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Abstract: This paper presents a method for evaluating toothbrushing performance using audio data collected by a
smartphone. This method first conducts activity recognition on the audio data to classify segments of the data into sev-
eral classes based on the brushing location and type of brush stroke. These recognition results are then used to compute
several independent variables which are used as input to an SVM regression model, with the dependent variables for
the SVM model derived from evaluation scores assigned to each session of toothbrushing by a dentist who specializes
in dental care instruction. Using this combination of audio-based activity recognition and SVM regression, our method
is able to take smartphone audio data as input and output evaluation score estimates that closely correspond to the
evaluation scores assigned by the dentist participating in our research.
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1. Introduction

Oral health care is an important topic, as teeth must last a life-
time and cannot be replaced. While prosthetics such as dentures
do exist, research indicates that tooth loss still carries a signif-
icant impact on one’s quality of life, both physically and emo-
tionally [5], [10]. Despite oral health’s significant impact on our
overall well-being, there is evidence that a significant portion of
the population brushes incorrectly [7]. Moreover, while proper
toothbrushing can have a positive impact on oral health, improper
toothbrushing can not only fall short in maintaining oral health, it
can have a damaging effect [1].

In recent years, several health care applications have been de-
veloped that focus on oral health. For example, Braun *1 has
released a commercial product called SmartGuide that uses an
embedded sensor to detect the force exerted on the teeth dur-
ing brushing and uses a timing display on a smartphone screen
to both prompt users to cycle through different regions of the
mouth and provide immediate feedback when the user applies
too much pressure. Other research has been conducted on the
analysis of toothbrushing behavior using optical motion capture
systems [2], [13] and embedded accelerometer sensors [11], [15],
[16], [17], [25]. We introduce each of these in detail in the related
work section.

Each of the systems described above relied on complex video
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equipment or custom-made sensing devices, requiring most users
to purchase new equipment to use them. Our research proposes
a method for evaluating toothbrushing performance built around
an off-the-shelf smartphone, which is readily available to the av-
erage person. In our proposed system, the user only needs to
brush their teeth in the vicinity of their smartphone, e.g., by plac-
ing the smartphone on the sink next to them when brushing. The
smartphone captures the audio data from their brushing, and then
evaluates the performance of the brushing through analysis of that
data. For example, it can return a score representing whether the
user properly brushed their front teeth. Our system can return
scores for each area of the mouth and can also output a total eval-
uation score for the toothbrushing. In this research, we used a
supervised machine learning technique to conduct the brushing
evaluation. Specifically, a dentist provided evaluation scores for
the training data, and those scores along with the corresponding
audio features were used to construct a recognition model for use
in scoring test data. By using training data that has been prepared
by a dentist with the necessary specialized knowledge, we were
able to build a recognition model that is based on that dentist’s
knowledge.

We estimate scores using regression models built from the au-
dio recognition results for toothbrushing actions. First, we la-
bel the audio time-series data with the toothbrushing actions that
were being conducted during different periods using recogniz-
ers based on hidden Markov models (HMMs) [21]. For example,
from 89 seconds to 110 seconds after the start of the audio could

*1 Braun Oral-B: http://www.oralb.com/products/electric-toothbrush
/bluetooth-toothbrush.aspx
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be labeled “brushing the outer surface of front teeth.” Second,
we use these labeled segments to calculate independent variables
for the regression models used for estimating scores. For exam-
ple, these independent variables can be values such as the total
time for segments labeled as “brushing the outer surface of front
teeth.” Lastly, we use the regression models to estimate scores for
the users’ toothbrushing.
The proposed method has the following features:
(1): In order to improve toothbrushing proficiency, it is neces-
sary to single out deficiencies in the user’s brushing habits. The
proposed method has the ability to detect such deficiencies (such
as “front teeth were not thoroughly brushed”). Specifically, our
method outputs a score for each region, e.g., front teeth and back
teeth, and also for each evaluation criterion, e.g., stroke and cov-
erage of brushing.
(2): The proposed method includes recognizers based on HMMs
for the recognition of toothbrushing actions, but the final goal
of the research is to use the output from these models to esti-
mate scores for toothbrushing for different areas of the mouth
and/or evaluation criterion. The importance of the toothbrush-
ing actions will vary depending on the score being estimated,
e.g., toothbrushing actions corresponding to the front teeth will
be more important when estimating scores for the front teeth. In
this study, we generate HMM sets that maximize the recognition
of the important classes for each score type, using the output of
these targeted HMM sets to estimate the scores.
(3): Because the characteristics of the audio obtained from tooth-
brushing differs between different users and different toothbrush
models, the proposed method includes the capability to cope with
these differences using model adaptation.

In the rest of this paper, we first introduce studies that re-
late to environmental sound recognition and sensing toothbrush-
ing. Then we propose a method for evaluating toothbrush perfor-
mance using audio recorded by a smartphone. Finally, we eval-
uate our method with 94 sessions of toothbrushing data. To the
best of our knowledge, this is the first study that attempts to eval-
uate toothbrushing performance based solely on audio data. The
research contributions of this paper are: (1) We propose a method
for evaluating toothbrushing performance using a machine learn-
ing approach. First, a dentist who specializes in toothbrushing
instruction assigns scores to training data based on his evaluation
of toothbrushing performance. Then, we use this training data to
construct a regression model with score estimates close to those
assigned by the dentist. (2) We propose a method for generat-
ing the HMM sets used as the basis for estimating scores for the
various criterion related to toothbrushing performance. In this
method, we automatically generate separate HMM sets for each
score, with each set tailored to improve the accuracy of its corre-
sponding score estimates. (3) We evaluate the proposed method
using 94 sessions of toothbrushing audio data taken from 14 re-
search participants.

2. Related Work

2.1 Environmental Sound Recognition
There are many ubicomp studies on environmental sound

recognition. For example, in Ref. [3], bathroom activities such

as showering, flushing, and urination were recognized using mi-
crophone data. Also, several studies recognize daily activities
with microphones in smartphones by recognizing environmental
sounds such as the sound of vacuuming and the sound of running
water [19], [23].

2.2 Sensing Toothbrushing
In Ref. [14], Braun’s SmartGuide was used to study the ef-

fects of real-time feedback on the quality of toothbrushing, in
which they found a significant improvement in brushing habits
when using this system. Other research has been conducted
on the analysis of toothbrushing behavior using optical mo-
tion capture systems [2], [13] and embedded accelerometer sen-
sors [11], [15], [16], [17], [25]. In particular, a system developed
in Ref. [2] used an optical recognition system that encouraged
children to brush their teeth by providing feedback on their per-
formance by means of a cartoon display. Regions of the mouth
that were adequately brushed were depicted as free of plaque in
the cartoon, giving the children simple feedback on their perfor-
mance. The results of their research indicated a significant im-
provement in brushing performance as a result of the feedback.
Similarly, Ref. [11] used an embedded accelerometer to evalu-
ate toothbrushing performance, using graphical feedback to mo-
tivate better performance. In each of these systems, specialized
hardware was required, such as a specialized toothbrush or an ac-
celerometer. In contrast, in this paper we propose a low-cost sys-
tem built around an off-the-shelf smartphone, which eliminates
the need for most users to purchase any new equipment.

3. Toothbrushing Sensor Data

3.1 Assumed Environment
In our method, users record the sound of their toothbrushing

using their smartphone’s microphone. Figure 1 shows the as-
sumed setup, where the user places his/her smartphone next to
the sink when recording the sound of his/her toothbrushing.

We extracted features from the raw audio data as vectors of
mel-frequency cepstral coefficients (MFCCs). Although MFCCs
were originally designed for use in speech recognition, they have
also been successfully applied to environmental sound recogni-
tion [3]. Figure 2 shows graphical representations of MFCC data
derived from toothbrushing audio. As shown in the figure, the au-
dio characteristics differ when brushing the back teeth from when

Fig. 1 Assumed setup for using a smartphone to record audio from
toothbrushing.
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Fig. 2 MFCC representation of audio data from four toothbrushing activity
classes.

Table 1 HMM classes used for audio recognition.

Outer front teeth, fine (FO-Fine) Outer front teeth, rough (FO-Rough)

Outer back teeth, fine (BO-Fine) Outer back teeth, rough (BO-Rough)

Inner front teeth (FI-Fine) Inner back teeth (BI-Fine)

No toothbrushing activity (None)

brushing the front teeth. Similarly, the characteristics also differ
depending on the technique (or strength) of the brushing stroke.
The quality of a participant’s toothbrushing is dependent on their
stroke technique and on how evenly they brush all areas of the
mouth, e.g., a participant who uses too forceful of a stroke will
be at higher risk of damaging their gums and teeth. By using these
characteristics of the audio data to recognize which regions of the
mouth were brushed along with the brushing technique used, we
can facilitate the evaluation of the user’s toothbrushing.

3.2 Toothbrushing Activity
We use HMMs based on audio characteristics to recognize the

seven toothbrushing activities listed in Table 1. Note that the
classes Inner front teeth, rough and Inner back teeth, rough were
not included in this study, as an insufficient amount of data was
collected for these activities.

In this study, the term inner refers to the inner (i.e., lingual)
surface, the term outer refers to the outer (i.e., facial) surface,
the term front teeth refers to the incisors and canine teeth, and
the term back teeth refers to the molars. The term rough indi-
cates that the stroke used when brushing was too forceful, while
the term fine indicates that a smaller, lighter stroke was used.
(Dentists recommend that a fine stroke, used in brushing methods
such as the horizontal scrub and Fones methods, be used when
brushing one’s teeth, as such a stroke is effective in removing
plaque, while a rougher stroke increases the risk of damaging the
teeth and gums.) The seven toothbrushing activities in Table 1
were chosen because they can be differentiated when perform-
ing recognition by means of audio data and are important when
evaluating the effectiveness of a person’s toothbrushing.

During our investigation, a limitation was found in using audio
data to classify toothbrushing activities. While audio data can be
used to differentiate between brushing the front vs. the back of
the mouth and between brushing the inner surface vs. the outer
surface of the teeth, it cannot be used for more symmetric differ-
entiations such as the left vs. right side or upper vs. lower teeth.
Because of this limitation, some issues can arise when scoring

Fig. 3 Four regions of the mouth used during evaluation of toothbrushing
performance.

a user’s toothbrushing. For example, in the case where a user
brushes their upper front teeth for a long duration, but not their
lower front teeth, the evaluation score for his/her toothbrushing
should be reduced. However, if no distinction can be made be-
tween upper front teeth and lower front teeth, then the resulting
score can be incorrect. The section entitled Computing indepen-

dent variables contains a detailed discussion on ways to address
this issue.

3.3 Toothbrushing Evaluation by a Dentist
Using the audio data collected as described above, we applied

a machine learning approach to evaluate and estimate a score for
the user’s toothbrushing performance. To do this, we needed
training data that could be used to generate score estimates. In
this research, a dentist prepared such training data, allowing for
an evaluation of toothbrushing performance that is based on an
actual dentist’s evaluation. One typical method used by dentists
for evaluating toothbrushing is a plaque test. In a plaque test, a
dentist applies a plaque indicator liquid to the patient’s teeth. This
liquid reacts to the patient’s plaque, staining it so that the plaque
is easily visible. This highlights the plaque left remaining after
brushing, which the dentist then uses as the basis for scoring how
well the patient brushed. While plaque tests are a typical method
of evaluation, preparing a large amount of training data for ma-
chine learning using plaque tests would be costly. Additionally,
because the scores derived from plaque tests are influenced by the
foods eaten prior to testing, the condition of the patient’s saliva,
and the methods of toothbrushing used in the days preceding the
test, plaque tests may not be an ideal test for evaluating isolated
sessions of toothbrushing.

Because plaque tests are unsuitable for a machine learning ap-
proach to evaluation, we instead evaluated the brushing based
on video data. Using the setup illustrated in Fig. 1, we recorded
video data for each session of toothbrushing using a smartphone.
A dentist then evaluated the toothbrushing performance using the
video data, and assigned evaluation scores for each session of
toothbrushing, assigning scores for each of the four regions of
the mouth depicted in Fig. 3. These scores were then combined
with audio data extracted from the videos to build the score esti-
mation models. Because the dentist evaluated the toothbrushing
performance based only on video data, the resulting score was in-
dependent of other factors such as what was eaten prior to the test
or the condition of the subject’s saliva.
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The evaluation of each of these four regions was conducted
based on the following three criteria:
- Coverage: Did the brushing evenly cover the entire region?
- Stroke: Was the motion of the brush a fine stroke (good) or a
rough stroke (poor)?
- Duration: Was the region brushed for a sufficient amount of
time?

Researchers in the field of dental care instruction consider each
of these criteria to be important for plaque removal. For a given
region, we award up to 2 points for each of these criteria, with 2
points awarded if a criterion is fully satisfied, giving a maximum
score of 6 points per region. Combining the scores for all four
regions gives a maximum score of 24 points per session.

3.4 Relationship between Video-based Evaluation Scores
and Plaque Test Scores

During this study, an experiment was conducted to examine
whether our video-based evaluation can adequately evaluate how
well a user is removing plaque. Since plaque tests are a standard
test used in evaluating plaque removal, we conducted an exper-
iment in which we evaluated the toothbrushing of several users,
with each session of toothbrushing evaluated using both a plaque
test and a video-based evaluation. In this experiment, 14 subjects
were videoed while brushing their teeth using the setup depicted
in Fig. 1. After brushing their teeth, a dentist then performed a
plaque test on each subject, applying a plaque indicator liquid
to each subject’s teeth and calculating a score based on the test
results. After this, the videos were then used to conduct a video-
based evaluation. In this way, we were then able to measure the
correlation between our video-based evaluation scores and plaque
test scores, giving us an indication of how well our method is
evaluating plaque removal.

The experiment was conducted over two days, using the fol-
lowing procedure. On the first day, the subjects brushed their
teeth using the setup depicted in Fig. 1. Then, a dentist performed
a plaque test on each subject, calculating a plaque score based
on the results. On the second day, a dentist instructed the sub-
jects on how to properly brush their teeth. This instruction was
deemed necessary to facilitate the collection of data with high
performance scores, after observing that many of the participants
achieved poor performance scores on the first day. After the in-
struction, the subjects brushed their teeth and a plaque score was
calculated. Finally, all videos were evaluated using this study’s
criteria to assign scores, and the video-based score for each ses-
sion was compared to the corresponding plaque score for each
session.

Figure 4 shows the relationship between plaque scores and
the video-based evaluation scores. For plaque scores, the score
decreases as the amount of plaque left after brushing decreases,
with low scores indicating good brushing behavior. On the other
hand, the scores used in this study use a 24-point scale with
higher values indicating better toothbrushing behavior. Figure 4
shows that the plaque scores and the scores used in this study
have a strong negative correlation, with a correlation coefficient
of −0.76. However, in several instances of toothbrushing, there
was a shift between the plaque scores and the video-based scores.

Fig. 4 Comparison of plaque test scores and video-based evaluation scores
from 28 sessions of toothbrushing.

One possible explanation for this shift is the additional outside
influences that affect only the plaque score, such as the effects
of foods eaten prior to the test. Nevertheless, for most sessions
of toothbrushing, the plaque score and the scores used by this
study were strongly correlated. Based on this, we believe that our
study’s scoring method is able to assign scores that closely cor-
respond to the de facto standard plaque score without applying
plaque indicator liquid. Using this method, we are able to eas-
ily prepare the large amount of toothbrushing scores needed for a
machine learning approach through the use of video data.

4. Proposed Method

4.1 Naı̈ve Architecture
The basic procedure used in this study starts with using HMMs

to recognize toothbrushing activities in audio data. We then
generate independent (explanatory) variables from those recogni-
tion results, using these independent variables to build regression
models for estimating scores for sessions of toothbrushing activ-
ity. Both the audio data used to train the HMMs and the evalu-
ation scores used to train the regression models are collected in
advance, without the need for any labeled training data from the
target users. In our method, we adapt the HMMs to each target
user using raw unlabeled audio collected from the end user during
normal use.

In our simplest implementation, we use an HMM set that has
seven HMMs (corresponding to all seven classes from Table 1) to
recognize toothbrushing activities in the audio data, which corre-
sponds to HMM-7 in Fig. 5. The architecture for this implemen-
tation is depicted in Fig. 6. It starts by using HMM-7 to perform
audio recognition, and then uses the output from HMM-7 to gen-
erate the independent variables for its regression model. Finally,
the regression model outputs a score from 0 to 24, representing
an overall evaluation of the user’s brushing across all four areas
of the mouth.

However, in order to provide a user with an assessment of vari-
ous aspects of their brushing, it is necessary to estimate the scores
in more detail. Figure 7 shows a more complex version of the
naı̈ve architecture that estimates six separate scores (each rang-
ing from 0 to 4), three scores each for the front teeth and back
teeth, with those three scores corresponding to the three criteria:
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Fig. 5 The four basic HMM sets with varying granularity. HMM-7 has all
seven toothbrushing activity classes. HMM-5 removes the distinc-
tion between fine stroke and rough stroke, resulting in five classes.
HMM-RF and HMM-FB both simplify the classes down to three
each.

Fig. 6 Simple architecture for estimating a total score per session.

Fig. 7 Naı̈ve architecture: Uses the same seven-class HMM set (HMM-7)
to generate independent variables for all regression models.

coverage, stroke, and duration. For example, the Front Coverage

score represents the total coverage score for both the upper front
teeth and the lower front teeth, including both the inner and outer
surfaces. For even more detailed scores, an architecture could fur-
ther differentiate between the inner and outer surfaces to give 12
separate scores (each ranging from 0 to 2), corresponding to the
three criteria for each of the four regions of the mouth, e.g., Front

Inner Duration and Front Outer Duration. (Note that, in general,
an architecture that provides scores in finer granularity has higher
estimation errors. Therefore, the decision of which architecture
to apply to an application should consider both the granularity of
scores required and the estimation accuracy required.)

However, the naı̈ve architectures described above have the fol-
lowing issues:
- Accurate classification of toothbrushing activities into seven
classes is difficult, and in the case of some architectures it is un-
necessary. For example, the architecture in Fig. 7 estimates scores
for only two regions, front teeth and back teeth. In this case, dis-
tinguishing between all seven toothbrushing activities may be un-
necessary for score estimation, and more accurate estimates are
possible by using a coarser set of classes without the inner sur-

face and outer surface distinction.
- Each of the regression models estimates scores using the clas-
sification results from the same HMM set, but the usefulness of
the toothbrushing activity classes varies for the different regres-

Fig. 8 Proposed architecture: Uses a separate group of eight HMM sets for
each regression model, with each group made up of the four basic
HMM sets (HMM-7, HMM-5, HMM-RF, and HMM-FB) and four
HMM sets that have been tailored to the regression model.

sion models. For example, when estimating the coverage score
for the back teeth, activities related to the front teeth have less
importance while activities such as BI-Fine and BO-Fine should
be recognized as accurately as possible. By using a coarser set
of classes depending on the needs of the regression model, more
accurate results can be achieved.

4.2 Overview of Proposed Approach
In the proposed method, we solve the problems with the naı̈ve

architectures described above by preparing separate HMM sets
for each of the regression models used for score estimation, as
is shown in Fig. 8. For example, in Fig. 8, we prepare a special-
ized HMM set for the regression model that estimates a score for
Front Duration. Each of the HMM sets generated is specialized
to its regression model, in order to increase the estimation ac-
curacy of the regression model. Specifically, we automatically
discover which toothbrushing activities are useful for estimating
the score in question and then generate an HMM set that focus on
only those classes. When doing so, we ignore activity classes that
are not considered useful for estimating the score. The recogni-
tion results from this reduced model set are then used to build the
regression model for that score.

We can divide the procedure for constructing the architecture
for score estimation into three steps:
(1) Identify which toothbrushing activity classes are important
when estimating each score.
(2) Generate HMM sets for accurately recognizing those impor-
tant classes.
(3) Build a regression model for estimating each score using the
recognition results of those HMM sets.
Each of these steps is explained in detail below.

4.3 Discovering Useful Toothbrushing Activity Classes
As discussed above, the usefulness of toothbrushing activity

classes varies according to different evaluation criteria. In this
study, we use regression models to estimate the evaluation crite-
ria, extracting independent variables from the audio recognition
results, e.g., an independent variable for the total duration of seg-
ments recognized as belonging to the FI-Fine class. In order to
determine the usefulness of the activity classes, we first use the
training data to evaluate the usefulness of each of the indepen-
dent variables in estimating each of the evaluation criteria. Using
the results of this evaluation, we can then determine which tooth-
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brushing activity classes are useful for each of the evaluation cri-
teria. For example, if we determine that many of the independent
variables calculated using the results from the FO-Fine class are
useful for estimating a given score, then we consider the FO-Fine
class to be useful for estimating that score.

We start by evaluating the independent variables using the
RReliefF algorithm [22], a feature selection algorithm which is
used to determine the relevance of features to a given regression
task. Given n instances of data, each with a set of feature values
F (independent variables) along with a predicted value (depen-
dent variable), RReliefF works by randomly selecting m of the n

instances and then determining the k nearest neighbors for each
of those m instances. The ith feature fi is assigned a weight based
on the degree to which the value for fi for each random instance
differs from the values for fi for the random instance’s k nearest
neighbors, relative to how much the predicted value for the ran-
dom instance differs from those of its k nearest neighbors. In sim-
pler terms, a feature’s weight is increased if it discriminates be-
tween neighboring instances with differing predicted values and
is decreased if it separates neighboring instances with similar pre-
dicted values. These weights indicate the importance of the fea-
ture fi to the regression task and approximate the difference of
probabilities [22]:

W( fi) = Pr(FDi | PD) − Pr(FDi | PS ),

where FDi means that the values for fi for neighboring instances
differ, PD means that the predicted values for neighboring in-
stances differ, and PS means that the predicted values for neigh-
boring instances are similar. Using the weights calculated by
RReliefF for each of the features, we can then determine the use-
fulness of the set of toothbrushing activity classes C for a given
evaluation criterion. The usefulness Uc of a toothbrushing ac-
tivity class c ∈ C is calculated by summing the weights for Fc,
where Fc is the subset of F consisting of the features that are
computed using recognition results from the toothbrushing activ-
ity class c:

Uc =
∑

f∈Fc

W( f ).

Since the weights output by RReliefF can be either positive or
negative, we first perform feature scaling on all weights W( fi)
so that they fall in the range [0, 1] prior to computing Uc. After
computing Uc, we then normalize the values in Uc to sum to 1.

4.4 Tailoring HMM Sets to Improve Score Estimates
Using the method described in the previous subsection, we can

determine which toothbrushing activity classes are useful for es-
timating scores for a given evaluation criterion. Using this in-
formation, we can determine which classes are most useful and
make an HMM set using only those useful classes. As mentioned
previously, in the naı̈ve approach there are two issues that arise
from using the same HMM set when estimating all the evaluation
criteria: (1) Depending on the architecture being used, it may not
be necessary to recognize the activities on as fine a scale as with
all seven activity classes. (2) Depending on the score being esti-
mated, the ideal set of activity classes to use in the HMM set may

not include all seven classes. We address the first of these issues
by generating four basic HMM sets that have varying granularity
(see Fig. 5 for a graphical depiction of these sets):
- HMM-7: A seven-class HMM set generated using all seven
toothbrushing activity classes.
- HMM-5: A five-class HMM set generated using the classes
outer surface of front teeth, outer surface of back teeth, inner

surface of front teeth, inner surface of back teeth, and no activity

(None).
- HMM-FB: A three-class HMM set for distinguishing between
the front and back teeth, generated using the classes front teeth,
back teeth, and no activity.
- HMM-RF: A three-class HMM set for distinguishing between
stroke types, generated using the classes rough stroke, fine stroke,
and no activity.

We address the second of the issues with the naı̈ve architectures
by generating a tailored HMM set from each basic HMM set, us-
ing the method described in the previous subsection to compute
the usefulness Uc of each class c ∈ C as the basis for generat-
ing HMM sets tailored for estimating each score. We determine
which classes to include by setting a threshold T = 1/ |C|, where
|C| is the total number of toothbrushing activity classes included
in a basic HMM set. We then only include the class c in the
new model set if Uc ≥ T . Thus, in our proposed method, we
attempt to improve the recognition performance for the useful ac-
tivity classes by ignoring unnecessary activity classes. For exam-
ple, starting with the HMM-7 above, in the case where the classes
FO-Fine, FO-Rough, BO-Fine, BO-Rough, and None are deter-
mined to be unnecessary, we would combine those classes into a
single Others class and create a three-class HMM set consisting
of the classes: FI-Fine, BI-Fine, and Others. By doing so, we
can then increase the recognition performance of the more useful
classes FI-Fine and BI-Fine.

In our proposed method, we then estimate scores using a com-
bination of eight HMM sets, the four basic HMM sets from Fig. 5
and four tailored HMM sets that are generated from each of the
four basic HMM sets (HMM-7, HMM-5, HMM-RF, and HMM-
FB) and are tailored to the score being estimated.

4.5 Toothbrushing Activity Recognition
Using the method described in the previous subsection to se-

lect the classes used in each of our HMM sets, we then generate
the HMMs used for toothbrushing activity recognition.
4.5.1 Feature Extraction

In this study, we use MFCCs to recognize toothbrushing ac-
tivities, as MFCCs have been reported to be one of the bet-
ter transformation schemes for environmental sound recogni-
tion [3], [4]. We extract MFCCs using the hidden Markov model
toolkit (HTK) [26]. We compute a 12-order MFCC, along with
the log energy for the window and the corresponding 13-order
delta and 13-order acceleration coefficients, giving a vector of 39
values in total.
4.5.2 Recognition with HMMs

Our method uses HMMs to recognize toothbrushing activ-
ity classes in audio data, with our HMMs implemented using
HTK [26]. Figure 9 shows an example of the 10-state left-to-right
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Fig. 9 10-state left-to-right HMM used to represent toothbrushing activi-
ties. The first and last states are non-emitting. The dashed lines show
an example of how hidden states could be matched with individual
MFCC vectors using such an HMM.

HMM used for each class, e.g., FO-Fine. The observed variables
for the models are the vectors of 39 MFCC-based coefficients.
These models are tied together across sessions of toothbrushing
audio using the isolated word grammar depicted in Fig. 10. Using
this grammar, our system allows for any sequence of toothbrush-
ing activities to occur in a session of toothbrushing, so users do
not need to brush their teeth in a predetermined order.

As was mentioned in the introduction, the model of toothbrush
and the shape of the user’s mouth can affect the sound made when
brushing his/her teeth, so the audio obtained for the toothbrush-
ing activities will differ per user. In order to cope with this is-
sue, we also employ an unsupervised version of the maximum
likelihood linear regression (MLLR) adaptation method [9], [18]
to shift the output distributions of the initial toothbrushing ac-
tivity models (HMMs) using the target user’s data, so that each
state in the HMMs is more likely to generate the target user’s
data. MLLR adaptation works by creating a transformation ma-
trix which can be used to transform a user-independent HMM
set, which is trained on other users’ labeled data, to more closely
match the target user’s unlabeled data. That is, we shift the output
distributions of the initial toothbrushing activity models (HMMs)
using the target user’s data, so that each state in the HMMs is
more likely to generate the target user’s data. A new estimation
of the adapted mean vector μ̂ is given by

μ̂ = Aμ + b =Wξ,

where μ is the initial mean vector for the output distributions, A is
a k×k transformation matrix, where k is the number of dimensions
of the feature vector (k = 39), b is a bias vector, W is a k× (k+ 1)
transformation matrix that is decomposed into W = [b A], and
ξ is the extended mean vector ξ = [1 μ1 μ2 · · · μk]T . Using
this equation, we can estimate a W that reduces the mismatch be-
tween the initial models and the user’s unlabeled data using the
EM technique.

In order to perform MLLR on the unlabeled data collected
from the end-users, we first perform recognition of the target
user’s audio using unadapted HMMs. We then use the labels es-
timated by the unadapted HMMs to label the target user’s audio,
and run MLLR using the now labeled target-user audio, giving
us our adapted HMMs. We then use these HMMs to recognize
toothbrushing activities over full sessions of audio data using
the Viterbi algorithm [21], finding the most probable sequence
of toothbrushing activity classes across the session. Using these
recognition results, we can then compute the independent vari-
ables used in the regression models.

Fig. 10 Isolated word grammar used for toothbrushing activities in our
HMMs.

4.6 Estimating Scores
4.6.1 Computing Independent Variables

Using the adapted HMMs, it is possible to recognize which
toothbrushing activities were conducted in a session of audio
data. For example, by using HMM-7, it is possible to detect that
the activity FO-Rough was conducted in the interval from 3.4 sec
to 8.9 sec from the start of the audio. Using recognition results
such as this, we can compute independent variables for use in the
regression models for score estimation. For the first set of inde-
pendent variables, we create a variable for each of the activity
classes in our HMM sets, excluding the None and Others classes.
Each of these variables is computed as the total duration of its
corresponding toothbrushing activity in the recognition results.

We then compute a second set of independent variables to help
cope with a limitation we encounter when estimating scores us-
ing audio data. This limitation comes from the difficulty in dis-
tinguishing between the upper and lower teeth and between the
right and left sides of the mouth. Because of this limitation, it is
difficult to determine whether an activity was conducted evenly
across both the upper and lower teeth or across both the back-left
and back-right sides of the mouth. Take for example the case
where a user brushes only their upper teeth. In this case, we
expect that features extracted from the audio data will not vary
greatly over the course of the activity. On the other hand, if the
user had brushed both the upper and lower teeth, then we would
expect the features to vary more. Based on this idea, we generate
additional independent variables corresponding to the variance of
feature values across a given activity, generating one such inde-
pendent variable for each of the features (MFCCs).
4.6.2 Estimating a Score for Each Criterion

Finally, using these independent variables, we estimate the
evaluation scores using regression analysis. We first perform di-
mensionality reduction using the WEKA implementation of the
Random Projection algorithm [6], [12] to reduce the number of
variables down to 10. Using these 10 independent variables,
we then estimate scores using WEKA’s support vector machine
(SVM) algorithm for regression, using the sequential minimal
optimization (SMO) algorithm to analytically solve the dual opti-
mization problem (W(α)) that is used to train the SVM [12], [24]:

max
α

W(α) =
�∑

i=1

αi − 1
2

�∑

i=1

�∑

j=1

yiy jk(�xi, �x j)αiα j,

0 ≤ αi ≤ C, ∀i,
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�∑

i=1

yiαi = 0,

where each α is a Lagrange multiplier, �xi is the ith of � input vec-
tors, yi is the target value for the ith input vector, k(�xi, �x j) is a
kernel function, and C is a complexity constant (a tunable param-
eter) [20].

5. Evaluation

5.1 Data Set
In this study, we gathered a total of 94 sessions of toothbrush-

ing audio from 14 participants. All audio data was collected
with a smartphone microphone using the setup depicted in Fig. 1.
The audio was collected as WAV files with a sampling rate of
44.1 kHz. The average time for each session of toothbrushing
was approximately 94 seconds.

The study was conducted over the course of three months, with
the data collected in a quiet environment, either in the bathroom
of our graduate school building or in the bathroom in a partic-
ipant’s own home. Both environments included normal back-
ground noises, such as the sound of air conditioning units and
fans. All participants used manual toothbrushes, either their own
toothbrush or a toothbrush provided by our lab. During the course
of the experiment, each participant received instruction from a
dentist on proper toothbrushing technique. All sessions were
evaluated using video data as was described in Section 3.3. Fig-
ure 11 shows the distribution of scores for the sessions. The au-
dio data was labeled using the corresponding video data for each
session, with each label corresponding to one of the classes of
toothbrushing activity described in Section 3.2.

Additionally, this study included an investigation on the effects
of background noise on toothbrushing activity recognition. In this
study, we collected five sessions of audio while running a hair
dryer in the background near the smartphone used to collect the
audio. We tried to cope with the background noise by employing
Cepstral Mean Normalization (CMN), which is an additive noise
cancellation technique that is used widely in speech recognition
studies [8], [26].

5.2 Experiment Parameters
The 39 MFCC-based coefficients were computed based on a

26-channel filterbank over a window of 50 ms with 50% overlap,

Fig. 11 Distribution of scores for the dataset.

windowed using a Hamming window. We applied energy nor-
malization, cepstral liftering with a coefficient of 22, and a first
order preemphasis with a coefficient of 0.97.

The HMMs used in this study were 10-state left-to-right mod-
els with output distributions represented by 32 Gaussian mixture
densities.

The target number of dimensions used for the random projec-
tions algorithm was 10. Additionally, we used a random seed of
42 and the Sparse1 distribution to calculate the projection matrix,
with Sparse1 computed as ri j =

√
3×(±1 with probability 1

6 each,
0 with probability 2

3 ).
For the SMO regression algorithm, we normalized all at-

tributes, set the complexity constant to 1.0, set the tolerance
parameter to 0.001, set the epsilon parameter in the epsilon-
insensitive loss function to 0.001, set the epsilon round off error
to 1.0 × 10−12, set the random number seed to 1, and used the
linear kernel:

k(x, y) = xᵀy,

with a cache size of 250,007.

5.3 Evaluation Methodology
In order to investigate the effectiveness of the proposed

method, we prepared the following methods:
- Avg: A baseline method in which we estimated a user’s scores
using the average scores for all other users. This method was
chosen to represent a low baseline for comparison with the other
methods.
- SHMM: A naı̈ve approach in which we prepared only a sin-
gle HMM set (HMM-7). Otherwise this method was the same as
the proposed method. This method represents a straightforward
implementation of our proposed system for toothbrushing evalu-
ation.
- SHMM100: A modified version of the SHMM method in which
we built the regression models using corrected labels instead of
actual audio recognition results, i.e., this method simulates 100%
recognition accuracy for HMM-7. This method represents an up-
per bound on performance for a straightforward implementation
of our proposed system.
- MHMM: A baseline method in which we prepared the four
basic HMM sets from Fig. 5, but did not prepare any tailored
HMM sets. Otherwise this method was the same as the proposed
method. This method was chosen as a means to compare the ef-
fectiveness of tailoring HMM sets to specific scores versus only
providing multiple HMM sets with varying granularity.
- Proposed: The proposed method, in which we prepared groups
of eight HMM sets for each of the scores, made up of the four
basic HMM sets from Figure 5 and the four tailored HMM sets
generated from those basic HMM sets.

Additionally, we prepared six evaluation architectures to use
when testing these methods. Showing the results across several
architectures allows us to better evaluate the overall performance
of the methods, since each architecture represents a trade-off be-
tween estimation accuracy and usefulness of the scores provided.
- Total (24): Estimated a single score (24-point scale) that repre-
sents the total score for all toothbrushing activity in the session.
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Table 2 Recognition results for basic HMM sets used in this study.

precision recall F-measure

HMM-7 0.457 0.455 0.451
HMM-5 0.485 0.506 0.491
HMM-FB 0.658 0.654 0.652
HMM-RF 0.677 0.692 0.684

- CSD (8): Estimated three scores (8-point scale), one for each of
the evaluation criteria: coverage, stroke, and duration. For exam-
ple, a single score was output for stroke, representing the stroke
quality for the entire session.
- FB (12): Estimated two scores (12-point scale), one for the front
teeth and one for the back teeth.
- FB x CSD (4): Estimated six scores (4-point scale), correspond-
ing to each of the three evaluation criteria for both the front teeth
and back teeth. For example, a score was output for the duration
criterion for the front teeth.
- IO x FB (6): Estimated four scores (6-point scale), one for each
region of the mouth: outer surface of front teeth, inner surface of
front teeth, outer surface of back teeth, and inner surface of back
teeth.
- IO x FB x CSD (2): Estimated 12 scores (2-point scale), cor-
responding to each of the three evaluation criteria for each region
of the mouth. For example, a score was output for the duration
criterion for the outer surface of back teeth.

All methods were evaluated using leave-one-user-out cross val-
idation. That is, when using a user’s data as the test data, the train-
ing data consisted of the data collected from other users. How-
ever, when conducting MLLR adaptation, the adaptation data
consisted of the current user’s data (excluding the session being
tested). Accuracy was measured using the mean absolute error
(MAE) and error ratio. The MAE was calculated using:

MAE =
1
n

n∑

i=1

|ei|,

where ei is the error for the ith estimate.
The error ratio was calculated using MAE/MaxScore, where

MaxScore is the maximum score possible for a given architec-
ture. For example, MaxScore = 24 for the Total architecture and
MaxScore = 12 for the FB architecture.

5.4 Audio Recognition Results
5.4.1 Audio Recognition by Basic HMMs

Table 2 shows the recognition results for each of the ba-
sic HMM sets used in this study (see Fig. 5), using the macro-
averaged F-measure as the performance metric. Both HMM-7

and HMM-5 had similar results, with F-measures of 0.451 and
0.491 respectively. Both HMM-FB and HMM-RF had compara-
ble results, achieving average F-measures of 0.652 and 0.684, re-
spectively. In all cases, recognition accuracy is well below 100%,
but still high enough to gain a significant amount of information
about the location and brush stroke that corresponds to the audio
data.
5.4.2 Audio Recognition by Tailored HMMs

In order to confirm the effectiveness of our proposed method
when creating tailored HMM sets for audio recognition, we first
compare the recognition results for the tailored HMM sets with

Table 3 Change in recognition accuracy (%) for useful classes from the
basic HMMs to the HMMs generated by the proposed method.

Δ precision Δ recall Δ F-measure

HMM-7 −1.9 10.8 4.1
HMM-5 −5.9 9.2 0.3
HMM-FB 0.0 0.0 0.0
HMM-RF 0.0 0.3 0.2

Table 4 Recognition results for basic HMM sets when background noise is
present.

precision recall F-measure

HMM-7 0.171 0.219 0.187
HMM-5 0.344 0.359 0.349
HMM-FB 0.516 0.576 0.524
HMM-RF 0.366 0.406 0.326

those for the basic HMM sets. Table 3 shows the percent change
in average precision, recall, and F-measure when switching from
the four basic HMM sets to the tailored HMM sets generated us-
ing our proposed method. As is seen in these results, in HMM-

7 and HMM-5 there was a large improvement in recall, but a
slight deterioration in precision, resulting in an increase in F-
measure for both, with HMM-7 having the highest increase in
F-measure. On the other hand, little change in performance was
seen for HMM-FB and HMM-RF. For both HMM-FB and HMM-

RF, there were only three classes initially (including the None
class). Therefore, there was little difference between the basic
three-class HMM sets and the HMM sets generated by the pro-
posed method, as it was rare that one of the two classes other than
None was judged useless.
5.4.3 Effects of Noise

Table 4 shows an overall degradation of performance due to
noise, with the F-measures for all sets reduced by at least 29%.
Furthermore, the F-measure for HMM-RF dropped below 0.33,
with the set apparently no longer able to distinguish between the
classes. The reduction in F-measure for HMM-5 appears to be
from an inability to distinguish between the inside and outside
surfaces when noise was present, while it still appeared well able
to distinguish between the front and back teeth.

5.5 Score Estimation Results
5.5.1 Score Estimation Error

Table 5 shows the mean absolute error (MAE) for each archi-
tecture using each of the prepared methods. When looking at
these results, SHMM100 shows the results when the toothbrush-
ing activity recognition was assumed to have 100% accuracy, and
so this is assumed to be the lower bound on score estimation ac-
curacy for a straightforward architecture. Here we observe that
the error for the Total architecture for Avg was about 1.8 times
as high as that of SHMM100. Additionally, when comparing the
SHMM100 results to SHMM, SHMM100 again showed lower er-
ror rates, with an MAE 0.97 points lower than that of SHMM

for Total. Comparing the error for Total for MHMM to SHMM,
MHMM had an MAE that was 0.18 points lower.

Using Proposed, the MAE for Total was reduced by 0.75 points
from that of SHMM. In addition, using Proposed, we were able
to reduce the MAE for Total by over 2 points in comparison to
Avg. Moreover, Proposed was able to achieve the same aver-

c© 2016 Information Processing Society of Japan 310



Journal of Information Processing Vol.24 No.2 302–313 (Mar. 2016)

Table 5 Mean absolute error (MAE) of score estimates for each architecture (columns) for each method
(rows).

Total CSD FB FB x CSD IO x FB IO x FB x CSD Average

Avg 5.48 2.03 3.16 1.16 1.98 0.79 2.43
SHMM 4.07 1.81 2.78 1.13 1.66 0.64 2.02
SHMM100 3.10 1.58 2.61 1.04 1.41 0.58 1.72
MHMM 3.99 1.53 2.56 0.95 1.43 0.55 1.84
Proposed 3.32 1.49 2.52 0.93 1.45 0.58 1.72
Proposed w/o var 4.25 1.53 2.74 0.95 1.38 0.56 1.90

Table 6 Error ratio (%) of score estimates for each architecture (columns) for each method (rows).

Total CSD FB FB x CSD IO x FB IO x FB x CSD Average

Avg 22.9 25.4 26.3 29.0 33.1 39.3 29.3
SHMM 16.9 22.7 23.1 28.2 27.7 31.8 25.1
SHMM100 12.9 19.8 21.7 26.1 23.6 29.2 22.2
MHMM 16.6 19.1 21.3 23.8 23.8 27.5 22.0
Proposed 13.8 18.6 21.0 23.3 24.1 29.1 21.7
Proposed w/o var 17.7 19.2 22.8 23.6 23.0 27.8 22.4

age MAE across the architectures as SHMM100. In comparison
to SHMM100, which had a recognition accuracy of 100%, the
recognition accuracy for the HMM results in Proposed was much
lower. However, by preparing HMM sets that were built using
HMMs considered useful to each recognition task, Proposed was
able to compensate for its lower recognition accuracy. Looking
across all the architectures shown in Table 5, Proposed achieved
a much lower MAE than Avg for all the architectures, achieving
accuracies similar to those of SHMM100.

Table 6 shows the error ratios for the estimates for each ar-
chitecture using each of the prepared methods. Here, error ratios
are computed as the MAE divided by the maximum score, e.g., an
MAE of 2.4 for a 24-point scale would have an error ratio of 10%.
It can be seen that overall the Proposed method reduced error ra-
tios by about 7.6% on average from those of Avg. Additionally,
Proposed reduced error rates by 3.4% on average compared to
SHMM and by 0.3% on average compared to MHMM.
5.5.2 Effectiveness of Variance Variables

In Tables 5 and 6, Proposed w/o var shows the accuracy of Pro-

posed when we omitted the independent variables corresponding
to the variances of feature values. Without the variance vari-
ables, the average MAE increased by about 0.18 points (0.7%
in terms of error ratios). As was discussed above, by using the
features’ variance, we were able to capture the variation in the
toothbrush’s locations. We believe that including this variance
improved the regression results beyond what is achieved through
using the HMM results alone, because the audio-based HMM re-
sults could not distinguish certain location distinctions such as
upper teeth vs lower teeth. In the case of the CSD architecture, in-
corporating the features’ variance reduced the MAE for the Cov-

erage score from 1.65 to 1.53 and reduced the MAE for the Stroke

score from 1.63 to 1.55. On the other hand, the MAE for the Du-

ration score did increase from 1.32 to 1.38. Despite that small
increase, a large performance improvement was observed overall
by use of variance in this architecture.
5.5.3 Differences in Results between Architectures

As can be seen in Table 6, the error ratio for the Total archi-
tecture was reduced down to 13.8% using the Proposed method,
but as we look at architectures that estimated scores on a finer
granularity, we see that the estimation accuracy degraded. For

example, upon reaching the fine-scale IO x FB x CSD architec-
ture, which estimates scores on a 2-point scale, the error ratio
reached 29.1%. Such an architecture restricts the correct scores
to the discrete values 0, 1, and 2, which increases the error ratio
for estimates.

In the FB architecture, the MAE for the front teeth score was
2.17 while the MAE for the back teeth score was 2.88. This is
in contrast to the HMM recognition results, where accuracies for
classes related to the back teeth were mostly higher than those
for classes related to the front teeth. On the other hand, in the
FB x CSD architecture, the average MAE for the three scores re-
lated to the front teeth was 0.95 while the average MAE for the
three scores for the back teeth was 0.90, a reverse of the situation
with FB. The results in Table 6 show that despite the fact that FB

x CSD provided more detailed estimates than did FB, the error
ratio does not change significantly. Based on these results, we
believe that it probably was not possible to generate a good re-
gression model in FB to estimate the score obtained by summing
the scores for the three criteria.

In FB x CSD, the Duration score averaged across the back and
front teeth had an MAE of 0.74. On the other hand, for Stroke the
averaged score had an MAE of 1.08 and for Coverage it was 1.04.
Just as with the CSD architecture, the Duration score’s MAE is
lower than those of the other criteria, since Duration can be com-
puted directly from the lengths of each activity. As for the IO x
FB architecture, the accuracies for scores related to the inner sur-

face of back teeth were the worst. Among the results for the IO x
FB x CSD, the MAE for the scores related to Stroke were as high
as 0.95. On the other hand, the MAEs for Duration and Cover-

age were 0.51 and 0.73 respectively. When analyzing the results
of audio recognition, we found that the recognition accuracy for
BI-Fine was low, which most likely had a large influence on the
regression results.
5.5.4 Effectiveness of Independent Variables

This section discusses the independent variables that were use-
ful for estimating various scores. We determined the usefulness
for these variables using the RReliefF algorithm described earlier.
Table 7 shows that the variable for the total length of time spent
brushing the teeth with a fine stroke was found to be useful for
the Total architecture. Its usefulness was likely because it pro-
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Table 7 Useful independent variables (top-4) in Total and CSD
architectures.

Total

Total duration of fine stroke
Total duration of back teeth
Variance of back inner teeth

Variance of back inner teeth w/ fine

Coverage

Variance of back inner teeth
Variance of back inner teeth w/ fine

Total duration of fine stroke
Total duration of front

inner teeth w/ fine

Total duration of back teeth
Total duration of fine stroke

Stroke Total duration of back
outer teeth w/ fine

Variance of back inner teeth w/ fine

Total duration of fine stroke
Total duration of back teeth

Duration Total duration of back
outer teeth w/ fine

Variance of front inner teeth w/ fine

vides essential information related to both Stroke and Duration.
For the CSD architecture, the variances of MFCC features across
various brushing locations were useful for estimating Coverage

scores. When estimating Stroke scores, the useful variables were
the total times for fine strokes for various brushing locations. For
Duration, the useful variables corresponded to total times brush-
ing at the various locations.

The results for the other architectures tended to be similar to
those for CSD. However, in the case of the FB architecture, there
were a number of variables judged by RReliefF to be useful that
were only indirectly related to the score being calculated. For ex-
ample, when estimating scores for the front teeth, variables such
as the total time spent brushing teeth with a fine stroke, computed
from HMM-RF results, were found to be useful. It appears that in
many cases, if the total time spent brushing with a fine stroke was
long, then the total time spent brushing the front teeth with a fine
stroke was also long. However, we believe that the inclusion of
such indirectly related independent variables had a negative effect
on the FB architecture, contributing to its poor performance.

6. Conclusion

This paper presented a new method for evaluating toothbrush-
ing performance using audio collected from a smartphone. By re-
quiring only audio data from end users, this method enables users
to evaluate their toothbrushing with little effort. Nevertheless, the
use of audio data for evaluation does have its challenges. Even
after attempts to increase performance through adapting models
to users and tailoring classes to specific evaluation scores, audio
recognition accuracy still ranged from 49% to 68%. However,
despite the difficulties in recognizing toothbrushing activities in
audio data, our experiments indicate that our proposed method is
still able to compensate for the low recognition accuracy, with our
method closely matching the performance of a baseline method
that simulated 100% accuracy in audio recognition results.

The dentists participating in this study consider a system that
does not require specialized equipment and provides feedback
on toothbrushing performance with average error rates as low as
22% to be significant, as no equivalent system is currently avail-

able. They believe that error rates in the range of 20% to 30%
are acceptable, and that the proposed method can be applied to
real-life applications. Furthermore, as we are able to collect more
data to use for training such a system, we believe that we will be
able to provide even more effective toothbrushing guidance with
this method.

Overall, our experiments indicate that our method can achieve
acceptable performance when used to evaluate toothbrushing.
While our current 20% to 30% error rates are believed to be ac-
ceptable for real-life applications, we plan to work to further im-
prove on our method to reduce these error rates. As a part of our
future work, we plan to employ deep learning techniques to dis-
cover useful features tailored for recognizing toothbrushing au-
dio.
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