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Abstract: We propose a multicast tree management method in an OpenFlow controller that handles both fast failure
recovery and dynamic multicast group membership changes. Multicast communication is an efficient tool to distribute
data to many hosts in various services such as live video streaming. To use multicast in such services, multicast
communication must be reliable, which means multicast communication should be restored quickly after failures, and
multicast tree management mechanism should support frequent group membership changes. A conventional approach,
Point to Multipoint (P2MP) MPLS, only supports fast failure recovery for reliability, and is not very effective in terms of
group membership changes. A new approach using OpenFlow supports dynamic group membership changes, but does
not consider fast failure recovery in physical switches whose flow entry modification is slow. Our proposed method
is to control multicast trees centrally, and it uses a precomputation and pre-installation approach for tree management.
A controller calculates and keeps multiple trees that cover all switches where receivers are potentially connected and
that have less common nodes and edges, and installs their sub-trees covering switches where receivers are actually
connected. The controller calculates the difference per tree between sub-trees before and after membership changes,
and reflects them into the network. At the time of failure, the controller checks and finds a pre-installed tree that is
unaffected by the failure, and installs a new rule only to a root switch to send packets through the pre-installed alternate
tree. Our experiments using switches and our prototype controller show that our proposed method can restore packet
delivery quickly after a failure, as well as that our proposed method can handle tree modifications faster than a method
of recalculating or reinstalling a tree every time that group memberships are changed.
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1. Introduction

Multicast is an important communication tool to distribute data
to a number of hosts at the same time with lower bandwidth. Ex-
amples of multicast applications are live video streaming, large
data replication, and news headline distribution to many hosts.

As various devices are connected to IP networks, making mul-
ticast reliable becomes important in private networks such as
campus and enterprise networks, as well as in carrier networks
where conventional approaches is targeted. For example, mul-
ticast is an efficient way to distribute data to many monitors in-
stalled inside buildings and public areas, and to send video to
many receivers for teleconferences and remote lectures.

To use multicast in these scenarios, multicast communication
must be highly reliable and data loss should be minimized while
delivering data in the network. In the network layer, less packet-
loss packet delivery is important even at the time of failures, be-
cause packet loss imposes much overhead on a sender and many
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receivers for data recovery, or degrades quality of services pro-
vided by applications. For example in video streaming, when
frames are lost due to packet loss, video and audio are stopped or
disturbed for a longer time than the duration when frames are lost,
and the distortion gets worse when frames are lost bursty [16]
such as by failures. Such distortion causes obstruction in tele-
conferences and remote lectures.

Private networks should handle many multicast group member-
ship changes because receivers are frequently added or removed
when devices are such as monitors are turned on and off every
day, and a set of receivers is not fixed until a teleconference
or a remote lecture starts. In such networks, it is hard to allo-
cate network resources to deliver multicast packets in advance,
such as packet forwarding rules, and networks should quickly
modify multicast trees according to multicast group membership
changes. Point to Multipoint (P2MP) MPLS, which is used for
reliable multicast packet delivery in carrier networks, is not de-
signed for use in such frequent group membership changes [32],
and has much overhead on routers by the tree setup procedures
in RSVP-TE [2]. A tree manager in P2MP MPLS is proposed to
use more flexible tree management policies by computing multi-
cast trees centrally [4]. Since the tree manager recalculates and
replaces the trees every time that group membership is changed,
the manager cannot handle many group membership changes be-
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cause the tree calculation takes much time and the tree setup by
RSVP-TE imposes much overhead on routers.

Local repair based mechanisms such as MPLS Fast
Reroute [23] and OpenFlow Fast Failover Group [9] can re-
duce packet loss at the time of a failure by rerouting packets
at a switch where a failure is detected, but such mechanisms
sometimes force a network to use non-optimal trees as backup.
The private networks often have a three layered tree topology
(core - aggregation - edge), and redundant routers and switches
are deployed with redundant links. For example, edge switches
provide links to each room in a floor, and have links to two
or more aggregation switches that connect edge switches in a
building. Each aggregation switch is connected to two or more
core switches that connect aggregation switches on campus.
Thus, several optimal multicast trees that can cover different
core and aggregation switches are often available, and the use
of such trees as backup trees is preferred in terms of bandwidth
utilization, latency, etc.

OpenFlow [18] based multicast control schemes have been pro-
posed [17], [33], [34] to support both frequent group member-
ship changes and fast failure recovery. A basic concept of these
works is to calculate a path or a tree in advance or using pow-
erful computing power in OpenFlow controllers, and to modify
flow entries in OpenFlow switches. In terms of fast failure re-
covery, the controller should take account of the time to modify
flow entries in switches in addition to tree computations, because
flow entry modification performance is slow, especially in phys-
ical switches. Huang et al. [12] reported that a flow entry setup
took around 25 msec. When one failure affects several multi-
cast groups, it may require several hundred milliseconds until all
multicast trees are recovered due to slow flow entry modification,
and large packet loss may be observed at receivers. This results
in dropping tens of frames for video, for example. The previ-
ous work for multicast control schemes using OpenFlow does not
consider this performance problem.

In this paper, we propose a multicast tree management method
in an OpenFlow controller (a multicast controller hereafter),
which provides both fast failure recovery for reliable multicast
packet delivery and quick group membership changes. A multi-
cast controller runs outside switches like a tree manager in P2MP
MPLS, and directly controls flow entries regarding multicast
packet forwarding installed in switches. The multicast controller
is responsible for group membership collection from switches,
tree management including computation, setup and modification,
and failure recovery.

To shorten the time to process tree modifications by group
membership changes, the multicast controller adopts a pre-
planned approach. When a multicast group appears in the net-
work, which means that the controller obtains a sender’s IP ad-
dress and a root switch where a sender is connected and that one
or more receivers join in the group, the controller computes and
stores two or more trees. The trees cover all switches to which a
receiver is potentially connected, and the trees share less common
edges and nodes.

When the controller handles a group membership change, the
controller lists switches whose flow entries must be updated by

following each stored tree in the group from the leaf switch where
the group membership change is occured, instead of recalculating
trees. Then, the controller modifies flow entries in the switches
listed. The controller stores per-tree states of nodes and edges
to show whether flow entries to forward packets through corre-
sponding switches and links are installed. The controller changes
these states while following the trees if necessary, stops follow-
ing the tree when the controller finds the node whose state does
not have to be changed, and updates flow entries in switches that
corresponds to nodes the controller has visited while following
the trees.

To shorten the time for failure recovery, the controller installs
multiple trees per group in switches at the same time so that the
controller can also set backup trees in advance. To avoid dupli-
cate packet delivery, the controller assigns a unique ID within a
group to each tree and embeds it into packets, like MPLS labels.
The tree ID for packet delivery is embedded at the root switch
of the tree. The switches other than the root switch have one
flow entry per tree, and forward packets according to the tree ID.
When a failure is detected, in each group, the controller checks
whether the failed switch or link is included in the tree used for
packet delivery. If yes, the controller finds a tree unaffected by
the failure from trees that the controller has already installed in
switches, and changes the tree ID embedded at the root switch
to the new one. In this way, the controller needs to modify only
one flow entry in one switch per group, instead of modifying flow
entries in many switches to replace trees.

We have implemented our prototype system using C and
Trema [27]. We use two trees per group, and the trees share fewer
edges. We embed a tree ID into a source MAC address. Our eval-
uation shows that our proposed method can handle the addition
or the removal of receivers in a short time, and restore packet de-
livery faster than without our proposed method at the time of link
failures even if we consider the use of a physical switch.

This paper is organized as follows. We describe related work in
Section 2. We explain our proposed method in Section 3 and our
prototype controller in Section 4. In Section 5, we present the re-
sults of evaluation experiments. We discuss the evaluation results
and our proposed method in Section 6 and give our conclusion in
Section 7.

2. Related Work

In current IP multicast, a host multicasts or broadcasts
IGMP [8] messages to join in or leave from multicast groups,
and IP routers find multicast receivers by monitoring IGMP mes-
sages. Multicast routing is controlled by PIM-SM [6], PIM-
DM [1], DVMRP [28] or MOSPF [21]. PIM-SM, DVMRP, and
PIM-DM cannot provide fast failure recovery. PIM-SM and
DVMRP construct multicast trees using unicast routes, and they
cannot reconstruct multicast trees until unicast routes are stabi-
lized when a failure occurs. PIM-DM periodically update mul-
ticast trees by flooding multicast packets and pruning the trees,
and the trees are not reconstructed until periodic flooding occurs.
MOSPF distributes group membership information to all multi-
cast routers to compute multicast trees. This behavior is not scal-
able to group membership changes.
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Point to Multipoint (P2MP) MPLS [32] provides reliable mul-
ticast packet delivery with fast reroute and bandwidth guarantee
using MPLS mechanisms, and P2MP MPLS is designed for car-
rier networks. When a failure occurs, the fast reroute function
in P2MP MPLS reroutes the traffic at a router where a failure is
detected, which is called local repair, to reduce packet loss. Li
et al. [14] proposed methods to compute efficient P2MP backup
trees in MPLS networks. Cui et al. [4] proposed to use P2MP
MPLS to implement Aggregated Multicast [7] in IP networks,
and introduced a tree manager to manage multicast trees such as
mapping trees to groups.

P2MP MPLS based solutions are unsuitable when multicast
group membership is frequently changed. P2MP MPLS assumes
that group membership is rarely changed [32]. To modify multi-
cast trees in P2MP MPLS, RSVP-TE [2], which is used to setup
multicast trees in P2MP MPLS, requires the root router of the
tree to send a path setup messages to the leaf routers, and routers
other than the root router must send a response to their upstream
routers. Thus, all routers should process many messages as the
multicast group membership is frequently changed. Multicast ex-
tension to LDP (mLDP) [30] may also be used for P2MP MPLS,
but mLDP does not provide fast reroute functionality.

In terms of tree computation algorithms, a shortest path tree
is used in many unicast and multicast routing, and usually com-
puted by Dijkstra’s [5] algorithm. Médard et al. [19] showed
an algorithm to compute redundant trees in arbitrary vertex-
redundant or edge redundant graphs. Xue et al. [31] extended
Médard’s algorithms to compute redundant trees considering
costs. Mochizuki et al. [20] showed an algorithm to compute a
tree minimizing the number of links included in the tree. Our
proposed method can suppress the execution of tree computation
algorithms and the number of flow entries the multicast controller
should modify in given trees, and the multicast controller can use
any tree computation algorithms including above.

Some tree pre-computation or caching algorithms are also pro-
posed to compute multicast trees faster. Siew et al. [26] pro-
posed a tree computation algorithm by connecting cached trees.
Siachalou et al. [25] showed an algorithm to compute a tree con-
strained by bandwidth. These proposals only consider the com-
putation algorithms, but the execution time for tree modification,
including flow entry modification, is also an important metric in
our work.

There is a great deal of research on reducing data loss in an
application layer. RFC3048 [29] recommends some mechanisms
like NACK based packet loss detection and recovery, and FEC
coding to recover data lost by a few packets. Hasegawa et al. [11]
proposed a system to multicast HD quality videos with non-stop
service availability in carrier networks, which uses buffers in
backup servers near receivers and backup trees controlled by sep-
arate processes from main trees.

There are several works to manage multicast trees using Open-
Flow. OFM [33] proposed a mechanism to manage multicast in
OpenFlow networks using multiple controllers that control dif-
ferent parts of a network. CastFlow [17] proposed to precompute
multicast trees from possible sources to receivers, and to store
a list of links included in the trees for fast processing of group

membership changes. Zou et al. [34] used OpenFlow to imple-
ment authentication of receivers when a receiver joins in a group.
These schemes provide how to manage multicast trees in the con-
troller, but they do not consider how to setup multicast trees to
switches in a short time, which is an important aspect for failure
recovery in OpenFlow networks because of slow flow entry setup
performance in physical switches. Huang et al. [12] reported that
one physical switch took 25 msec to modify a flow entry. If
a single failure affects multicast trees of several groups, it may
take hundreds of milliseconds until the trees used by all groups
are recovered, which is longer than conventional approaches like
MPLS fast reroute.

Li et al. [15] proposed to manage multicast groups separately
in data centers, but their work can be applied only to multi-rooted
tree networks. Capone et al. [3] proposed an algorithm to reroute
multicast traffic with zero packet loss by their own extension
called OpenState. Although their mechanism cannot work with-
out modification of switches to OpenState capable ones, their al-
gorithm can be used to compute multicast trees in our proposed
mechanism. Gyllstrom et al. [10] proposed a similar multicast
tree recovery scheme with our proposed mechanism, but their
work cannot directly applied to private networks where group
membership is frequently changed because they implicitly as-
sumed that a set of receivers is static. Our previous work [13]
measured the packet loss and the tree switching time using our
prototype multicast controller, but its evaluation was done with a
small network, and did not show how our proposed mechanism
improved the processing time in the controller.

In terms of failure recovery in OpenFlow networks, OpenFlow
1.1 [9] and later define a Fast Failover Group feature to reroute
traffic at a switch where a link failure is detected (local repair).
This feature allows controllers to specify actions applied to pack-
ets when a specific port or group is down, such as outputting
to another port. The fast failover group feature is used for fast
rerouting of paths [24], but local repair using the fast failover
group feature is not suitable for failure recovery of multicast trees.
Controllers should prepare for backup multicast trees per switch,
and switches should have flow entries for each backup trees. This
dramatically increases the number of flow entries in switches. In
addition, backup multicast trees created by local repair are some-
times inefficient in terms of bandwidth utilization or latency in
networks. For example, if one link between an aggregation switch
and an edge switch in a three layered tree network is down, and
multicast traffic gets through a core switch, it would be better to
reroute traffic to another core switch near the root of the tree, oth-
erwise multicast traffic may go through multiple core switches
because of a reroute at the aggregation switch where the failed
link is connected.

3. Tree Management Method

In this section, we explain the relationship between a multicast
controller and switches, and how to manage multicast trees in a
multicast controller.

Figure 1 shows a relationship between switches and our mul-
ticast controller. Each host is attached to one of the switches,
and the controller manages flow entries regarding multicast in
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Fig. 1 Relationship between switches and multicast controller.

switches through OpenFlow channels.
To calculate and manage multicast trees, the controller must

collect network topology, and find where senders and receivers
are connected. The controller has a database to store network
topology as a graph, a state of multicast trees, and multicast
group membership including senders and receivers. Switches
send packets that are related to group membership changes to the
controller, such as IGMP messages that receivers send, and pack-
ets sent to unknown multicast groups. The switches also send
other events to the controller, like port down or up. When the con-
troller receives such events, the controller updates its database,
and modifies flow entries in switches if needed.

When a group membership is frequently changed, the con-
troller should be overloaded due to calculation of new trees that
reflect changes, and some switches should also be busy updat-
ing their flow entries. To reduce the loads, we propose that the
controller computes and stores trees covering all switches that re-
ceivers may be connected to, and uses them to extract switches
whose flow entries should be updated to reflect changes. We de-
scribe the details in Section 3.1.

When a failure is notified to the controller, the controller should
recalculate the trees that do not include failed links or switches,
remove the existing trees from switches to avoid duplicate de-
livery of multicast packets, and install the new trees in switches.
There are several time-consuming tasks such as tree computation,
installing, and uninstalling trees in switches. These tasks make
the packet loss duration longer. We propose that the controller
calculates and installs redundant trees when a group membership
is changed, and the controller can switch the tree to deliver pack-
ets at the time of failure. The details are explained in Section 3.2.

In the following, we use the terms “switch” and “link” to point
out physical entities that construct a network, and “node” and
“edge” as internal data structure of switch and link in the con-
troller. Each node and edge corresponds to each switch and link.
“Root node” or “root switch” represents a node or a switch where
a sender is connected, and “leaf node” or “leaf switch” is a node
or a switch where a receiver is connected.

3.1 Tree Update when Group Membership Changes
Processing group membership changes quickly is a key to han-

dle many group membership changes in the controller. This pro-
cess includes three steps: (1) updating the group membership
database in the controller, including switches and ports where
senders and receivers are connected, (2) computing how multicast
trees must be updated, and (3) updating flow entries regarding
multicast in switches. We explain the group membership database
in Section 3.3. To handle group membership changes quickly, we
need to reduce time-consuming tasks, such as tree computations
in the controller, and flow entry modifications in switches.

Our approach is to calculate multiple trees per group. Each tree
covers all nodes where receivers may be connected, and is stored
in the tree database in the controller. The trees are calculated
when both a sender and one or more receivers appear. The trees
are deleted when neither sender nor receiver exists in a group.
The controller maintains and modifies tree data as below.

In order for the controller to extract switches whose flow
entries should be modified, the controller should know which
switches have flow entries used for forwarding multicast pack-
ets. A simple way to do this is to query switches to send flow
entries regarding multicast forwarding to the controller, but this
brings much overhead such as delay until the controller receives
all responses. We store such state in the controller by defining
a subtree of each tree. The subtree covers a sender and all re-
ceivers, and is installed in switches to deliver packets. Each node
and edge in the tree has a flag that indicates whether the node or
edge is included in the subtree. The flag is on when the corre-
sponding switch or link is in the subtree (the active state), and the
flag is off when the corresponding one is not in the subtree (the
inactive state).

When a new receiver is added to a group, firstly the controller
retrieves the trees used by the group from the database, or cal-
culates the trees and stores them to the database. Then, for each
tree, the controller executes Algorithm 1 to include the new leaf
node, where the new receiver is connected, in the subtree, and to
list nodes whose corresponding switches must update their up-
date flow entries (update nodes in Algorithm 1). The controller
follows the tree to the root node from the new leaf node until
the controller visits the active node. While following the tree, the
controller changes a state of visited nodes and edges to active, and
adds the visited nodes to the list of nodes whose corresponding
switches must update their flow entries. When adding a node to
update nodes, edges to the parent node and to the child nodes
that are active are also saved in the list, and this data is used
for constructing new flow entries. Then, the controller fetches
edges that are not directly related to the tree, such as edges to
a sender and to receivers, from the group membership database
in Section 3.3, and updates flow entries in the switches whose
corresponding nodes are in update nodes. The flow entries are
updated in the order of update nodes so that packets are trans-
mitted after all switches are ready to deliver. For the trees other
than the tree used for packet delivery, the controller does not in-
stall any flow entry in the root switch, so that the flow entry does
not override the flow entry installed by the tree used for packet
delivery.

The process of removing a receiver from a group is similar to
the process of adding a receiver. Firstly, the controller retrieves
the trees used by the group from the database. Then, for each
tree, the controller executes Algorithm 2 to list nodes whose cor-
responding switches must update their flow entries to remove the
receiver. The controller follows the tree from the leaf node where
the receiver is connected until the controller finds the node that
has other receivers or child nodes that are active. While follow-
ing the tree, the controller sets a state of visited nodes and edges
to inactive except the node that the controller stops following the
tree, which must be active. Finally, the controller updates or re-
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Algorithm 1 Algorithm to list nodes when adding a new receiver
update nodes = []

node← a leaf node where a new receiver is attached

append node to update nodes

while a state of node is inactive do

set a state of node to active

if node’s parent node exists then

set a state of the edge between node and node’s parent node to active

append node’s parent node to update nodes

node← node’s parent node

else

break

end if

end while

Algorithm 2 Algorithm to list nodes when removing a receiver
update nodes = []

node← a leaf node where a receiver is left

append node to update nodes

while no child node of node is active and node has no receiver do

set a state of node to inactive

if node’s parent node exists then

set a state of the edge between node and node’s parent node to inac-

tive

append node’s parent node to update nodes

node← node’s parent node

else

break

end if

end while

Fig. 2 An example of processing multiple trees.

moves flow entries in the switches whose corresponding nodes
are in update nodes. The flow entries are updated or removed in
the reverse order of update nodes to stop delivering packets first.

Figure 2 gives an example of adding a receiver (Receiver 1) to
the trees. There are two trees, Tree 1 shown by solid lines, and
Tree 2 by dotted lines.

If Receiver 1 is the first receiver in the group, the controller
calculates one tree (Tree 1) for packet delivery, and another one
(Tree 2) for backup. Then, the controller follows nodes of Switch
D, B, and A on Tree 1 in order, changes the state of these nodes
and edges between them to active, and installs flow entries in
these switches. Next, the controller follows nodes of Switch D,
C, and A on Tree 2 in order, changes the state of these nodes
and edges between them to active, and installs flow entries in the
switches except Switch A.

When another receiver joins in the group, for example a new
receiver is connected to Switch E, the controller follows the trees
and installs flow entries like the case of Receiver 1. The controller
stops following the tree at the node of Switch B or C because

these nodes have already been active. In this case, the controller
modifies the flow entries in Switch B and C, and installs new flow
entries in Switch E.

When a receiver at Switch E leaves from the group, the con-
troller follows the trees from the node of Switch E to the nodes of
Switch B or C because the nodes of Switch B and E have active
edges to the node of Switch D. Then, the controller removes flow
entries in Switch E, changes the state of the node of Switch E and
the edge between it and its parents (the nodes of Switch B and
C) to inactive, and modifies the flow entries in Switch B and C.
When Receiver 1 also leaves, the controller follows the trees until
the node of Switch A, removes the flow entries from all switches,
and deletes the trees stored in the controller’s database because
no receiver exists in the group.

In our proposed method, the controller needs to calculate trees
only when a new group appears, and reuses them when the con-
troller handles group membership changes. In addition, the con-
troller does not need to communicate with switches to retrieve the
state of the trees because the state of the trees is already stored in
the controller. Therefore, the controller can handle modifications
to multiple trees quickly, and a few switches communicate with
the controller to update their flow entries.

3.2 Failure Recovery
To make multicast reliable, the multicast trees must be recov-

ered quickly when a failure occurs in networks. MPLS Fast
Reroute (FRR) mechanism works well by setting up backup paths
or trees in advance and by rerouting to one of the backup paths
at the time of failures. We also use the preplanned approach like
MPLS FRR, but MPLS FRR limits the flexibility of backup trees
that the controller computes because MPLS FRR requires the par-
ent router of the failed router or link to reroute the traffic.

As explained above, in our proposed method, the controller
computes multiple trees per group, and installs the subtrees that
need to deliver packets to receivers at the same time in the same
way of the tree for packet delivery except the root switch.

The network should avoid duplicate multicast packet delivery
and packet loop both in normal state and during failure recov-
ery. The controller assigns a unique ID within a group to each
tree, and embeds it into a packet header like MPLS. The root
switch embeds the tree ID used for packet delivery into packets
by rewriting a part of packet headers. Other switches forward the
packets based on the tree ID, the source IP address and the mul-
ticast address in header fields. The switches rewrite the header
fields in the packets to the appropriate ones when they send the
packets to receivers.

When a failure is detected at a switch or other devices, the
switch or other devices notify the failure to the controller. For
each group, the controller checks whether the tree currently used
for packet delivery has become disconnected by the failure. Then,
the controller executes the tree recovery procedure for each group
whose tree currently used for packet delivery has been discon-
nected.

The tree recovery procedure is as follows. The controller se-
lects one of backup trees unaffected by the failure, and modifies
the flow entry in the root switch to embed an ID of the selected
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backup tree into packets. If more than one backup tree are unaf-
fected, the controller selects one tree by the criteria that the net-
work operators defined, for example, priority, minimum cost of
all edges, and disjointness from trees used by other groups. This
criteria is out of scope in this paper.

By switching a tree at the root switch, we can use any algo-
rithm to compute trees, such as vertex redundant, edge redundant
and least disjoint trees. In addition, the controller does not need
to update flow entries in switches other than the root switch, and
multicast packet delivery through a new tree is started quickly.

3.3 Group Membership Databases and Tree Database
To setup multicast trees, the multicast controller must find

switches and ports where senders and receiver are attached. Such
location data is stored in the group membership database for
senders (the senders database) and that for receivers (the receivers
database) in the controller. The controller also needs to hold tree
status, such as active or inactive nodes and edges, and such status
is also stored in the tree database.

The databases identify a multicast group by a pair of a sender
IP address and a multicast IP address. The controller sometimes
needs to look up the database without a sender IP address, for
example, a receiver will join in or leave from groups without a
sender IP address. In such cases, the controller uses 0.0.0.0 as a
sender IP address, and the databases return results appropriately.
For example, when the controller queries receivers belonging to
the specific group, which means the group has a sender IP address
other than 0.0.0.0, the database merges lists of receivers that spec-
ify the sender IP address when joining and that do not specify the
sender IP address, and returns the merged list.

Each record in the senders database contains a switch ID and a
port number of the root switch where a sender is connected. The
controller will look up the senders database in two ways, speci-
fying both a sender IP address and a multicast address to retrieve
the location of a sender, and specifying only a multicast address to
fetch a list of senders using a specific multicast address. To make
these lookups fast, the senders database is indexed by multicast
IP addresses using hash tables, and each entry in the hash tables
is a list of the records that have the same multicast IP address.

The records in the receivers database contain a list of receivers.
Each receiver is identified by a switch ID and a port number of
the leaf switch where a receiver is connected, and it includes
other data related to state management such as ones required by
IGMP. The controller makes two kinds of queries to the receivers
database. One is to retrieve one receiver with a sender IP address,
a multicast address, a switch ID and a port number, and this type
of query is often executed to update the state of a specific receiver.
The other is to fetch all receivers joining in the group when updat-
ing multicast trees. To handle the latter case quickly, the receivers
database is indexed by multicast IP addresses using hash tables,
and receivers in each group are stored as a list per group.

The controller must be able to store several data per group in
the tree database, such as multiple trees including backup trees,
a subtree of each tree by indicating whether each node and edge
is active or not, data to show which tree is used for packet de-
livery. When the controller updates trees by adding or removing

a receiver, the controller must quickly look up the leaf node of
each tree in the group, where the receiver is attached and used.
When the controller handles failure recovery, the controller must
find the failed node or edge in trees quickly to check whether the
failed node or edge is active in trees. To meet above points, the
tree database manages entries as follows. The top level record is
an entry of a group (group entry hereafter), which consists of a list
of trees and its IDs (tree entries), and the tree ID used for packet
delivery in addition to (source IP address, multicast address) pair.
The group entries are indexed by (source IP address, multicast ad-
dress) pair. Each tree entry consists of a list of nodes and edges,
and indexed by nodes. Each node and edge has a state, active or
inactive, and pointers to the physical entity such as switch ID and
and a port number.

4. Implementation of Prototype System

We have implemented our prototype multicast controller us-
ing C and Trema. Figure 3 shows an overview of our design
of the OpenFlow controller. Switch Communication, Event Dis-
patcher and Topology modules are provided as a part of Trema.
Switch Communication module manages OpenFlow channels to
the switches. The Event Dispatcher forwards messages from
switches to pre-configured modules. Topology module collects
network topology by sending and receiving LLDP packets from
each port in switches. This module also handles switch status
related messages like port status changes, and provides topology
data to other modules.

The Multicast Controller in Fig. 3 is the core of multicast tree
management. It consists of Multicast Tree Management mod-
ule, Sender Management module, Receiver Management module,
and Multicast Tree Switching module. The Multicast Packet Dis-
patcher dispatches packets in Packet-In messages from switches
to the appropriate modules, such as IGMP packets to the Receiver
Management module, and other packets to the Sender Manage-
ment module.

The Sender Management module stores and updates the
senders database, and provides an interface for the senders
database to other modules. This module sets switches to forward
unknown multicast packets to the controller. When the controller
receives such packets, this module updates the senders database.
If a new record is added to the senders database, this module
sends a notification to the Multicast Tree Management module. In
addition to the parameters described in Section 3.3, each record in
the senders database includes a sender’s MAC address for rewrit-
ing the source MAC address in packets to the original one when

Fig. 3 An overview of our controller design.
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switches output the packets to receivers because the tree IDs are
embedded in the source MAC address.

The Receiver Management module is in charge of the receivers
database. To collect membership, this module acts as a multicast
router in IGMP specification [8]. Data of the receivers is stored
in the receivers database. When the receivers database is updated
such as when a new receiver is added, this module notifies it to
the Multicast Tree Management module. IGMP requires multi-
cast routers to have a state of a receiver, and we include such
state into the receivers database.

The Multicast Tree Management module is responsible for the
tree database and flow entries regarding multicast packet forward-
ing. This module receives sender and receiver change events from
the Sender Management and the Receiver Management modules,
computes and updates multicast trees including backup trees in
the tree database, and modifies flow entries in switches. This
module retrieves records from the senders database in the Sender
Management module and from the receivers database in the Re-
ceiver Management module if necessary. This module also re-
ceives and handles multicast tree change requests from the Mul-
ticast Tree Switching module.

The controller computes two trees that have few common
edges by Dijkstra’s SPF algorithm. The controller calculates a
tree with the original costs of edges, and this tree is used for
packet delivery. The backup tree is computed in the graph cre-
ated by adding the sum of original costs of all edges to the costs
of edges included in the tree for packet delivery. A tree ID is
embedded in a source MAC address in packets.

The Multicast Tree Switching module handles topology
change events. A link down event is notified to the Multicast Tree
Switching module via the Topology module. For each multicast
group, the Multicast Tree Switching module retrieves trees in the
group including backup trees from the tree database in the Multi-
cast Tree Management module, and checks whether the trees are
disconnected by the link down. If the tree for packet delivery
is disconnected but a backup tree is connected, this module sets
the ID of the backup tree to the tree ID for packet delivery, and
notifies the Multicast Tree Management module to update a flow
entry in the root switch.

5. Evaluation

We have evaluated the processing time for group member-
ship changes and failure recovery in our prototype controller, and
packet loss duration at the time of failure using physical switches.

As a system for comparison, we implemented a controller that
has the following modes for multicast tree management. One
mode is whether the controller computes redundant trees for
backup or not (Redundant or No Redundant). If this mode is
Redundant, there is a mode to specify that the controller installs
the trees other than the tree for packet delivery (Install or No In-
stall). Another mode is whether the controller precomputes the
trees or not (Precompute or No Precompute). If this mode is Pre-
compute, the controller computes trees that cover all nodes and
stores them in the tree database when the group is created, and
if not, the controller computes trees every time that the controller
needs to obtain new paths or trees, and only stores the necessary

parts of the trees. In summary, there are six modes, Redundant -
Install - Precompute (our proposed method), Redundant - Install
- No Precompute, Redundant - No Install - Precompute (Cast-
Flow [17] approach), Redundant - No Install - No Precompute,
No Redundant - Precompute, and No Redundant - No Precom-
pute.

5.1 Processing Time of Controllers for Group Membership
Changes and Failure Recovery

We have evaluated how much our proposed method shortens
the processing time of group membership changes and that of
failure recovery in a controller. We measured the processing time
to add a new receiver, to remove a receiver, and to restore packet
delivery from a link failure.

We used a typical three-layered hierarchical topology shown in
Fig. 4, which is a typical tree topology in private networks. The
topology consists of the root switch and three layers, core, aggre-
gation, edge layers, and they are connected in a redundant way.
Each aggregation switch is connected to 10 edge switches, and
one receiver is connected to each edge switch. In our evaluation,
we use three types of networks that have one, two, and three sets
of two aggregation and 10 edge switches, which have 10, 20, and
30 edge switches in total respectively.

We measured the time to add a first receiver and others sepa-
rately, because these processes are different. The process in a first
receiver includes creation of a new record in the tree database and
tree computation, but the controller does not need compute trees
when adding other receivers. Similarly, we measured the time
to remove a last receiver and others separately because the for-
mer includes deleting a group entry from the tree database but the
latter does not.

We measured the time to add a first receiver or to remove a last
receiver 10 times each. We also measured the time to add or re-
move other receivers 10 times by adding or removing them one
by one. To produce failures many times, we repeatedly set a link
between the root switch and a core switch to down and up, then
set the link to the other core switch to down and up. We produced
failures 10 times per mode.

We recorded the time when the controller received port status
messages and Packet-In messages containing IGMP messages,
started the process of removing a receiver *1, and sent flow modi-
fication (flow-mod) messages to switches.

We virtually constructed the network in a PC using the vir-
tual ethernet link (veth) and Open vSwitch [22], which had Xeon
X5355 CPU (2.66 GHz, 4 core), 8 GB RAM and run CentOS 6.4.
The controller runs on another PC that had Core 2 Duo T7400

Fig. 4 A three-layer hierarchical topology for evaluation.

*1 IGMP [8] requires a router to delay removing a receiver until the router
confirms that no other receiver is left.
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CPU (2.16 GHz, 2 core), 4 GB RAM and runs Ubuntu 12.04,
and was directly connected to the PC running Open vSwitch at
1 Gbps.

Figures 5 and 6 shows the processing time in the controller to
add a first and another receiver. Figures 7 and 8 shows the pro-
cessing time in the controller to remove a last or another receiver.
The x-axis shows the number of edge switches, and the y-axis
shows the processing time in milliseconds. The arrows point to
the lines corresponding to the modes. The values are the average
time we have measured.

Fig. 5 Processing time to add a first receiver.

Fig. 6 Processing time to add a receiver other than the first one.

Fig. 7 Processing time to remove a last receiver.

Fig. 8 Processing time to remove a receiver other than the last one.

Figure 5 shows the overhead required to compute redundant
trees. The time in “Redundant - No Install - Precompute” is
about 1.5 times longer than the time in “No Redundant - Precom-
pute.” Another overhead is to precompute trees. For example, in
“Redundant - Install” cases, the time in the “Precompute” case is
about 2 to 3 times longer than the time in the “No Precompute”
case. There is little difference between “Redundant” and ”No Re-
dundant” cases.

In the case of adding another receiver than the first one (Fig. 6),
a trend is changed. In the “Precompute” cases, the processing
time is less than 1 ms regardless of the number of switches, al-
though in the “No Precompute” cases it takes more than 3 ms and
the time increases as the number of switches increases.

In Fig. 7, the controller takes more time to remove the last re-
ceiver in the “Precompute” cases than in the “No Precompute”
cases. In the “Precompute” cases, it takes about 1.5 times longer
time in the “Redundant” cases than in the “No Redundant” cases.
There is little difference between three “No Precompute” cases.
As with the case of adding a first receiver (Fig. 5), there is little
difference between the “Redundant” and “No Redundant” cases.

According to Fig. 8, there seems to take a little longer time to
remove a receiver other than the last one. Overall, the values are
small compared to the cases of adding receivers and removing the
last receiver.

Figure 9 shows the processing time to restore packet delivery
from a link failure. As with the addition and removal of receivers,
the x-axis shows the number of edge switches, and the y-axis
shows the processing time in milliseconds. Figure 9 shows only
the cases where trees are precomputed because the procedures are
not changed whether trees are precomputed or not. The values are
the average time we measured.

In Fig. 9, the time in “No Redundant - No Install” is increased
in proportion to the number of edge switches. The time in the
other redundant cases are almost the same regardless of the num-
ber of edge switches, and much shorter than in no redundant case.

5.2 The Recovery Time of the Multicast Tree
For fast failure recovery, it is important that switches install

new flow entries quickly as well as shortening the processing time
in a controller. We have measured the duration that receivers do
not receive multicast packets when a failure occurs in a network
using a physical switch.

We used a topology in Fig. 10. The Root Switch, Core Switch 1
and Leaf Switch were software switch, and the Core Switch 2 was
a physical switch. The sender was connected to the root switch,

Fig. 9 Processing time to recover from a link failure.
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Fig. 10 A topology used for evaluation of packet loss duration during a fail-
ure recovery.

Fig. 11 Maximum packet loss duration when a link between root switch and
core switch 1 is down.

and the receiver was in the edge switch. To induce a failure where
installation to flow entries to the physical switch is necessary, we
shut down a port on the root switch to the Core Switch 1. This
makes the controller installing flow entries to the Core Switch 2
(Physical Switch) when backup trees are not installed in advance,
but no installation to the Core Switch 2 is necessary when backup
trees are installed in advance. We produced failures 10 times in
total.

A sender transmitted packets to each group with incremental
sequence numbers every millisecond. The receivers monitored
sequence numbers and intervals of packet arrivals, and recorded
the intervals when the number in a packet was jumped to two or
more bigger value at once.

We created one to ten multicast groups. The root switches in
all groups are Root Switch, and the receivers of all groups are
connected to Leaf Switch. In each failure, we regard the max
packet loss duration as the largest value of packet loss duration in
multicast groups that exists.

We configured software switches on one PC, which had In-
tel Atom C2358 CPU and 4 GB RAM. The physical switch was
NEC PF5240. The sender and receiver PCs were almost the same
as the controller in Section 5.1, but the size of RAM was 1 GB
in the sender PC and 512 MB in the receiver PC. Both were con-
nected to switches at 1 Gbps.

Figure 11 shows maximum packet loss duration when a failure
occurs. The x axis shows the number of multicast groups exists,
and the y axis the max packet loss duration on average. As with
Fig. 9, Fig. 11 includes only cases where trees are precomputed.
No Redundant case is not included because it would take longer
than in Redundant - No Install case due to calculating trees.

The values are unstable when more multicast groups exists, es-
pecially seven to ten groups. We believe this is due to a jitter
added by software switches.

6. Discussion

The results of the processing time in the controller show that
the tree precomputation approach can dramatically shorten the
time to add a receiver except a first receiver. This reduction is
because, as we have expected, a controller uses the same tree
once the controller calculates a tree in the tree precomputation

approach, instead of calculating trees every time that a receiver
joins in a group. The controller can add a receiver in O(N) with
the tree precomputation approach, but tree computation requires
O(N2) for example in Dijkstra’s algorithm, where N is the num-
ber of switches. We cannot see a large difference between cases
where redundant trees are installed or not at the time of adding a
receiver.

When a first receiver joins in, the controller performs more pro-
cesses in the tree precomputation approach, including computing
a tree, allocating memory space for a new entry in the databases,
etc. This is the reason why the controller in the tree precomputa-
tion approach takes longer time to add a first receiver. When the
controller computes redundant trees, it takes more time to com-
pute additional trees. As with the case of adding another receiver,
there seems little overhead on the processing time by installing
redundant trees.

Considering many multicast applications such as video stream-
ing and data distribution to many hosts, taking more time in a first
receiver should not be a significant problem. In such applications,
a controller often performs the processes to add a receiver to an
existing group rather than to a new group, because a new group
would be rarely created.

As for the processing time to remove a last receiver from a
group (Fig. 7), the controller takes longer with the tree precom-
putation approach than without precomputing trees. There is also
a difference whether the controller uses redundant trees or not.
This is due to the time to delete trees from the tree database. The
controller deletes all trees used by the group when the group has
no receiver. If the trees are precomputed, the controller should
deallocate memory space for all nodes and edges one by one, but
the controller only deallocate memory space for the path from the
root node to the left node if the trees are not precomputed. There
is a room to optimize this procedure, such as allocating and deal-
locating memory space for entries in the tree database at once.

For removing another receiver, the controller takes slightly
longer without the tree precomputation approach than with the
tree precomputation approach. The reason is that the controller
without the tree precomputation approach deallocates memory
space for unnecessary nodes and edges, but the controller in the
tree precomputation approach does not need to deallocate it.

In summary, our proposed method greatly increases the con-
troller’s capacity to handle addition or removal of receivers to or
from existing groups, which is one of important characteristics
in private networks. It takes a slightly longer time to create or
remove a group entry in the tree database, but it is not a signif-
icant problem because it merely occurs in practice compared to
addition or removal of receivers in existing multicast groups.

Our proposed method can also reduce the time to repair mul-
ticast trees. The processing time for failure recovery (Fig. 9)
increases linearly as the network size increases in “No Redun-
dant - No Install” case. The processing times in other two cases
(“Redundant - Install” and “Redundant - No Install”) are greatly
shorter than “No Redundant - No Install” case, and hardly in-
crease as the network grows. This is because the controller recal-
culates a tree if no redundant or backup tree is available.

There is little difference between “Redundant - Install” and
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“Redundant - No Install” in terms of the processing time in
the controllers, but there is a large difference when we consider
the number of flow entries that should be installed in physical
switches (Fig. 11). The larger the number of flow entries the con-
troller requires to install in physical switches, more time it takes
until multicast packet delivery in all multicast trees. Although
the values in Fig. 11 are slightly smaller than reported [12], we
can see the tendency that software switches handles flow modi-
fications faster than physical switches. We believe the difference
between [12] and us would be due to a small difference in imple-
mentation of switches.

When a redundant or backup tree is available and installed, the
controller only needs to replace a flow entry in the root switch,
therefore the number of flow entries that are modified at a single
switch can be reduced, especially at the core of networks such
as core switches. Our proposed method cannot work effectively
when many multicast groups share the same root switch, but we
can avoid this by allocating senders to different root switches, us-
ing a software switch as a root switch, etc.

Considering a video streaming as an application of multicast,
it would be better to minimize frame loss, which corresponds to
packet loss in the network layer, because losing one frame dis-
turbs several frames [16]. Our proposed method can reduce the
possibility of frame loss because our proposed method can re-
store packet delivery quickly. Let us assume that a frame rate of
a video is 30, which is close to values used in television. In this
case, frames are sent at the interval of about 33 msec. According
to the results of our evaluation (Section 5.2), one frame should
be lost without our proposed method if more than five multicast
groups exists, but our proposed method can increase the number
of multicast groups to seven or more. In addition, as we have
mentioned, the packet loss duration can be reduced when root
switches are not shared among multicast groups.

In real situations, there are some factors to make the packet loss
duration longer. One factor is a failure detection delay. In our ex-
periments, we set interfaces to down, and a failure detection delay
in a switch was very low. If switches or other devices cannot de-
tect failures immediately, the packet loss duration would increase
due to the detection delay.

The other factor is latency. Because we connected each vir-
tual switch and the PCs directly and all devices were in our lab,
the latencies among switches and the controller were very low.
When the latency becomes high, the packet loss duration would
be long because packets are rerouted at the root switch. Our
proposed method, “Redundant - Install - Precompute,” is bene-
ficial in such cases because the processing time in the controller
is shorter and latencies among switches and the controller equally
increase the packet loss duration in all cases. In real environments
such as campus or enterprise networks, latency would be small
because switches are located in a small area, and latency would
be smaller than the time to compute trees or to install flow entries
in switches. Therefore, the problem caused by latency would not
be significant.

One of the overheads in our proposed method is the memory
usage. When a controller precomputes and stores multiple trees,
the controller uses more memory space than the cases where trees

are not precomputed or the controller stores one tree per group.
In this perspective, our proposed method uses the largest mem-
ory space in all cases that we have evaluated. Although total size
of the tree database depends on the tree size and the number of
multicast groups, we think this problem is not significant because
tens of gigabytes of memory are available in current PCs. For
example, in our proposed method, the data size of each node and
edge on a tree is less than 20 bytes, and more than 53 million
nodes and edges in total can be stored per GB. In addition, when
a group has more receivers, trees would cover most of switches,
and the overhead becomes small.

Another overhead is the increase of the number of flow entries
that switches store due to trees for backup. This overhead can be
negligible in typical private networks, which often have hierarchi-
cal tree topology and redundant networking devices and links in
each layer. In such networks, when a failure occurs, the traffic is
generally rerouted to another device in the same layer. In the case
of multicast using OpenFlow without our proposed method, flow
entries are removed from switches, and installed to other switches
where multicast packets are rerouted. In other words, flow entries
for backup trees are installed at the time of failures, and a capacity
of each switch, such as the number of flow entries that a switch
can install, must be designed with consideration of backup trees.
In this perspective, our proposed method just installs flow entries
that are needed to reroute packets before a failure occurs, and
switches do not require extra capacity to support our proposed
method.

One of the problems in MPLS based approaches is that all
switches or routers on a tree must handle messages to modify the
tree because of the specifications of a signaling protocol, RSVP-
TE. This means that switches or routers must process messages to
change some parts of trees even when they do not have to change
their state. By calculating the difference of multicast trees cen-
trally, only switches that have to modify its flow entries need to
process flow modification messages from the controller. Further-
more, switches near the core of a network do not have to modify
its flow entries frequently if the group has many receivers and
its tree covers many parts of the network. These characteristics
would greatly decrease loads of switches.

There is a tradeoff where to reroute multicast packets, or how
to construct backup trees before a failure occurs. One choice is
to reroute packets at switches where a failure is detected, called
local repair, and this approach is used by MPLS Fast Reroute and
the fast failover group feature in OpenFlow 1.1 and later. Mech-
anisms based on local repair can dramatically reduce packet loss
when latency between routers and switches is long such as WAN,
but trees used by local repair after failures are detected are not
necessarily efficient in terms of metrics such as the number of
flow entries used by backup trees (backup trees or paths from
each switch must be created), bandwidth usage, and the num-
ber of routers and switches that a tree covers (rerouted packets
may go through additional links to reach to receivers via backup
paths).

Another choice is to reroute packets at routers or switches near
the root router or switch. This choice has a benefit that backup
trees can be created with various metrics, such as minimizing
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routers or switches that rerouted packets go through, and avoid
wasting bandwidth caused by rerouting packets. A drawback in
this choice is the increase of packet loss at the time of failures
because packets during delivery on a network are lost, and there
seems no way to notify failures at a router or a switch that reroute
packets. The former is negligible in private networks because la-
tencies between switches are small. The latter can be solved by
centrally managing multicast trees.

Rerouting packets at a switch other than the root switch is the
same with executing local repair at the switch, and still has a prob-
lem that the number of flow entries used by backup increases in
local repair approach. If we can prepare for a backup tree that
cover the failures in any switch, we can reroute packets at the
root switch, and only one backup tree is needed to recover multi-
cast trees. The overhead caused by one backup tree is acceptable
as we have explained above.

7. Conclusion

In this paper, we propose a method to manage multicast trees
in an OpenFlow controller in private networks, which supports
both dynamic membership changes and fast failure recovery that
takes into account slow flow entry setup performance in physical
switches. Our key idea is to compute trees covering all switches
in advance, and to change status of each node or edge when a
receiver is added or removed. This reduces the number of tree
computation times. For failure recovery, our proposed method al-
lows setting up multiple trees including backup trees in advance,
which are computed by any algorithm, and to switch to another
tree used for packet delivery with minimum modifications to flow
entries.

Our evaluation using our prototype controller shows our pro-
posed method can reduce the processing time in the controller to
add or remove a receiver and to recover trees from failures, and
we also show that packet loss duration due to a failure in physical
network is also reduced. We also show that there is little dif-
ference in the controller processing time whether redundant trees
are installed in advance or not, but the difference becomes large
in physical switches due to the number of flow entries to be mod-
ified. Although our proposed method has some disadvantages,
these disadvantages would not be significant in practice because
these rarely occurs, and PCs running a controller program often
have enough computing resources to reduce the impact of these
problems, and the characteristics of private networks.

Future work would include reducing the number of flow en-
tries in switches. Our proposed method requires at least two flow
entries per group to implement fast failure recovery. There is still
ample margin to reduce the number of flow entries if the con-
troller can summarize flow entries among groups. Another one is
to improve fast failure recovery in networks that have high laten-
cies. If latencies are high, the packet loss duration becomes long
in our proposed method.
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