a secret key in the regis-
tration phase of signers. The assumption is often necessary for
the security model of multisignatures in order to prevent mali-
cious generations of public keys [22], and it can be implemented
via a cryptographic identification scheme to prove a knowledge
of a secret key in the real world. In general, it is common that
there is an interaction for the registration between a user and a
service provider at the start of the use of an application. In such
a situation, it is not difficult to implement a cryptographic iden-
tification scheme between the user, who generates signatures af-
terward, and the provider as the proof of a knowledge of secret
information. Therefore, the KOSK assumption is reasonable. In
the following games, we denote by a symbol ∗ the target signer’s
information.
3.3.1 FSMS.LR Game

We define the FSMS.LR game. In this game, there exists
a group of polynomially-bounded malicious signers Ũpol and a
challenger C corresponding to a verifier. The goal of Ũpol is to
repudiate their signature by computing a valid proof of forgery.
Note that the signing query does not need to be defined because
the adversary in this game is a group of malicious signers. Thus
there is no signing oracle. We also note that Ũpol has to give both
a secret key and a public key to C in the registration of signers due
to the KOSK assumption described above. In such a situation, the
goal of Ũpol is to output a valid proof of forgery involving a target

signer who is designated in the setup phase. The procedure of the
FSMS.LR game is as follows:

Setup : C executes Setup(1k, 1σ, 1ωmax ) to output pp. Then,
Ũpol generates (sk∗, pk∗) = (sk1, pk1), and gives pk∗ to C.

Create User query (2 ≤ j ≤ qc + 1) : Ũpol generates (sk j, pk j)
and then gives (sk j, pk j) to C, where qc ≤ ωmax−1. C checks
if pk j is the public key corresponding to sk j. If so, we say
that pk j is registered; otherwise C outputs an error symbol
⊥.

Output : Ũpol outputs (m�, S �, L�, pr�), where L� = {pk j}qc+1
j=1

and pk1 = pk∗. C checks if all the following winning con-
ditions hold: MVerify(pp,m�, S �, L�) outputs 1; all of the
public keys except pk∗ in L� are registered; VerifyProof

(pp,m�, S �, L�, pr�) outputs 1; the number of signers is not
over ωmax.
Ũpol wins the game if all the winning conditions hold. The

following definition corresponds to the verifier’s security.
Definition 5 We say that a fail-stop multisignature scheme

is (t, qc, ε)-secure for the verifier if there is no group of
polynomially-bounded malicious signers Ũpol that wins the
FSMS.LR game within an execution time t, generating at most
qc (≤ ωmax − 1) Create User queries, and with a success probabil-
ity greater than ε.
3.3.2 FSMS.FF Game

We define the FSMS.FF game. In this game, there exists a
computationally unbounded adversary F̃exp who colludes with
a group of signers, and a challenger C corresponds to a target
signer. The goal of F̃exp is to forge a multisignature for which
C cannot generate a proof of forgery. The procedure of the
FSMS.FF game is as follows:

Setup : C executes Setup(1k, 1σ, 1ωmax ) to obtain pp. Then
C executes KeyGen to generate (sk∗, pk∗) = (sk1, pk1), and
then gives pp and pk∗ to F̃exp.

Create User query (2 ≤ j ≤ qc + 1) : F̃exp generates (sk j, pk j)
and then gives (sk j, pk j) to C, where qc ≤ ωmax−1. C checks
if pk j is the public key corresponding to sk j. If so, we say
that pk j is registered; otherwise C outputs an error symbol
⊥.

Sign query (1 ≤ d ≤ Nmax) : F̃exp gives a query md to C.
C executes MSign with F̃exp and outputs a multisignature
(md, S d, Ld).

Output : F̃exp outputs (m�, S �, L�), where L� = {pk j}qc+1
j=1

and pk1 = pk∗. C checks if the following winning
conditions hold: MVerify(pp,m�, S �, L�) outputs 1; all of
the public keys except pk∗ in L� are registered; Prove-

Forgery (pp, sk∗,m�, S �, L�) outputs ⊥; m� � {md}Nmax

d=1 ; sk∗

is used less than Nmax times; the number of signers is not
over ωmax.
F̃exp wins the game if all the winning conditions hold. The

following definition corresponds to the signer’s security.
Definition 6 We say that a fail-stop multisignature scheme

is secure for the signers with 2−σ if there is no computationally
unbounded adversary F̃exp who wins the FSMS.FF game with a
probability greater than 2−σ, where σ is a security parameter.

According to Pfitzmann [25], in a security analysis of an
FSS scheme we do not need to consider the game against
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a polynomially-bounded adversary. Suppose that there is a
polynomially-bounded adversary F̃pol who can forge multisigna-
tures with non-negligible probability. Then we can construct a
polynomial time algorithm that breaks the verifier’s security with
the non-negligible probability, and it contradicts the verifier’s se-
curity. In Appendix A.2, we give a security model in FSMS,
called the FSMS Limited Forging (FSMS.LF) Game, against
F̃pol, and show the details of the proof.

4. General Construction of Fail-Stop Multisig-
natures

In this section, we propose a general construction of FSMS.
Our construction is provably secure against the ACMA&FSMS-
AIA. We first describe a technical problem for constructing an
FSMS scheme, and then propose the general construction.

4.1 Our Approach
A problem for constructing an FSMS scheme is that there is

some contradiction between a property of FSS and a property of
multisignatures. An essential approach of FSS is to construct a
public key cryptosystem such that a large amount of candidates
of secret keys exist, but such a construction seems to need a spe-
cial and complicated algebraic structure. On the other hand, a
multisignature scheme is required to efficiently compress signa-
tures, and so we need a property to support an aggregation of the
signatures. In general, such a property is given via a simple al-
gebraic structure such as the BLS short signature scheme [6] for
the BGLS03 aggregate signature scheme [5]. In fact, the MO94
scheme brings on a degradation of the efficiency due to the Lam-
port signature scheme [18] and the SSNP99 scheme brings on
a restriction in participation of a new signer due to a threshold
scheme.

We focus on Pfitzmann’s approach [25] in order to overcome
the problem described above. Pfitzmann constructed FSS via the
bundling homomorphisms. The bundling homomorphisms are
collision-resistant algebraic structures, and they both have a prop-
erty that for any output there are many candidate inputs and a ho-
momorphic property. We found the fact that the former property
contributes to the security of an FSS scheme while the latter one
supports the aggregation of signatures in a multisignature scheme
efficiently. Moreover, the security of an FSMS scheme can be
proven by a reduction to the Pfitzmann’s construction in the man-
ner of extracting a target signer’s signature from a forgery in the
FSMS scheme. Thus, we can propose a generic construction of
FSMS via the bundling homomorphisms.

4.2 The Construction
The general construction of FSMS consists of the following

algorithms:
Setup(1k, 1σ, 1ωmax ) : As a prekey, it picks random index K for

a bundling homomorphism hη and sets h := hK ,G := GK and
H := HK . It outputs pp := (K, h,G,H, ωmax).

KeyGen(pp) *3: Firstly, it checks if h is a group homomor-
phism with bundling degree 2τ (e.g., using zero-knowledge

*3 Note that the input 1Nmax is omitted since the scheme described above is
used as a one-time signature scheme.

proof) *4. If not, it executes Setup algorithm to obtain such a
bundling homomorphism. Once it is convinced, it outputs a
secret key as sk j = (sk j,1, sk j,2) ∈R G2 and its corresponding
public key as pk j = (pk j,1, pk j,2) = (h(sk j,1), h(sk j,2)) ∈ H2.

MSign(pp, sk j,m) *5: The message spaceM is given as a sub-
set of Z. It computes and broadcasts a partial signature
s j ∈ G as s j = sk j,1 + msk j,2 and receives partial signatures
of other signers. Given {s j}ij=1, then it can obtain a multisig-
nature S ∈ G as S =

∑i
j=1 s j with respect to the public keys

on L = {pk j}ij=1. If i > ωmax, then it outputs ⊥. Otherwise, it
outputs (m, S , L).

MVerify(pp,m, S , L) : It outputs 1 if h(S ) =
∏i

j=1(pk j,1 × pkm
j,2)

holds. Otherwise, it outputs 0.
ProveForgery(pp, sk j,m�, S �, L�) : By invoking MSign, it

computes a partial signature s j ∈ G as s j = sk j,1 + m�sk j,2,
and then obtains pr =

∑i
j=1 s j via partial signatures of other

signers. If either h(S �) �
∏i

j=1(pk j,1 × pkm�

j,2 ) or S � = pr

holds, then it outputs ⊥. Otherwise, it outputs pr as a proof
of forgery.

VerifyProof(pp,m�, S �, L�, pr) : It outputs 1 if S � � pr and
h(S �) = h(pr) hold. Otherwise, it outputs 0.

Remark: One might think that an adversary who obtains two sig-
natures can recover secret keys and forge a multisignature as a
behavior of any signer, but we mention that the construction de-
scribed above is a one-time signature scheme similar to the exist-
ing FSS schemes. Namely, a situation where the adversary can
obtain multiple signatures of the same secret keys will never oc-
cur. We underline that we can extend the proposed scheme for
multiple messages by a single public key utilizing approaches
in Refs. [1], [14], [24]. We review the collision-free accumula-

tors [1] in Appendix A.7, and then show a general construction of
FSMS with them in Appendix A.8.

We show the following theorems, which assert the security
of our general construction, and then give their proofs in Ap-
pendix A.3.

Theorem 3 The proposed general construction is (t′, qc, ε
′)-

secure for the verifier if the Pfitzmann’s construction of FSS is
(t′′, ε′′)-secure, where t′′ = t′ + O(qc), qc ≤ ωmax − 1 and ε′′ = ε′

hold.
Theorem 4 The proposed general construction is secure for

the signer with a probability Tmax/2τ.

5. Instantiation of Fail-Stop Multisignatures

In this section, we propose an efficient instantiation of FSMS.
Our construction is based on, as an instantiation, the MO function
h(x) = xa mod n [20] whose computational complexity is equiv-
alent to the problem of factoring an integer n. We set up a such
that it is not coprime to the order of the group Z∗n, and it provides
a property that every xa ∈ Z∗n has multiple a-th roots.

We emphasize that the original MO11 scheme has some poten-
tial vulnerability where an adversary can forge a new signature

*4 We note that this is provable via a general zero-knowledge proof for the
NP-language.

*5 Note that, similarly as mentioned on KeyGen, a counter 	 is omitted of
the input since the scheme we describe is used as a one-time signature
scheme.
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on a message m + ax for any integer x from a prekey a and a
signature on m generated by an honest signer. As the details de-
scribed in Appendix A.6, the reason of the vulnerability is due to
an incorrect estimation of the probability for the signer’s security.
We also suggest the use of a prime number as a and Za as the
message space. Intuitively, the adversary cannot choose m + ax

as messages since the message space is smaller than a. Mean-
while, by adopting the prime number as a, the estimation of the
probability in the proof of the MO11 scheme can be fixed.

5.1 The Construction
Our concrete construction consists of the following algorithms:
Setup(1k, 1σ, 1ωmax ) : It invokes Gen (in Section 2.2), and Gen

chooses a σ-bit prime integer a and a prime p′ such that
p′ > 2a. Gen computes a prime p as p = 2ap′ + 1 and then
chooses a prime q such that |p| = |q|, where gcd(q−1, a) = 1
holds. Then, Gen computes n = pq and outputs (n, a, p, q).
At this point, the setup algorithm defines a group homomor-
phism hn as hn : x �→ xa mod n for x ∈ Z∗n, and finally
outputs pp := (n, a, hn,Z

∗
n, ωmax).

KeyGen(pp) *6: To verify that the prekey is correctly gener-
ated, the signer utilizes a zero-knowledge proof that a in-
deed divides ϕ(n) (such a proof can be constructed from gen-
eral zero-knowledge proofs [11]). If not, it executes Setup

to obtain such a pp. Otherwise, it outputs a secret key as
sk j = (sk j,1, sk j,2) ∈R Z

∗2
n and its corresponding public key

as pk j = (pk j,1, pk j,2) = (ska
j,1 mod n, ska

j,2 mod n).
MSign(pp, sk j,m) *7: The message spaceM is defined asM :=
Za. It computes and broadcasts a partial signature s j ∈ Z∗n
as s j = sk j,1skm

j,2 mod n and receives partial signatures of
other signers. Given {s j}ij=1, then it computes a multisigna-
ture S ∈ Z∗n as S =

∏i
j=1 s j mod n with respect to the public

keys on L = {pk j}ij=1. If i > ωmax, then it outputs ⊥. Other-
wise, it outputs (m, S , L).

MVerify(pp,m, S , L) : It outputs 1 if S a =
∏i

j=1(pk j,1 ×
pkm

j,2) mod n holds. Otherwise, it outputs 0.
ProveForgery(pp, sk j,m�, S �, L�) : It invokes MSign and

computes a partial signature s j ∈ Z∗n as s j = sk j,1skm�

j,2 mod n.
By using partial signatures of other signers, it computes
pr =

∏i
j=1 s j mod n ∈ Z∗n. If either (S �)a �

∏i
j=1(pk j,1 ×

pkm�

j,2 ) mod n or S � = pr holds, then it outputs ⊥. Other-
wise, it outputs pr as a proof of forgery.

VerifyProof(pp,m�, S �, L�, pr) : It outputs 1 if S � � pr and
S �a = (pr)a mod n hold; otherwise it outputs 0.

Remark: The scheme described above is a one-time signature
scheme, and so an adversary cannot forge multisignatures in a
trivial way as described in Section 4.2. In addition, we can
also extend the proposed scheme for multiple messages by a
single public key utilizing approaches in Refs. [1], [14], [24]
as described in Section 4.2. Moreover, unlike an RSA signa-
ture scheme, our FSMS scheme is secure although we apply a

*6 Note that the input 1Nmax is omitted since the scheme we describe is used
as a one-time signature scheme.

*7 Note that, similarly as mentioned on KeyGen, a counter 	 is omitted of
the input since the scheme we describe is used as a one-time signature
scheme.

common modulus n. Shortly, Ũpol cannot compute ϕ(n) since
(sk j,1, sk j,2) ∈ Z∗2n and (pk j,1, pk j,2) ∈ Z∗2n hold. One might
think that, in terms of our security model (i.e., ACMA&FSMS-
AIA) and its arguments (existence of malicious signers), there
is the following problem; a couple of malicious signers U1 and
U2 can collude and choose their secret keys (sk j,1, sk j,2) ∈ Z∗2n

( j = 1, 2) in the following manner: sk1,1 = sk−1
2,1 mod n and

sk1,2 = sk−1
2,2 mod n hold. Therefore, U1’s public key and partial

signatures are the inverse of those of U2’s. In the current con-
struction, these malicious signers may be able to hide and reveal
their partial signatures for different verifiers due to the validation
formula S a =

∏i
j=1(pk j,1 × pkm

j,2) mod n. Unless the verifier is
aware that U1 and U2 are included in the signing group, the mul-
tisignature will be verified in either case. However, note that such
a case cannot happen in our proposed FSMS scheme. As men-
tioned in Section 3, we assume that a single verifier (or a cen-
ter trusted by verifiers) exists. In the single-verifier setting, this
problem will never occur. Although we need the trusted center in
the multiple-verifier setting, even in this case the security can be
guaranteed as long as the center correctly and securely keeps the
list L of public keys.

We show the following theorems, which assert the security of
our proposed scheme. The proofs are given in Appendix A.4.

Theorem 5 The proposed scheme is (t, qc, ε)-secure for the
verifier if (t′, ε′)-factorization assumption with a-strong primes
holds against a probabilistic polynomial time algorithm AFACT

with respect to Gen, where t′ = t + 2te(1 + qc), qc(≤ ωmax − 1),
ε′ = ε and te is a computational time for one exponentiation.

Theorem 6 The proposed scheme is secure for the signer
with a probability 2−σ.

5.2 Efficiency Comparison
Here, we compare the performance of our scheme with the

MO94 scheme [19], and present the results in Table 1. For a per-
formance evaluation of our proposed scheme, suppose that k is
2,048 bits, and σ is 80 bits for 80-bit security. The size of mul-
tisignatures in the MO94 scheme increases in proportion to the
number of signers. Moreover, since the MO94 scheme is based
on the Lamport signature scheme [18], each bit of a message must
be signed, and every value increases in proportion to the message
length |m|. We also note that the scheme [19] did not provide the
formal model and its security proof.

We describe the MO94 scheme and our scheme as one-time
signature schemes in which one secret key can be used for sign-
ing only a single message similar to conventional FSS schemes.
However, note that we can extend our scheme to work for mul-
tiple messages by using one of several standard ways [1], [14],
[24].

6. Application to Fail-Stop Aggregate Signa-
tures

An aggregate signature scheme [5] is a generalized multisigna-
ture scheme in which each signer can sign an individual message
and then anyone can aggregate these individual signatures into
a single short signature. We underline that the proposed FSMS
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Table 1 Comparison of the existing FSMS schemes: For better readability and easier notations, we uti-
lize the following parameters. Let k̃ and k be the length of the moduli of each scheme. We
denote by |m| the binary length of message m in the MO94 scheme, σ the message length in the
other schemes, and by i the number of signers, respectively. Let Sign(#mult.) and Verify(#mult.)
denote the number of modular multiplications required for signing and verification, respectively.
We discuss these costs in terms of generating a partial signature for each signer. Finally, we
denote by < an upper-bound on the number of modular multiplications.

Size of Secret
Key (bits)

Size of Public
Key (bits)

Size of Signature
for i Signers (bits)

Sign
(#mult.)

Verify
(#mult.)

Security
Proof

MO94 2k̃|m| 2k̃|m| ik̃|m| < 4k̃|m| < 2k̃|m| No
Ours 2k 2k k σ < 2σ Yes

scheme can be turned into an aggregate signature scheme. By in-
troducing an individual message mj for each signer and dividing
MSign into two individual algorithms, i.e., a signing algorithm
for generating a partial signature and an aggregation algorithm
for compressing the signatures, in the proposed scheme, the fail-
stop aggregate signature (FSAS) scheme can be constructed.

We note that, from the standpoint of security proofs, there is
no difference between an interactive multisignature scheme and
an aggregate signature scheme. The main difference between the
two constructions is how to compress signatures: Whereas the
multisignature scheme requires an interaction of signers in or-
der to generate a compressed signature, the aggregate signature
scheme allows anyone to arbitrarily compress individual signa-
tures generated by each signer. The view of an adversary in the
former model is to give a target signer messages and to receive
partial signatures of the target signer. The view corresponds to
that of an adversary in the aggregate signature where the adver-
sary receives individual signatures generated by the target signer.
Thus, the technicalities in these models are exactly the same and
the security of the FSAS scheme is provable similarly to that of
our FSMS scheme. We give the details in Appendix A.5.

7. Conclusion

Fail-stop signatures (FSS) are digital signatures which can
guarantee information-theoretic unforgeability for a signer and
computational undeniability for a verifier, and existing schemes
have captured only single-signer setting. In this work, we de-
fined fail-stop multisignatures (FSMS) which can be seen as a
variant of FSS for multi-signer setting, and proposed a generic
construction with bundling homomorphisms and its instantiation.
The bundling homomorphisms provide three capabilities, i.e., the
group homomorphism, the collision resistant, and many-to-one
function, and these are used for constructing efficient and secure
FSMS schemes. More specifically, the group homomorphism
is necessary for combining individual signatures of multisigna-
tures. Then, the collision resistance is utilized for the undeniabil-
ity while the many-to-one function is utilized for the unforgeabil-
ity. Under these observations, we proposed the generic construc-
tion, and proved its security by a reduction to the Pfitzmann’s
generic construction of FSS. We also proposed an efficient in-
stantiation from the MO11 function. Our constructions can be
extended into fail-stop aggregate signatures (FSAS) where they
are more generalized multi-signer settings in the sense that each
signer can deal with an individual message. For its purpose, we
also defined their models. Our future work is to prove the secu-
rity under stronger security models, such as the key registration

model or the plain public key model.
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Appendix

A.1 How to Derive the Limitation of ωmax

In this section, we show how to derive the limitation of ωmax.
Firstly, we can obtain the following inequality as we explain in
Section 3.1:

1 − e−ωmax(ωmax−1)/2n ≤ 2−σ.

We approximate and rearrange this inequality. We can obtain new
inequality as follows:

e−ω
2
max/2n ≥ 2σ − 1

2σ
.

We take natural logarithm for both sides. Here, n = 2k holds:

ω2
max ≤ log

(
2σ − 1

2σ

)−1

· 2n = log

(
2σ

2σ − 1

)
· 2k+1.

The following inequality holds since ωmax is a positive number:

ωmax ≤
√

2k+1 log

(
1 +

1
2σ − 1

)
.

By using the Taylor expansion for log
(
1 + 1

2σ−1

)
, we can obtain

an approximate value 1
2σ−1 . Therefore, the following inequality

holds:

ωmax ≤
√

2k+1

2σ − 1
≈
√

2k−σ+1.

Finally, we obtain the upper-bound of ωmax:

ωmax ≤ �
√

2k−σ+1
.

Ũ√�� or F̃�§√ can execute Create User query at most

� √2k−σ+1
 − 1 times. In this case, suppose that there are at least
2σ possible secret keys for each signer, and k = 2,048 and σ = 80
hold, obviously we can see that 2k − 2σ · � √2k−σ+1
 is a positive
number. Therefore, all signers’ 2σ possible secret keys can be
uniformly distributed in the space generated by k.

A.2 Security Against Polynomially-Bounded
Adversary

In this section, we define the security against a polynomially-
bounded adversary.

A.2.1 Definition of FSMS.LF Game
We define the FSMS.LF game. In this game, there exist a com-

putationally bounded adversary F̃pol who colludes with a group
of signers and a challenger C corresponding to a target signer.
The goal of F̃pol is to forge a multisignature. The procedure of
the FSMS.LF game is as follows:

Setup : C executes Setup(1k, 1σ, 1ωmax ) to obtain pp. Then,
C executes KeyGen to generate (sk∗, pk∗) = (sk1, pk1), and
then gives pp and pk∗ to F̃pol.

Create User query(2 ≤ j ≤ qc + 1) : F̃pol generates (sk j, pk j)
and then gives (sk j, pk j) to C, where qc ≤ ωmax−1. C checks
if pk j is the public key corresponding to sk j. If so, we say
that pk j is registered; otherwise C outputs an error symbol
⊥.

Sign query(1 ≤ d ≤ Nmax) : F̃pol gives a query md to C.
C executes MSign with F̃pol and returns a multisignature
(md, S d, Ld) to F̃pol.

Output : F̃pol outputs (m�, S �, L�), where L� = {pk j}qc+1
j=1 and

pk1 = pk∗. C checks if the following winning conditions
hold: MVerify(pp,m�, S �, L�) outputs 1; all of the public
keys except pk∗ in L� are registered; m� � {md}Nmax

d=1 ; sk∗ is
used less than Nmax times; the number of signers is not over
ωmax.
F̃pol wins the game if all the winning conditions hold.
Definition 7 We say that a fail-stop multisignature scheme is

(t, qc,Nmax, ε)-secure if there is no polynomially-bounded adver-
sary F̃pol that wins the FSMS.LF game within an execution time
t, generating at most qc (≤ ωmax−1) Create User queries and Nmax

Sign queries, and with a success probability greater than ε.

A.2.2 Security Proof of FSMS.LF Game
Theorem 7 Any fail-stop multisignature scheme is

(t, qc,Nmax, ε)-secure if the scheme is (t′, q′c, ε′)-secure for
the verifier and secure for the signers with 2−σ, where
t′ = t + O(qc + Nmax), q′c = qc and ε′ = ε (1 − 2−σ) hold.

Proof Let F̃pol be a polynomially-bounded adversary who
can break an FSMS scheme with (t, qc,Nmax, ε). We show how
to construct a polynomial time algorithm B̃pol which wins the
FSMS.LR game with a challenger C. B̃pol is given a public pa-
rameter pp and generates (sk∗, pk∗) as a pair of keys of a target
signer. Then, B̃pol sends pk∗ to C and runs F̃pol with pp and pk∗

as input.
Setup : B̃pol is given a public parameter pp and generates
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(sk∗, pk∗) as a pair of keys of a target signer. Then, Bpol sends
pk∗ to C and gives pp and pk∗ to F̃pol.
Create User query : F̃pol executes the query qc (≤ ωmax − 1)

times and generates secret keys sk j and their corresponding pub-
lic keys pk j where 2 ≤ j ≤ qc + 1. F̃pol gives them to B̃pol. B̃pol

checks if pk j is a public key corresponding to sk j and then reg-
isters pk j; otherwise B̃pol outputs an error symbol ⊥.
Sign Query : F̃pol generates a query md where 1 ≤ d ≤ Nmax,

and gives it to B̃pol. B̃pol executes MSign(pp, sk∗,mj, 	) with
F̃pol. B̃pol knows sk∗ and so can generate it. B̃pol outputs S .
Output : F̃pol halts, having a signature (m�, S �, L�),

and gives (m�, S �, L�) to B̃pol. B̃pol executes
ProveForgery(pp, sk∗,m�, S �, L�) where B̃pol knows all
the secret keys in L� and so can execute the algorithm as
a distribution of the group of the signers. If an output of
ProveForgery(pp, sk∗,m�, S �, L�) is ⊥, then B̃pol aborts.
Otherwise, B̃pol obtains pr� and sends (m�, S �, L�, pr�) to
C. Then B̃pol can always win the game with C from the
following reasons: (1) MVerify(pp,m�, S �, L�) outputs 1 from
the definition of F̃pol; (2) VerifyProof(pp,m�, S �, L�, pr�)
outputs 1 since pr� is generated via an identical distribution to
that of a group of honest signers.

Finally, we evaluate the success probability ε′ and an execution
time t′ of B̃pol. An event that B̃pol aborts is in a case in which
ProveForgery(pp, sk∗,m�, S �, L�) outputs ⊥. Thus, ε′ can be
obtained as ε′ = ε (1 − 2−σ). Here, σ is a positive number and ε′

becomes a non-negligible value. Its running time is that of F̃pol,
plus the time required for Setup and Output (both O(1)), and to
handle F̃pol’s Create User query (O(qc)) for at most qc queries
and Sign query (O(Nmax)). Thus t′ = t+O(qc +Nmax) holds. The
number of Create User query q′c of B̃pol to C is exactly the same
as that of F̃pol, and thus q′c = qc holds. �

A.3 Security of the General Construction of
FSMS

We give the security proof of the general construction of
FSMS.

A.3.1 Proof of Theorem 3 (Verifier’s Security)
First, we prove Theorem 3 corresponding to the verifier’s se-

curity.
Proof Let Ũpol be a group of polynomially-bounded mali-

cious signers who can break the general construction of FSMS
with (t′, qc, ε

′). We show how to construct a polynomial
time algorithm Bpol which breaks the Pfitzmann’s construction
with (t′′, ε′′). Bpol is given (K, h,G,H, ωmax) and sets pp :=
(K, h,G,H, ωmax). It interacts with Ũpol as follows.

Setup : Bpol gives pp to Ũ√��. Ũ√�� generates a challenge se-

cret key sk∗ := (sk1,1, sk1,2) and its corresponding public key
pk∗ := (pk1,1, pk1,2). Ũ√�� gives pk∗ to Bpol.

Create User query : Ũpol executes the query qc (≤ ωmax − 1)
times and generates secret keys (sk j,1, sk j,2) and their corre-
sponding public keys (pk j,1, pk j,2) where 2 ≤ j ≤ qc + 1.
Ũ√�� gives them to Bpol. Bpol checks that (pk j,1, pk j,2) =

(h(sk j,1), h(sk j,2)) holds; otherwise Bpol outputs the error sym-

bol ⊥ *8.
Output : Ũpol halts, having output two signatures (S �, pr�)

such that S � � pr� and h(S �) = h(pr�) hold on a message m�,
and gives (S �, pr�) to Bpol. Bpol sets s�1,1 ← S � −∑qc+1

j=2 s j and

s�1,2 ← pr� −∑qc+1
j=2 s j, where s j is a partial signature generated

from the secret key (sk j,1, sk j,2) and Bpol can know these values
via Create User query. Then we have

h(s�1,1) = h

⎛⎜⎜⎜⎜⎜⎜⎝S � −
qc+1∑
j=2

s j

⎞⎟⎟⎟⎟⎟⎟⎠
=

qc+1∏
j=1

(
pk j,1 × pkm�

j,2

) qc+1∏
j=2

(
pk j,1 × pkm�

j,2

)−1

= pk1,1 × pkm�

1,2 .

h(s�1,2) = h

⎛⎜⎜⎜⎜⎜⎜⎝pr� −
qc+1∑
j=2

s j

⎞⎟⎟⎟⎟⎟⎟⎠
=

qc+1∏
j=1

(
pk j,1 × pkm�

j,2

) qc+1∏
j=2

(
pk j,1 × pkm�

j,2

)−1

= pk1,1 × pkm�

1,2 .

Thus s�1,1 and s�1,2 (s�1,1 � s�1,2) are acceptable signatures under
the challenge public key pk∗. Bpol halts, having output s�1,1 as a
forged signature and s�1,2 as a proof of forgery.
Bpol succeeds whenever Ũpol does, and thus ε′′ = ε′ holds. Its
running time is that of Ũpol, plus the time required for Setup

and Output (both O(1)), and to handle Ũpol’s Create User query

(O(qc)) for at most qc queries. Thus t′′ = t′ + O(qc) and ε′′ = ε′

hold. �

A.3.2 Proof of Theorem 4 (Signer’s Security)
Next, we prove Theorem 4 corresponding to the signer’s secu-

rity.
Proof Let F̃exp be an adversary who can output an unprov-

able forgery in FSMS with a probability greater than Tmax/2τ.
F̃exp outputs a forged multisignature S � ∈ G on some message
m�, and sets s�1 ← S � − ∑qc+1

j=2 s j, where s j ∈ G is the partial
signature generated from the secret key (sk j,1, sk j,2) and F̃exp can
know these values via Create User query. Then we have

h(s�1 ) = h

(
S � −

qc+1∑
j=2

s j

)

=

qc+1∏
j=1

(
pk j,1 × pkm�

j,2

) qc+1∏
j=2

(
pk j,1 × pkm�

j,2

)−1

= pk1,1 × pkm�

1,2 .

Thus F̃exp can output an unprovable forgery in the Pfitzmann’s
construction with a probability greater than Tmax/2τ. �

A.4 Security of the Proposed FSMS Scheme

In this section, we give the security proof of the proposed
FSMS scheme.

*8 Note that, as mentioned in Section 3.3.1, the signing query is not used in
the proof since the adversary is not allowed to use the signing query.
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A.4.1 Proof of Theorem 5 (Verifier’s Security)
First, we prove Theorem 5 corresponding to the verifier’s se-

curity.
Proof Let Ũpol be a group of polynomially-bounded mali-

cious signers who can break the proposed FSMS scheme with
(t, qc, ε). We show how to construct a polynomial time al-
gorithm AFACT which outputs (p, q) for a given (1k, n, a) with
(t′, ε′). AFACT is given (n, a, hn,Z

∗
n, ωmax) and sets pp :=

(n, a, hn,Z
∗
n, ωmax). It interacts with Ũpol as follows.

Setup : AFACT gives pp to Ũpol. Ũpol generates a challenge
secret key sk∗ := (sk1,1, sk1,2) and its corresponding challenge
public key pk∗ := (pk1,1, pk1,2). Ũpol gives pk∗ toAFACT.
Create User query : Ũpol executes the query qc(≤ ωmax − 1)

times and generates secret keys (sk j,1, sk j,2) and their corre-
sponding public keys (pk j,1, pk j,2) where 2 ≤ j ≤ qc + 1.
Ũpol gives them to AFACT. AFACT checks that (pk j,1, pk j,2) =
(ska

j,1 mod n, ska
j,2 mod n) holds; otherwise AFACT outputs the

error symbol ⊥.
Output : Ũpol halts, having output two signatures (S �, pr�)

such that S � � pr� and S �a = (pr�)a mod n hold on a mes-
sage m�, and gives (S �, pr�) to AFACT. Since |p| = |q| holds,
it must be q > a. Hence, a mod q − 1 = a holds. There-
fore, S �a = (pr�)a mod q can be obtained. Since gcd(a, q −
1) = 1 holds, a is invertible modulo q − 1, and it results that
pr� = S � + ψ · q holds for 1 ≤ ψ < p．Hence, we conclude
gcd(pr� − S �, q) = q. Therefore, it is sufficient for AFACT to
compute q = gcd(pr� − S �, n), and then deduce p = n/q.
AFACT succeeds whenever Ũpol does, and thus ε′ = ε holds.
Its running time is that of Ũpol, plus the time required for two
exponentiations 2te during Setup phase, and to handle Ũpol’s
Create User query: two exponentiations for at most qc queries,
i.e., 2qcte. Thus t′ = t + 2te(1 + qc) and ε′ = ε hold. �

A.4.2 Proof of Theorem 6 (Signer’s Security)
Next, we prove Theorem 6 corresponding to the signer’s secu-

rity.
Proof To prove this theorem, we prove that, under the factor-

ization assumption with a-strong primes, the construction above
is a bundling homomorphism with bundling degree 2σ firstly. Ob-
viously we can see that hn : x �→ xa mod n is a group homo-
morphism for x ∈ Z∗n. Let CRT : Z∗n → Z∗p × Z∗q denotes the
isomorphism induced by the Chinese remainder theorem. By ap-
plying CRT, if S is a solution to the equation S a = y mod n,
then (S p, S q) = (S mod p, S mod q) is a solution of the following
equations: (S p)a = y mod p · · · (1) and (S q)a = y mod q · · · (2).
In order to prove that S a ∈ Z∗n has the multiple a-th roots, we
recall the following theorem which is proved by Frobenius.

Theorem 8 (Frobenius [9]) If a divides the order of a group,
then the number of elements in the group whose order divides a is
a multiple of a. If the group is cyclic, then this number is exactly
a.

On one hand, since Z∗p is cyclic and a divides the order of Z∗p
(i.e., ϕ(p) = 2ap′), Eq. (1) has exactly a solutions. On the other
hand, since gcd(a, q − 1) = 1 holds, there must exist a′q such
that a · a′q ≡ 1 mod q − 1 holds. Thus Eq. (2) can be rewritten as
S q = ya′q mod q and admits one unique solution. As there exist

a tuples of the form (S p, S q) that satisfy Eq. (1) and Eq. (2), by
applying CRT−1, we deduce that the number of a-th roots of y in
Z
∗
n is exactly a. Note that every xa ∈ Z∗n has a solutions under this

setting. Setting y = 1 trivially leads to the kernel of the homo-
morphism. The kernel is thus of size a which is lower-bounded
by 2σ.

Next, we show that taking bundling homomorphism with de-
gree 2σ is sufficient to achieve the security against F̃exp. To do so,
we must analyse the size of Tmax and show that Tmax/2σ ≤ 2−σ

holds. This policy will not change even in the proposed FSMS
scheme since there are 2σ possible secret keys for a targeted
signer, and he can provide valid proof of forgery S if the forged
signature s�1 on a message m� differs from his own signature s1

on m�. Since gcd(m′, a) = 1 holds, we have

Tmax = max
m′∈M\{0}

|{d ∈ Z∗n : hn(d) = 1 ∧ dm′ = 1}|
= max

m′∈M\{0}
|{d ∈ Z∗n : da = 1 ∧ dm′ = 1}|

= max
m′∈M\{0}

|{d ∈ Z∗n : (ordZ∗n (d)|a) ∧ (ordZ∗n (d)|m′)}|
= max

m′∈M\{0}
|{d ∈ Z∗n : ordZ∗n (d)|gcd(a,m′)}|

= 1.

Thus, we can conclude that the proposed FSMS scheme is secure
for the signer with a probability 2−σ. �

A.5 Fail-Stop Aggregate Signatures

In this section, we define the model and the security of the
FSAS scheme. Moreover, we give a general construction and an
instantiation of FSAS.

A.5.1 Model of FSAS Scheme
We define the model of an FSAS scheme.
Definition 8 (Fail-Stop Aggregate Signatures). A fail-stop

aggregate signature scheme is a tuple of algorithms (Setup, Key-

Gen, Sign, Aggregation, AggVerify, ProveForgery, VerifyProof )
such that:
Setup(1k, 1σ, 1ωmax )→ pp : This is a probabilistic algorithm that,
on input of security parameters (k, σ, ωmax), outputs a public pa-
rameter pp.
KeyGen(pp, 1Nmax ) → (sk j, pk j) : This is a probabilistic algo-
rithm that, on input of pp and an integer Nmax, outputs a se-
cret/public key pair (sk j, pk j) which can be used for signing Nmax

times. For the sake of simplicity, the input 1Nmax is omitted when
the scheme is used as a one-time signature scheme.
Sign(pp, sk j,mj, 	) → (mj, s j) : This is an (probabilistic) algo-
rithm that, on input of pp, sk j, a message m, and a counter 	
incremented at each invocation of this algorithm, outputs a tuple
(mj, s j) where s j is a signature.
Aggregation(pp, {mj, s j, pk j}ij=1) → {({mj}ij=1, S , L),⊥} : This
is a deterministic algorithm that, on input of pp, i tuples
(mj, s j, pk j) of messages, signatures and public keys, outputs a
tuple ({mj}ij=1, S , L) where S is an aggregate signature and L is a
set {pk j}ij=1 of i signers. If i > ωmax, the output is ⊥.
AggVerify(pp, {mj}ij=1, S , L) → {0, 1} : This is a deterministic
(possibly probabilistic) algorithm that, on input of pp, {mj}ij=1,
S , and L, outputs 0 or 1.
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ProveForgery(pp, sk j, {m�
j }ij=1, S

�, L�) → {pr,⊥} : This is an
(probabilistic) interactive algorithm for generating a proof of
forgery. Given pp, sk j, {m�

j }ij=1, S �, and L�, it outputs a bit string
pr as a proof of forgery or ⊥ in a case of failure.
VerifyProof(pp, {m�

j }ij=1, S
�, L�, pr) → {0, 1} : This is a deter-

ministic (possibly probabilistic) algorithm that, on input of pp,
{m�

j }ij=1, S �, L�, and pr, outputs 0 or 1.
We say that an aggregate signature S is acceptable on messages

{mj}ij=1 if we have AggVerify(pp, {mj}ij=1, S , L) → 1. Moreover,
we say that a proof pr is valid on messages {m�

j }ij=1 if we have
VerifyProof(pp, {m�

j }ij=1, S
�, L�, pr) → 1. Here, ProveForgery

is an interactive algorithm and each signer runs these algorithms
with the inputs described above. Similarly to the model in Sec-
tion 3.2, we assume that the signers are connected to each other
via point-to-point links over which they can send a message,
and the algorithm takes the set L in order to generate a proof of
forgery.

We require for an FSAS scheme to satisfy the following condi-
tions as correctness.

Definition 9 (Correctness of Fail-Stop Aggregate Signa-
tures)
( 1 ) Every honestly generated aggregate signature is acceptable,

i.e., for any k, σ, ωmax,Nmax ∈ N and messages {mj}ij=1 ∈ M,
we have

Pr[AggVerify(pp, {mj}ij=1, S , L) = 1] = 1,

where pp ← Setup(1k, 1σ, 1ωmax ), (sk j, pk j) ←
KeyGen(pp, 1Nmax ), (mj, s j) ← Sign(pp, sk j,mj, 	), and
({mj}ij=1, S , L)← Aggregation(pp, {mj, s j, pk j}ij=1).

( 2 ) Every honestly generated proof of forgery is valid, i.e., for
any k, σ, ωmax,Nmax ∈ N, messages {m�

j }ij=1 ∈ M and tuple
(S �, L�), we have

Pr[VerifyProof(pp, {m�
j }ij=1, S

�, L�, pr) = 1
| AggVerify(pp, {m�

j }ij=1, S
�, L�) = 1, pr � ⊥] = 1,

where pp ← Setup(1k, 1σ, 1ωmax ),
(sk j, pk j) ← KeyGen(pp, 1Nmax ), and pr ←
ProveForgery(pp, sk j, {m�

j }ij=1, S
�, L�).

A.5.2 ACMA&FSAS-AIA
We define the adaptive-chosen-message attack and fail-stop-

aggregate-signatures’ adaptive-insider attack (ACMA&FSAS-
AIA). Its construction is almost the same as that in Section 3.3,
and we give the details below. In the following games, we repre-
sent the target signer’s information by using a symbol ∗.
A.5.2.1 FSAS.LR Game

We define the FSAS.LR game. In this game, there exists a
group of polynomially-bounded malicious signers Ũpol and a
challenger C corresponds to a verifier. The goal of Ũpol is to
repudiate their signature by computing a valid proof of forgery.
Note that the signing query does not need to be defined since the
adversary in this game is a group of malicious signers. Thus there
is no signing oracle. The procedure of the FSAS.LR game is as
follows:

Setup : C executes Setup(1k, 1σ, 1ωmax ) to output pp. Then,

Ũpol generates (sk∗, pk∗) = (sk1, pk1), and gives pk∗ to C.
Create User query : (2 ≤ j ≤ qc+1). Ũpol generates (sk j, pk j)

and then gives (sk j, pk j) to C, where qc ≤ ωmax−1. C checks
if pk j is the public key corresponding to sk j. If so, we say
that pk j is registered; otherwise C outputs an error symbol
⊥.

Output : Ũpol outputs ({m�
j }ij=1, S

�, L�, pr�), where L� =

{pk j}qc+1
j=1 and pk1 = pk∗. C checks if all the following win-

ning conditions hold: AggVerify(pp, {m�
j }ij=1, S

�, L�) out-
puts 1; all of the public keys except pk∗ in L� are registered;
VerifyProof(pp, {m�

j }ij=1, S
�, L�, pr�) outputs 1; the number

of signers is not over ωmax.
Ũpol wins the game if all the winning conditions hold. The

following definition corresponds to the verifier’s security.
Definition 10 We say that a fail-stop aggregate signature

scheme is (t, qc, ε)-secure for the verifier if there is no group
of polynomially-bounded malicious signers Ũpol that wins the
FSAS.LR game within an execution time t, generating at most
qc (≤ ωmax − 1) Create User queries, and with a success probabil-
ity greater than ε.
A.5.2.2 FSAS.FF Game

We define the FSAS.FF game. In this game, there exists a
computationally unbounded adversary F̃exp who colludes with
a group of signers, and a challenger C corresponds to a target
signer. The goal of F̃exp is to forge an aggregate signature for
which C cannot generate a proof of forgery. The procedure of the
FSAS.FF game is as follows:

Setup : C executes Setup(1k, 1σ, 1ωmax ) to obtain pp. Then
C executes KeyGen to generate (sk∗, pk∗) = (sk1, pk1), and
then gives pp and pk∗ to F̃exp.

Create User query : (2 ≤ j ≤ qc +1). F̃exp generates (sk j, pk j)
and then gives (sk j, pk j) to C, where qc ≤ ωmax−1. C checks
if pk j is the public key corresponding to sk j. If so, we say
that pk j is registered; otherwise C outputs an error symbol
⊥.

Sign query : (1 ≤ d ≤ Nmax). F̃exp gives a query md to C. C
executes Sign and outputs a signature (md, sd, Ld).

Output : F̃exp outputs ({m�
j }ij=1, S

�, L�), where L� = {pk j}qc+1
j=1

and pk1 = pk∗. C checks if the following winning
conditions hold: AggVerify(pp, {m�

j }ij=1, S
�, L�) outputs 1;

all of the public keys except pk∗ in L� are registered;
ProveForgery(pp, sk∗, {m�

j }ij=1, S
�, L�) outputs ⊥; m�

1 �

{md}Nmax

d=1 ; sk∗ is used less than Nmax times; the number of
signers is not over ωmax.
F̃exp wins the game if all the winning conditions hold. The

following definition corresponds to the signer’s security.
Definition 11 We say that a fail-stop aggregate signature

scheme is secure for the signers with 2−σ if there is no computa-
tionally unbounded adversary F̃exp who wins the FSAS.FF game
with a probability greater than 2−σ, where σ is a security param-
eter.

A.5.3 General Construction of FSAS
The general construction of FSAS consists of the following al-

gorithms:
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Setup(1k, 1σ, 1ωmax ) : As a prekey, it picks random index K for
a bundling homomorphism hη and sets h := hK ,G := GK and
H := HK . It outputs pp := (K, h,G,H, ωmax).

KeyGen(pp) *9 : Firstly, it checks if h is a group homomor-
phism with bundling degree 2τ (e.g., using zero-knowledge
proof) *10. If not, it executes Setup algorithm to obtain such a
bundling homomorphism. Once it is convinced, it outputs a
secret key as sk j = (sk j,1, sk j,2) ∈R G2 and its corresponding
public key as pk j = (pk j,1, pk j,2) = (h(sk j,1), h(sk j,2)) ∈ H2.

Sign(pp, sk j,mj) *11 : The message spaceM is given as a sub-
set of Z. It computes a signature s j ∈ G as s j = sk j,1+mjsk j,2

and outputs (mj, s j).
Aggregation(pp, {mj, s j, pk j}ij=1) : It computes an aggregate

signature S ∈ G as S =
∑i

j=1 s j with respect to the public
keys on L = {pk j}ij=1. If i > ωmax, then it outputs ⊥. Other-
wise, it outputs a tuple of ({mj}ij=1, S , L).

AggVerify(pp, {mj}ij=1, S , L) : It outputs 1 if h(S ) =∏i
j=1(pk j,1 × pk

mj

j,2) holds. Otherwise, it outputs 0.
ProveForgery(pp, sk j, {m�

j }ij=1, S
�, L�) : By invoking Sign

and Aggregation, it computes a partial signature s j ∈ G as
s j = sk j,1 + m�

j sk j,2, and then obtains pr =
∑i

j=1 s j. If either

h(S �) �
∏i

j=1(pk j,1× pk
m�

j

j,2 ) or S � = pr holds, then it outputs
⊥. Otherwise, it outputs pr as a proof of forgery.

VerifyProof(pp, {m�
j }ij=1, S

�, L�, pr) : It outputs 1 if S � � pr

and h(S �) = h(pr) hold. Otherwise, it outputs 0.
We can prove the following theorems. Their proofs are almost

the same as those in Appendix A.3 and so we omit the details of
the proofs.

Theorem 9 The general construction of fail-stop aggregate
signature is (t′, qc, ε

′)-secure for the verifier if the Pfitzmann’s
general construction of fail-stop signature is (t′′, ε′′)-secure.
Here, t′′ = t′ + O(qc), qc ≤ ωmax − 1 and ε′′ = ε′ hold.

Theorem 10 The general construction of fail-stop aggregate
signature is secure for the signer with a probability Tmax/2τ.

A.5.4 Instantiation of Fail-Stop Aggregate Signatures
In this section, we propose an efficient FSAS scheme con-

structed from our general construction. Similarly to the proposed
scheme in Section 5, our construction is based on the MO func-
tion h(x) = xa mod n [20]. Our concrete construction consists of
the following algorithms:

Setup(1k, 1σ, 1ωmax ) : It invokes Gen (in Section 2.2), and Gen

chooses a σ-bit prime integer a and a prime p′ such that
p′ > 2a. Gen computes a prime p as p = 2ap′ + 1 and then
chooses a prime q such that |p| = |q|, where gcd(q−1, a) = 1
holds. Then, Gen computes n = pq and outputs (n, a, p, q).
At this point, the setup algorithm defines a group homomor-
phism hn as hn : x �→ xa mod n for x ∈ Z∗n, and finally
outputs pp := (n, a, hn,Z

∗
n, ωmax).

*9 Note that the input 1Nmax is omitted since the scheme we describe is used
as a one-time signature scheme.

*10 We note that this is provable via a general zero-knowledge proof for the
NP-language.

*11 Note that, similarly as mentioned on KeyGen, a counter 	 is omitted of
the input since we describe the scheme is used as a one-time signature
scheme.

KeyGen(pp) *12 : To verify that the prekey is correctly gener-
ated, the signer utilizes a zero-knowledge proof that a indeed
divides ϕ(n) (such a proof can be constructed from general
zero-knowledge proofs [11]). If not, it executes Setup algo-
rithm to obtain such a pp. Otherwise, it outputs a secret key
as sk j = (sk j,1, sk j,2) ∈R Z

∗2
n and its corresponding public key

as pk j = (pk j,1, pk j,2) = (ska
j,1 mod n, ska

j,2 mod n).
Sign(pp, sk j,mj) *13 : The message space M is defined as
M := Za. It computes a signature s j ∈ Z∗n as s j =

sk j,1sk
mj

j,2 mod n and outputs (mj, s j).
Aggregation(pp, {mj, s j, pk j}ij=1) : Given {s j}ij=1, it computes

an aggregate signature S ∈ Z∗n as S =
∏i

j=1 s j mod n with
respect to the public keys on L = {pk j}ij=1. If i > ωmax, then
it outputs ⊥. Otherwise, it outputs ({mj}ij=1, S , L).

AggVerify(pp, {mj}ij=1, S , L) : It outputs 1 if S a =
∏i

j=1(pk j,1 ×
pk

mj

j,2) mod n holds. Otherwise, it outputs 0.
ProveForgery(pp, sk j, {m�

j }ij=1, S
�, L�) : By invoking Sign

and Aggregation, it computes a partial signature s j ∈ Z∗n as

s j = sk j,1sk
m�

j

j,2 mod n and then obtains pr =
∏i

j=1 s j mod

n ∈ Z∗n. If either (S �)a �
∏i

j=1(pk j,1 × pk
m�

j

j,2 ) mod n or
S � = pr holds, then it outputs ⊥. Otherwise, it outputs pr as
a proof of forgery.

VerifyProof(pp, {m�
j }ij=1, S

�, L�, pr) : It outputs 1 if S � � pr

and S �a = (pr)a mod n hold; otherwise it outputs 0.
We can prove the following theorems. Their proofs are almost

the same as those in Appendix A.4, and we omit the details of the
proofs.

Theorem 11 The proposed fail-stop aggregate signature
scheme is (t, qc, ε)-secure for the verifier if (t′, ε′)-factorization
assumption with a-strong primes holds against a probabilistic
polynomial time algorithm AFACT with respect to Gen, where
t′ = t + 2te(1 + qc), qc(≤ ωmax − 1), ε′ = ε and te is a compu-
tational time for one exponentiation.

Theorem 12 The proposed fail-stop aggregate signature
scheme is secure for the signer with a probability 2−σ.

A.6 Cryptanalysis of the Original MO11
Scheme

In this section, we briefly review the original MO11
scheme [20] firstly, and then show that it is not secure for a signer.
Moreover, we propose a countermeasure against the vulnerability.

A.6.1 Review of the Original MO11 Scheme
We briefly review the original MO11 scheme. In this scheme,

they used a generic Rabin function, h(x) = xa mod n, whose in-
vertibility is equivalent to the problem of factoring the integer n,
where a is a σ-bit odd integer. First, a verifier (or a trusted cen-
ter) chooses a prime p′ such that p′ > 2a. Second, it computes
p = 2ap′ + 1, and checks if p is also prime. Finally, it chooses
a prime q such that |p| = |q|, and computes n = pq. A prekey
is (a, n), and each signer and the verifier execute the following

*12 Note that the input 1Nmax is omitted since the scheme we describe is used
as a one-time signature scheme.

*13 Note that, similarly as mentioned on KeyGen, a counter 	 is omitted of
the input since the scheme we describe is used as a one-time signature
scheme.
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algorithms:
KeyGen(K) : Generate a secret key as (sk1, sk2) ∈R Z

∗2
n and

compute its corresponding public key (pk1, pk2) = (ska
1 mod

n, ska
2 mod n).

Sign(sk,m) : The message space is defined to be M =

{1, · · · , ϕ(n) − 1}\{x > 1|gcd(a, x) � 1}, and ϕ(n) = (p −
1)(q − 1). To sign a message m ∈ M, compute a signature s

as s = sk1skm
2 mod n.

Verify(pk,m, s) : Output 1 if sa = pk1 pkm
2 mod n holds. Other-

wise, output 0.
ProveForgery(sk,m�, s�) : Given a forgery (m�, s�), com-

pute a signature pr on the message m� using the secret key
(sk1, sk2). Output ⊥ if either (s�)a � pk1 pkm�

2 mod n or
s� = pr holds. Otherwise, output pr as a proof of forgery.

VerifyProof(pk,m�, s�, pr) : Given two signatures s� and pr

on a same message m�, output 1 if pr � s� and pra =

s�a mod n both hold. Otherwise, output 0.

A.6.2 How to Break the Original MO11 Scheme
We show that the original MO11 scheme is not secure for a

signer. Firstly, an adversary obtains a signature s = sk1skm
2 mod n

for an arbitrary m ∈ M from an honest signer by using the signing
query. Next, the adversary defines the message m� as m� = m+ax

for an arbitrary x ∈ Z. Here, m� ∈ M and m� � m hold. Finally,
the adversary outputs a forged signature s� as s� = s× pkx

2. Then,
we have the following lemma:

Lemma 1 Define m� = m+ ax and s� = s× pkx
2. Then, s� is

an unprovable forgery on m�.
Proof For any x ∈ Z, the adversary defines m� as m� =

m + ax and s� as s� = s × pkx
2. Then, the following equation

holds;(
s�

)a
= (s × pkx

2)a = sa × pkax
2

= pk1 pkm
2 pkax

2 = pk1 pkm+ax
2 = pk1 pkm�

2 mod n.

This equation means that the adversary outputs a new signature
on m�. In this case, the honest signer tries to generate a proof
of forgery pr on m� by using ProveForgery. However, it returns
only ⊥ since pr becomes the same value s�. �

Consequently, we have the following theorem:
Theorem 13 The original MO11 scheme is not secure for the

signer.
Remark: A possible countermeasure is to adopt a prime number a

as a component of the prekey, and to reduce the message spaceM
to Za as we do in our schemes. Unfortunately, the message space
is restricted to 80 bits for 80-bit security (i.e., σ = 80) due to
this countermeasure. This is not very practical. However, just by
setting σ = 160, we can still use 2048-bit moduli. Then we can
compress the message by using a collision resistant hash function
when we sign the message larger than 160 bits.

A.7 Cryptographic Accumulators

In this section, we briefly review the collision-free accumu-
lators [1] by using the works of Fazio and Nicolosi [8], and
Mashatan and Ouafi [21] as references.

Basically, by using cryptographic accumulators, we can ac-

cumulate a large number of values into a single one. The

concept of accumulators was firstly proposed by Benaloh and
de Mare [3]. Later, Barić and Pfitzmann [1] defined and con-
structed a collision-free subtype. Moreover, as an application,
they showed an FSS scheme in which many one-time public keys
are accumulated into a short public key. As a result, they showed
that the size of both public key and the signatures can be indepen-
dent of the number of messages that can be signed.

The following definition is more general than that of Ref. [3]
since it does not require the quasi-commutative hash function
(i.e., a one-way hash function f that satisfies f ( f (x, y1), y2) =
f ( f (x, y2), y1)) [3].

Definition 12 (Collision-Free Accumulators) A collision-
free accumulator scheme is a tuple of algorithms (AccKeyGen,

Eval, Wit, Ver) such that:
AccKeyGen(1λ, 1N′max ) → Kacc : This is a probabilistic algorithm
that, on input of security parameter λ and an accumulation thresh-
old N′max (i.e., an upper bound on the total number of values that
can be securely accumulated), outputs an accumulator key Kacc,
which is public parameter, from a key space Kλ,N′max

.
Eval(Kacc,Y) → (zacc, aux) : This is a deterministic algorithm
that, on input of Kacc and a set Y := {y1, . . . , yNmax } of Nmax ≤ N′max

elements from an efficiently-samplable domain YKacc , outputs an
accumulated value zacc ∈ ZKacc and some auxiliary information
aux. Note that every execution of Eval on the same input (Kacc, Y)
must yield the same value zacc, whereas the auxiliary information
aux can differ. After its execution, the value zacc is made public.
Wit(Kacc, zacc, yr, aux) → {wr,⊥} : This is a deterministic algo-
rithm that, on input of Kacc, zacc, a value yr ∈ YKacc and aux,
outputs either a witness wr from an efficiently-samplable witness
spaceWKacc that proves that yr is accumulated within zacc, or an
error symbol ⊥ if yr � Y .
Ver(Kacc, yr, wr, zacc) → {0, 1} : This is a deterministic algorithm
that, on input of Kacc, yr, wr and zacc, outputs 0, meaning that wr

does not constitute a valid proof that yr has been accumulated
within zacc, or 1, meaning that wr constitutes a valid proof that yr

has been accumulated within zacc.
We require for a collision-free accumulator scheme to satisfy

the following conditions as correctness.
Definition 13 (Correctness of Collision-Free Accumula-

tors) This notion captures the requirement that every value that
was accumulated in a set can be authenticated, i.e., for any
λ,N′max ∈ N, we have

Pr[Ver(Kacc, yr, wr, zacc) = 1, (y1, . . . , yN′max
) ∈ YKacc , yr ∈ Y]

= 1,

where Kacc ← AccKeyGen(1λ, 1N′max ), Y := {y1, . . . , yN′max
},

(zacc, aux)← Eval(Kacc, Y) and wr ← Wit(Kacc, zacc, yr, aux).
Moreover, we recall the definition of the collision-freeness.
Definition 14 (N′max-times Collision-Freeness) We say that

an accumulator scheme is N′max-times collision-free if, for any
λ,N′max ∈ N and polynomial time adversary Apol, there exists a
negligible function negl such that

Pr[Ver(Kacc, y
′, w′, zacc) = 1, (y1, . . . , yN′max

, y′) ∈ YKacc , y
′ � Y]

< negl(λ),

where Kacc ← AccKeyGen(1λ, 1N′max ), (y1, . . . , yN′max
, y′, w′) ←
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Apol(1λ, 1N′max ,Kacc), Y := {y1, . . . , yN′max
} and (zacc, aux) ←

Eval(Kacc,Y).
Definition 15 (Collision-Freeness) We say that an accumu-

lator scheme is collision-free if, for any λ,N′max ∈ N, it is N′max-
times collision-free.

A.8 Fail-Stop Multisignatures with Crypto-
graphic Accumulators

In this section, we show a general construction of FSMS with
the collision-free accumulators.

A general construction of FSMS with the collision-free accu-
mulators can be constructed from the following algorithms. In
this case, some conversion algorithms (which are deterministic)
are necessary for accumulating public keys. However, in order to
make understanding easy, we do not give such a conversion algo-
rithm to the following construction. The details of the conversion
algorithms are described in Ref. [1].

Setup(1k, 1σ, 1ωmax ) : As a prekey, it picks random index K for
a bundling homomorphism hη and sets h := hK ,G := GK

and H := HK . In parallel, it generates λ and N′max and
then sets the accumulator key for a collision-free accumu-
lator scheme by invoking AccKeyGen(1λ, 1N′max ) → Kacc. It
outputs pp := (K,Kacc, h,G,H, ωmax).

KeyGen(pp, 1Nmax ) : Firstly, it checks if h is a group ho-
momorphism with bundling degree 2τ. If not, it executes
Setup algorithm to obtain such a bundling homomorphism.
Once it is convinced, it outputs a component of secret key
as sk j,N = (sk j,N,1, sk j,N,2) ∈R G2 and its corresponding
component of public key as pk j,N = (pk j,N,1, pk j,N,2) =
(h(sk j,N,1), h(sk j,N,2)) ∈ H2 for N = 1 . . .Nmax. Af-
ter that, it accumulates the set of {pk j,N}Nmax

N=1 , i.e., it in-
vokes Eval(Kacc, Yj,1 := {pk j,N,1}Nmax

N=1 ) → (zacc, j,1, aux j,1) and
Eval(Kacc, Yj,2 := {pk j,N,2}Nmax

N=1 )→ (zacc, j,2, aux j,2). Finally, it
outputs the secret key as S Kj := ({sk j,N}Nmax

N=1 , aux j,1, aux j,2)
and its corresponding public key as PKj := (zacc, j,1, zacc, j,2).
At the end of key generation, it sets a local-state counter
	 ← 0.

MSign(pp, sk j,m, 	) : The message space M is given as a
subset of Z. It first starts with incrementing its local-
state counter by one, i.e., 	 ← 	 + 1. Moreover, it sets
N ← 	. It computes and broadcasts a partial signature
s j,N ∈ G as s j,N = sk j,N,1 + mN sk j,N,2 and receives par-
tial signatures of other signers. Given {s j,·}ij=1, then it can
obtain a multisignature S · ∈ G as S · =

∑i
j=1 s j,· with

respect to the public keys on L· = {pk j,·}ij=1. If i >

ωmax, then it outputs ⊥. After that, it computes the wit-
ness of pk j,N by invoking Wit(Kacc, zacc, j,1, pk j,N,1, aux j,1) →
w j,N,1 and Wit(Kacc, zacc, j,2, pk j,N,2, aux j,2) → w j,N,2. It sets
w j,N := (w j,N,1, w j,N,2) and W· := {w j,·}ij=1. Finally, it outputs
(m·, S ·, L·,W·).

MVerify(pp,m, S , L) : It outputs 1 if, for j =

1 . . . i, Ver(Kacc, pk j,·,1, w j,·,1, zacc, j,1) → 1 ∧
Ver(Kacc, pk j,·,2, w j,·,2, zacc, j,2) → 1 ∧ h(S ·) =∏i

j=1(pk j,·,1 × pkm·
j,·,2) holds. Otherwise, it outputs 0.

ProveForgery(pp, sk j,m�, S �, L�) : Parse pk′j,· :=

(pk′j,·,1, pk′j,·,2) which is used in the verification test for
(m�· , S �· , L�· ,W�· ):
• When pk′j,·,1 ∈ Yj,1 ∧ pk′j,·,2 ∈ Yj,2 holds, it computes

a partial signature s j,· ∈ G as s j,· = sk j,·,1 + m�· sk j,·,2,
and outputs a proof of forgery pr· =

∑i
j=1 s j,· via partial

signatures of other signers by invoking MSign. If either
h(S �· ) �

∏i
j=1(pk′j,·,1 × pk′m

�·
j,·,2) or S �· = pr· holds, then it

outputs ⊥.
• When (pk′j,·,1, pk′j,·,2) ∈ Y2

Kacc
∧ pk′j,·,1 � Yj,1 ∧ pk′j,·,2 �

Yj,2 holds, it outputs a proof of collision, i.e., pr· :=
(Yj,1, Yj,2, pk′j,·,1, pk′j,·,2, PKj,W�· ). This proof shows that the
assumption on which the accumulator is based has been
broken. If h(S �· ) �

∏i
j=1(pk′j,·,1 × pk′m

�·
j,·,2) holds, then it out-

puts ⊥.
VerifyProof(pp,m�, S �, L�, pr) : Parse pr·:
• When pr· :=

∑i
j=1 s j,·, it outputs 1 if S �· � pr· and

h(S �· ) = h(pr·) hold. Otherwise, it outputs 0.
• When pr· := (Yj,1,Yj,2, pk′j,·,1, pk′j,·,2, PKj,W�· ), it out-

puts 1 if (pk′j,·,1, pk′j,·,2) ∈ Y2
Kacc
∧ pk′j,·,1 � Yj,1 ∧

pk′j,·,2 � Yj,2 ∧ Ver(Kacc, pk′j,·,1, w
′
j,·,1, zacc, j,1) → 1 ∧

Ver(Kacc, pk′j,·,2, w
′
j,·,2, zacc, j,2)→ 1 holds. Otherwise, it out-

puts 0.
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