
Journal of Information Processing Vol.24 No.2 416–424 (Mar. 2016)

[DOI: 10.2197/ipsjjip.24.416]

Regular Paper

Introducing a Multithread and Multistage Mechanism
for the Global Load Balancing Library of X10

Kento Yamashita1 Tomio Kamada1,2

Received: July 3, 2015, Accepted: October 16, 2015

Abstract: Load balancing is a major concern in massively parallel computing. X10 is a partitioned global address
space language for scale-out computing and provides a global load balancing (GLB) library that shows high scalability
over ten thousand CPU cores. This study proposes a multistage mechanism for GLB to assign execution stages to
tasks and introduces a multithread design into GLB to allow efficient data sharing between CPU cores. The system
gives high priority to tasks that are assigned to earlier stages and then proceeds with subsequent stage tasks. When a
computing node runs out of tasks at the earliest stage, it requests tasks at the earliest stage from other nodes and awaits
responses by processing subsequent stage tasks. When the system identifies the task termination at a certain stage, it
executes a reduction operation over nodes. Programmers can define their reduction operations to gather or exchange
results of completed tasks. This study provides the implementation method of the extended library and evaluates its
runtime overhead using the K computer to a maximum of 256 nodes.

Keywords: dynamic load balancing, X10, GLB

1. Introduction

The field of parallel computing has seen an increase in the
number of computing nodes and its application has spread to
include computations having irregular features. Load balanc-
ing enormous tasks as well as adequate task and communication
scheduling to achieve latency hiding have become pressing needs.

Considerable research of dynamic load balancing has been
conducted on shared memory computers, and the technology of
work-stealing is widely used for task-parallel programs [1], [2].
Research on distributed memory environments is also being con-
ducted. X10 [3], which is a parallel programming language that
adopts partitioned global address space (PGAS) model, offers a
global load balancing (GLB) library and reveals high scalabil-
ity over one thousand computing nodes [4], [5]. GLB features a
lifeline-based scalable work-stealing algorithm. Results of com-
pleted tasks are gathered by means of reduction operations.

However, when the problem requires stepwise progress of
computation and intermediate results or their reduced values must
be transferred to subsequent tasks, GLB offers few supports for
such data sharing among tasks. In addition, GLB does not support
multiple workers on a computation node. Moreover, each core of
a multicore CPU must be treated as a node. Workers cannot share
inputs or computation results until the system completes all tasks.

This study proposes an extension to the GLB library to intro-
duce a multithread design to enable data sharing among workers
on a multicore CPU, as well as a multistage mechanism to assign
execution stages to tasks. The programmer can create tasks by
specifying its execution stages, and the system gives high priority

1 Kobe University, Kobe, Hyogo 657–8501, Japan
2 RIKEN Advanced Institute for Computational Science, Kobe, Hyogo

650–0047, Japan

to tasks that are assigned to earlier stages. When a computing
node runs out of tasks at the earliest stage, it requests tasks at the
earliest stage from other nodes and awaits responses by process-
ing subsequent stage tasks. Each time the system completes all
tasks in a stage, it executes a reduction operation over nodes to
gather results from the completed stage. Programmers can de-
fine their reduction operation according to the target problem and
create new tasks based on the results.

The main contributions of this study are a system design and
implementation method for introducing multithread and multi-
stage features into a GLB mechanism. Our library adopts an API
design in which workers can access their task queues without mu-
tual exclusions. In our load balance algorithm, we use the lifeline-
based algorithm of the original GLB for internode load balancing.
In addition, we prepare an intranode load balance mechanism that
operates with the internode algorithm. For detecting termination
of stages, we extend the original detection method of task termi-
nation.

Section 2 reviews the system design of the original GLB. Sec-
tion 3 explains the motivation of this research and Section 4 pro-
poses an API design for multithread and multistage features. Sec-
tion 5 describes the implementation method of our extended li-
brary and Section 6 evaluates its preliminary performance on the
K computer. Section 7 reviews related work and Section 8 offers
a conclusion to our study.

2. X10 and GLB

X10 is a parallel programming language developed by IBM
and adopts PGAS model. The address space is partitioned using
places, in which each object belongs to any place. at (place) S

for statement S creates an activity at the place and executes S in
the environment where the values to which S refers are copied.

c© 2016 Information Processing Society of Japan 416



Journal of Information Processing Vol.24 No.2 416–424 (Mar. 2016)

X10 features asynchronous programs, and also allows fork-join-
style programs. async S begins a new activity that executes S.
finish S awaits the termination of all activities spawned by S

including those indirectly created.
GLB [5] is a framework of X10. It features a lifeline graph

work-stealing algorithm [4]. As the following describes, the API
design of GLB allows users to perform fine-grained tasks using
low runtime overhead.

The user provides two classes that implement interface
TaskQueue and TaskBag, respectively. TaskQueue represents
the sequential computation for the problem to be solved and offers
a split/merge facility of tasks. TaskBag represents a task form
used for interplace task transmission. When invoking GLB exe-
cution, the user specifies the TaskQueue class and a function clo-
sure to create a TaskQueue instance in each place. TaskQueue
employs the following methods:
• process(n:Long, . . .):Boolean executes task items in

the queue until it processes n tasks or become empty. The
method returns truewhen n tasks are completed and returns
false otherwise.

• split():TaskBag splits tasks in the queue and returns one
half as TaskBag.

• merge(TaskBag)merges the tasks in the received TaskBag
with tasks in the queue.

• getResult() returns the local result in the queue, and
reduce() reduces the results.
TaskBag requires only the size()method that returns its size.

However, ArrayListTaskBag, which is an implementing class
of TaskBag, prepares the merge and splitmethods required for
TaskQueue. Users can easily define a TaskQueue class by ex-
tending ArrayListTaskBag and adding its process method.

Example programs of GLB are provided in the X10 source dis-
tribution. In most programs, TaskQueue is implemented as a sub-
class of the sequential class that solves the target problem. The
queue exploits the data structure for the sequential program. In
the case of unbalanced tree search (UTS), the program processes
a depth-first search using a stack, and its task creation/execution
corresponds to the push/pop operation of the stack. In UTS,
process(n, . . .) simply executes the search method of the se-
quential class n times, whereas split() splits its stack in half.
The methods of GLB do not address the creation or execution of
each single task, but perform executions or transmissions of tasks
in bulk.

The study in Ref. [5] describes the manner in which GLB is
applied to two benchmark problems: UTS and betweenness cen-
trality (BC). It then measures performance under weak scalabil-
ity on Blue Gene/Q and the K computer. With Blue Gene/Q, both
problems show nearly a linear increase in speed to a maximum of
16,384 places. On the K computer, UTS scales to a maximum of
4,096 places, whereas BC scales to a maximum of 8,192 places.
The current GLB assumes sequential execution of tasks in each
place. Therefore, each CPU core is assigned a place during the
evaluation.

Regarding the data structure, both programs use TaskQueue
classes that extend their respective sequential programs and de-
fine new TaskBag classes. The TaskQueue classes store results

of completed tasks in array form and gather the results using a
reduction operation invoked when GLB terminates. These pro-
grams do not share intermediate results during the computation.

3. Motivation and Approaches

This study proposes a multistage mechanism to enable task
scheduling in dynamic load balance mechanisms. Some search
and simulation problems require stepwise progress of computa-
tion in which the loads of subtasks cannot be estimated until they
are executed. One assumed application of our library is a program
that searches parameter space in a stepwise manner. In order to
obtain the optimal result or distribution curve of results, the pro-
gram first attempts executions on some sampling points. It then
recursively examines regions that seem important based on prior
executions. Another example is an agent simulation program that
assigns high priority to agents that globally affect other agents. It
concurrently performs data transfer from these agents and agent
processing that shows high locality. A final example involves a
situation in which a user wants to process a series of GLB prob-
lems in a sequential order, but some of the problems have limited
parallelism necessary to utilize computing nodes to the fullest. In
this case, for a worker to process tasks of subsequent problems is
reasonable when the worker becomes idle. However, sequential
execution of GLB problems does not allow concurrent execution
of tasks in different GLB problems.

The goal of this study is to design a system that introduces
multithread and multistage features into a GLB mechanism and
provide an implementation method for the system. Pseudo codes
for the aforementioned application examples are shown in Sec-
tion 4.4. In this study, we have yet to develop actual applications
that utilize multithreading or multistage features. In order to com-
plete data sharing among tasks, we must provide a work-stealing
scheme that considers data sharing among tasks (discussed in
Section 4.4). After providing this scheme, we develop the actual
applications and evaluate their performance.

Figure 1 illustrates the manner in which staged tasks are exe-
cuted in our system. As in the original GLB, a task can dynam-
ically create new tasks. The execution stage of the created tasks
must be concurrent with or later than that of the creator task. The
current stage of the system is the earliest stage of the uncompleted
tasks. Workers give high priority to the tasks that are assigned at
earlier stages. When workers in a place complete the that place’s
earliest stage tasks, the place requests tasks from other nodes.
The place awaits responses by processing subsequent stage tasks.

Fig. 1 Stage and tasks.

c© 2016 Information Processing Society of Japan 417



Journal of Information Processing Vol.24 No.2 416–424 (Mar. 2016)

When the system completes all tasks in a stage, it executes a hook
method to gather or exchange results of that stage’s tasks. Users
can execute reduction operations in the hook and create new tasks
based on the results. The system does not confirm termination of
the current stage until it completes the hook execution of the pre-
vious stage.

In this study, we introduce multithreading with the multistage
mechanism to promote data sharing among tasks. Without multi-
threading, even when all the tasks refer to the same data structure,
the system must allocate the same numbers of the copies as the
CPU cores on each computing node. In addition, if multithread-
ing allows data sharing among workers on a computing node, a
good result identified by a worker can be immediately used by
other workers (e.g., for branch and bound of search problems).
However, to complete data sharing among tasks, we must prepare
work-stealing schemes that consider data sharing among tasks.
Therefore, this study designs and implements only a load bal-
ancing mechanism that supports multithreading. It remains as a
future study to examine work-stealing schemes that consider data
sharing.

4. Design for Multithreading and Multistaging

This section describes the proposed API design for multithread
and multistage features, and provides some example programs.
Figure 2 illustrates the system design of the extended library.

4.1 TaskQueue and TaskBag
As described in Section 2, GLB does not offer methods for

each single task creation or execution. TaskQueue represents a
set of tasks and provides the process, split, and merge methods.
In many programs, the TaskQueue class is implemented as a sub-
class of the sequential version of the target problem.

In the extended library, each task is assigned to its execu-
tion stage, but our library does not offer methods to assign each
task to its stage. Instead, the staged versions of TaskQueue and
TaskBag manage the stage information of their tasks.

Regarding multithreading, TaskQueue continues to represent
sequential computation. The system allocates the specified num-
ber of worker threads in each place and prepares the same num-
ber of worker queues. The default number of worker threads is
X10 NTHREADS. The system also prepares two shared queues in
each place. These queues are used for inter- and intraplace load

Fig. 2 System design for multithreading.

balancing.

4.2 Shared Data Structures and Stage Transition
This study also aims to enable data sharing among tasks. In

our library, users can place a shared object (called sharedObj)
at each place. The PlaceLocalHandle class of X10 organizes
these objects into a distributed object. As the function closure to
build TaskQueue receives the reference to sharedObj as a param-
eter, worker threads can store their data in sharedObj. Data shar-
ing between places is represented by the reduction operation over
sharedObjs. Users can define the reduce method of the shared-
Obj. They can use array reduction methods of the Team class,
which utilizes collective communications facilities. We also plan
to provide reducible distributed objects that represent major data
types, such as primitive data types or HashMap. These distributed
objects can be used as sharedObj. The details concerning dis-
tributed objects is out of the scope of this study.

Users define a hook method that is invoked at program com-
pletion or stage transitions. The system first invokes the hook
method of worker queues to gather computation results into
sharedObj, and then executes the reduce method of the shared-
Obj. The terminationHook method of TaskQueue is invoked
when the system determines that all tasks have been completed.
TaskQueueStaged is the staged version of the TaskQueue in-
terface. The forwardHook method of TaskQueueStaged is in-
voked at stage transitions.

The terminationHook methods of both thread and shared
queues in each place are executed in a sequential manner. By
contrast, the forwardHook methods for stage transitions are ex-
ecuted by respective worker threads to prevent concurrent ac-
cess to the worker queue and maintain data consistency. The
reduce method of sharedObj is executed in each place after the
terminationHook or forwardHook methods terminate. The
stage transmission is completed when the reduction operation ter-
minates.

4.3 Modifications in API
This section summarizes the modification points of API. Be-

cause TaskQueue is also used for shared queues, it must employ
removeAll():TaskBag to remove all of its tasks. For compat-
ibility with TaskQueueStaged, it also offers hasJob(), which
returns true when it has tasks and return false otherwise. As
previously described, the reduction operation is managed by the
terminationHook method of TaskQueue and reduce method
of sharedObj, instead of by the getResult and reduce methods
of TaskQueue in the original GLB.
TaskQueueStaged extends TaskQueue and includes

jobStage(), which returns the earliest stage value of its tasks.
The stage value is an integer incremented from zero. To identify
the current stage of the system, the process method receives the
value as a parameter called stage. The process(n, stage,
. . .) method can exit when it runs out of the earliest stage tasks
even if the number of executed tasks is fewer than n. The
return value of jobStage() must not decrease by means of the
process execution. It can decrease only when it receives the
earlier tasks by means of merge. The split and removeAll

c© 2016 Information Processing Society of Japan 418



Journal of Information Processing Vol.24 No.2 416–424 (Mar. 2016)

methods of TaskQueueStaged split or remove, respectively,
only the earliest stage tasks in the queue and their return value
types both become TaskBagStaged, which contains stage
information about the contained tasks. This type is also used as
an input parameter of the merge method.

4.4 Program Examples
This section provides program examples (pseudo codes) that

realize the applications described in Section 3 and describes the
manner in which programmers use our library.

The first example is a program that searches for the optimal
result in a parameter space using a stepwise approach. The up-
per part of Fig. 3 illustrates the stepwise search, and the lower
part shows the pseudo code of the program. The program first
divides the space into several regions and performs a sampling
evaluation of the regions. It then recursively divides the regions
that seem important based on prior executions. Queue (line 1)
implements TaskQueueStaged and includes its tasks in a list
called stagedTasks (line 2), in which each element represents
a set of tasks in the corresponding stage. The cutoff threshold
is stored in a sharedObj called sharedLimit (line 3). When
a worker finds a good result, other worker threads in the place
can use the threshold value, and workers in other places can use

Fig. 3 Use case (stepwise search).

the value from the next stage. In the GLB setup, function clo-
sures to create Queue and sharedObj are specified (lines 28–31).
The variable jobStage at line 4 is used for jobStage(). In the
process method, the worker executes a maximum of n tasks in
the earliest stage. If the result of a task passes the threshold, the
task prepares its sub-regions and creates corresponding new tasks
in the next stage. When Queue runs out of tasks for the earli-
est stage, it increments the value of jobStage (line 19). In the
merge method, Queue decrements jobStage according to the
stage of the received tasks. The threshold is confirmed during
task executions (lines 11–12) and task creations (lines 13–16).
In the stage transition, the system calls the reduce() method of
sharedLimit:DistValueMin, and the threshold value is set to
the minimum value among places.

The other example is a simulation program in which each step
of the program includes three computation parts: P, Q, and R. The
upper part of Fig. 4 illustrates the dependency among the parts.

Fig. 4 Use case (dependency between stages).

c© 2016 Information Processing Society of Japan 419



Journal of Information Processing Vol.24 No.2 416–424 (Mar. 2016)

We denote the computation parts of step i for element a ∈ U as
task P(a, i), Q(a, i), and R(a, i). In this program, Q(a, i) requires
the results of P(a, i), and R(a, i) requires the result of Q(a, i) and
the reduction value of ∀b ∈ U P(b, i). In the next stage, P(a,
i + 1) requires the result of R(a, i). In our library, the user can
assign task P(a, i), Q(a, i), and R(a, i) to stage 3 × i, 3 × i + 1,
and 3 × i + 2, respectively. P(a, i), Q(a, i), and R(a, i) create Q(a,
i), R(a, i), and P(a, i + 1), respectively, in the next stages. R(a, i)
must be blocked until the system reduces the results of ∀b ∈ U

P(b, i). The lower part of Fig. 4 shows pseudo code used to realize
the aforementioned behavior.
Queue executes P, Q, and R according to the jobStage (lines

7–11) and creates the subsequent tasks (e.g., line 16). Queue pre-
pares pSum (line 3) to store the reduced results of the P tasks
executed by the worker thread. MyShared is defined for shared-
Obj (lines 32–41). In the stage transition from P to Q, the value
of pSum is included in shared.pSum (lines 26–28) and reduced
among places (lines 36–40). Executing R requires confirming
that the reduction on P (line 22) has completed. In addition, work-
ers only execute tasks in the current or next stage (line 6). If tasks
in the stage after the next are executed, tasks of P in different steps
may be mixed in the queue called taskP.

Finally, we consider concerns resulting from task transfer. The
aforementioned programs assume that each task contains all data
required for program execution. If P(a, i) is transferred to another
place, the required data are also copied to the destination place,
and Q(a, i) is created in the place. Suppose the program creates
P(a, i) and Q(a, i) simultaneously and they share local data for el-
ement a. If one of these two tasks is transferred to another place,
the tasks cannot continue the data sharing. To continue the data
sharing, the system must move both tasks and their shared data.
If the task needs to access neighboring elements of a, we must
consider the locality of tasks when splitting the tasks in a queue.
In a future study, we plan to use distributed objects to manage
data distribution over places. We also intend to enable coordi-
nation between dynamic load balancing and data sharing on the
distributed object.

5. Implementation

This section describes the implementation methods we em-
ployed to introduce multithread and multistage mechanisms into
GLB. The major concerns of implementation are efficient dy-
namic load balancing and detecting program and stage termina-
tion.

5.1 Load Balancing
As the original GLB shows high scalability on dynamic load

balancing among places, the implementation of our library adopts
the same interplace load balancing policy. In addition, we use
shared queues for intraplace load balancing.

In the work-stealing algorithm of the original GLB [4], when
the worker of a place runs out of tasks, the algorithm first tries
to steal tasks from a randomly selected place several times. It
then starts work-stealing through the lifeline graph. When a place
receives a load request and has sufficient tasks, the place calls
split() in its queue and returns a half of its tasks. When the

place does not have sufficient tasks, the place immediately returns
the failure of the request. In the case of a lifeline request, the re-
quested place remembers the request and gives half of the tasks
when the place subsequently creates or receives enough tasks.

When introducing multithreading, we retain the policy that re-
turns half of the tasks in a place when that place receives a load
request. To implement this policy, we use two shared queues,
sharedQ and sharedQ2. SharedQ is designed to hold nearly half
of the tasks in a place and is used for interplace load balancing.
SharedQ2 is mainly used for intraplace load balancing. The fol-
lowing algorithms are used to hold the task volume of sharedQ.
The first is the algorithm that is not concerned with multistag-
ing. The second is the multistage version. In both algorithms, we
only use mutual exclusion in worker access to shared queues. By
contrast, each worker queue is accessed only by its owner thread
without mutual exclusions.
• When receiving an interplace load request, the place basi-

cally sends all tasks in its sharedQ. However, before sending
the tasks, the place examines sharedQ2 and moves half of
the tasks to sharedQ2 when sharedQ2 is empty.

• When the sharedQ at a place becomes empty, all worker
threads in the place are notified of this situation.

• Each worker thread performs the following load checks be-
fore executing process(). First, the worker thread deter-
mines whether the aforementioned notifications have been
received and then sends half of its tasks to sharedQ when
the notifications are received. The worker next examines
sharedQ2 and gives half of its tasks to sharedQ2 if sharedQ2
is empty. However, when the worker has no tasks, the worker
steals half of the tasks in sharedQ2. When split() returns
null, the worker steals all the tasks of sharedQ2. When
removeAll() also returns null, the worker splits the tasks
of sharedQ, moves half to sharedQ2, and reattempts work-
stealing from sharedQ2.

We next describe the algorithm for staged tasks. A place or
thread steals tasks of a victim only if the value of jobStage() is
greater than that of the victim. Half of the tasks from the earliest
stage in the victim queue can be stolen using split(). In the
case of interplace load balancing, our algorithms also move tasks
in the next earliest stage of the victim in order to distribute them.
• When receiving an interplace load request, the place com-

pares stage s1 of its sharedQ with stage s0 of the sharedQ
at the requesting place, and sends tasks only when s0 > s1.
When sending tasks, the place first calls removeAll() to
remove all the tasks in the earliest stage of its sharedQ, then
calls split() to remove half of the tasks from the next ear-
liest stage if s0 > s1+1 and sends them to requesting places.
To guarantee volume of tasks exists in the requested place,
the place examines stage s2 of the sharedQ2 prior to the
aforementioned procedures. When s1 < s2, the place splits
the tasks in the earliest stage of sharedQ and merges half to
sharedQ2.

• When a place sends the task in its sharedQ to another place,
all worker threads in the place are notified of this situation.

• Each worker thread conducts the following load checks be-
fore executing process(). First, the worker thread con-

c© 2016 Information Processing Society of Japan 420



Journal of Information Processing Vol.24 No.2 416–424 (Mar. 2016)

Fig. 5 Termination detection of tasks and stage migration.

firms whether the aforementioned notifications have been re-
ceived. When received, the worker calls split() to split its
tasks and merges the tasks into sharedQ. The worker then
compares the value of jobStage() with that in sharedQ2.
When the stage value of sharedQ2 is greater than that of the
worker queue, the worker splits its tasks and assigns half
to sharedQ2. When the stage value of sharedQ2 is smaller
than that of the worker queue, the worker splits the tasks of
sharedQ2 and steals half.

5.2 Termination Detection
The original GLB detects whether tasks have terminated using

finish operations [4]. As described in Section 5.1, the place that
receives a task request immediately returns an answer regarding
whether it has sufficient tasks to give (Fig. 5 (a)). When a request-
ing place fails to receive tasks from randomly selected places and
lifeline buddies, the worker in the place terminates its activity. By
contrast, the place that receives a lifeline task request remembers
the request and then sends tasks when it has a sufficient amount.
When the receiving place for tasks possesses no worker activities,
the place creates a new activity as a worker thread using async.
The original GLB detects the termination of such worker activ-
ities using finish. It determines whether all GLB tasks have
been terminated, and then starts reducing computation results.

To introduce multithreading, we prepare two types of threads
in each place: (1) a communicator thread used for message prob-
ing and termination detection, and (2) other worker threads that
concentrate on task processing. Figure 5 (b) illustrates the sys-
tem behavior of the termination detection algorithm that is not
concerned with multistaging (simply called the multithread ver-
sion). Worker threads are spawned in each place at the beginning

of the process. These threads are notified of the termination of
GLB (or notified of stage transitions in the multistage version)
by communicator threads via shared memory variables. The ac-
tivity of a communicator thread is created when a place receives
a task response to a lifeline request and has no active communi-
cator thread. The activity is terminated when the place runs out
of tasks. To inform the communicator whether worker threads in
the place have tasks, worker threads prepare shared variables to
record task information (stage information in the multistage ver-
sion) at every load check.

In the multistage version (see Fig. 5 (c)), the aforementioned
detection method is used to identify termination of tasks in each
stage. The system completes its activity when it attempts to start
a new stage and confirms that no task execution or receipt ex-
ists since when each place ran out of tasks in the previous stage
and all load requests and responses to lifeline requests have been
acknowledged. When the system starts the termination process,
each communicator first notifies workers of this process, awaits
termination by workers, invokes forwardHook methods for all
queues, and begins a reduction operation on sharedObj. In the
case of stage transitions, each communicator notifies workers of
the stage transition to allow them to execute forwardHook of
their queue. After confirming executions, the communicator exe-
cutes forwardHook of both its communicator and shared queues,
and then starts a reduction operation on sharedObj. While the
tasks of the next stage are executed during the stage transition,
the stage transition process of the next stage is blocked until the
transition from the previous stage has been completed.

5.3 Utility for Multistaging
We provide a utility class that uses stages to execute

c© 2016 Information Processing Society of Japan 421



Journal of Information Processing Vol.24 No.2 416–424 (Mar. 2016)

a series of GLB programs in a sequential order. The
class implements TaskQueueStaged and contains an array of
TaskQueue objects. Each TaskQueue element corresponds to
a stage. The TaskQueueStaged#forwardHook method invokes
terminationHook methods for the corresponding TaskQueue
elements. The programmer can gather the results of each stage
and use them in the following stages.

6. Preliminary Evaluation

This section reports experimental performance results of our
extended library on the K computer. The K computer is a su-
percomputer at the RIKEN Advanced Institute for Computational
Science. Each computing node has one scalar CPU (SPARC64TM

VIIIfx, 8 cores) and 16 GB of memory.
When using the multithread and multistage versions of our li-

brary, we allocated one place per node using X10 NTHREADS=8.
The program is compiled by means of native X10 version 2.5.1
and executed with the MPI version runtime (-x10rt=mpi). The
backend compiler is Fujitsu C/C++ Compiler version K-1.2.0-18
with -Xg and -Kfast options. This study also uses the perfor-
mance values of the original GLB measured in Ref. [5]. For the
measurement in Ref. [5], we allocated eight places per node (one
place per core). We used native X10 version 2.4.0 and Fujitsu
C/C++ Compiler version 1.2.0-14, using nearly the same com-
piler options as in this measurement.

In this experiment, we used the UTS program that is provided
as a sample program of GLB. The multithread version has two
modifications from the original. The first is in the manner of gath-
ering computation results. The multithread version uses shared-
Obj to gather the results as described in Section 4. The second is
padding for the TaskQueue class. Without padding, the process
method of the multithread version is 20% slower than the origi-
nal. This implies that we must prepare cache-conscious object
representation to gain the benefit of shared memory.

The staged version uses the utility library described in Sec-
tion 5.3, and executes four stages, each of which corresponds to a
program execution of UTS. As explained in detail in a later para-
graph, the original GLB and multithread version of the UTS show
high efficiency. Therefore, the staged version shows a slight pos-
sibility that it can be faster. This comparison allows us to measure
the overhead of the multistage mechanism.

In our library, the communicator thread is also designed to
process tasks that call process methods. However, our current
implementation encountered some network response problems
when the communicator threads executed process(). To avoid
these problems, we added an option for communicator threads to
skip process() calls. Therefore, the multithread and staged ver-
sions can use only seven threads to execute process methods in
these experiments.

Figure 6 shows the performance values to a maximum of 256
nodes. We measured the performance in weak-scaling using the
same execution parameter as in Ref. [5]. The original and mul-
tithread versions completed the execution in 5–10 minutes, and
the staged finished in 20–40 minutes. The Y-axis in Fig. 6 rep-
resents the number of traversed nodes in UTS per second. All
the versions reveal high scalability to a maximum of 256 nodes.

Fig. 6 Performance evaluation.

The performance values become somewhat worse when applying
both multithreading and multistaging.

The multithread version is slower than the original by 7–10%.
This is because the number of working threads is changed from
eight to seven, and we are currently attempting to identify the
cause of this network response slowdown.

The staged version is slower than the multithread version by
3% or less in most cases, and by 12% and 7% in the case of
eight and 256 nodes, respectively. Although performance by the
staged version has a slight chance to improve in this experiment,
the results show that the current staged version is slower than in
multiple invocations of the non-staged version. We plan to reduce
the runtime overhead for staging facilities.

In this experiment, we only use 256 nodes of the K computer
because some network performance problems have been identi-
fied when using broadcasts over 256 nodes and their finish op-
erations. The problem does not occur when our library is not
used and we are therefore attempting to locate the cause of the
problems.

This experiment only evaluates overhead when introducing
multithreading and multistaging features. This is because we
have yet to develop actual applications that utilize multithread-
ing or multistaging. As described in Section 4.4, we are currently
working to enable coordination between dynamic load balancing
and data sharing over multiple nodes. We plan to develop actual
applications and evaluate its performance in a future study.

7. Related Work

Much research has been conducted on dynamic load balanc-
ing especially using task-parallel-style parallel programming lan-

c© 2016 Information Processing Society of Japan 422



Journal of Information Processing Vol.24 No.2 416–424 (Mar. 2016)

Fig. 7 Code example of Phaser.

guages [1], [2]. These languages support natural expressions of
fork-join parallelisms and enable their synchronization. The lan-
guage Cilk offers constructs for spawn and sync, whereas Chapel
offers a series of begin statements for task creations and sync
type variables for synchronization.

Barrier synchronization is commonly used to synchronize par-
allel threads (or processes) of data-parallel programs. In the case
of an ordinal barrier, any thread that reaches the barrier point must
wait until all threads reach that point. To reduce the waiting time
for synchronization, Fuzzy Barrier [6] introduces barrier regions.
A thread can exit a region when all threads reach the first instruc-
tion of the region.

X10 provides clocks that can be used for barrier synchroniza-
tion. The programmer can create an activity that is registered with
a clock c by the statement async clocked(c) S , and dynam-
ically unregister the activity from the clock by c.drop(). The
registered activity of c executes c.advance() to process barrier
synchronization with other registered activities of c, and the ac-
tivities can enter the barrier region by c.resume().

Phaser [7] is a new synchronization construct that unifies col-
lective and point-to-point synchronization. Phaser is proposed as
an extension for X10 and used for synchronization among activi-
ties in the same place. Activity is registered with a phaser in one
of four modes. Lines 1–14 of Fig. 7 show a sample case using
signal-wait(-next) modes to enable a fuzzy barrier synchro-
nization, which corresponds to the second example in Section 4.4.
When using signal/wait-only modes, we can describe point-
to-point synchronizations as in lines 15–29. This example uses
an array of phasers, phs, and the j-th activity signals phs[i] and
then waits for the signals on phs[i-1] and phs[i+1]. Using
these phaser modes, programmers can naturally describe various
kinds of synchronization. Phaser also features safety properties,
such as deadlock freedom and phase-ordering. Phaser can be used
in Habanero-Java [8].

Comparing Phaser with our multistage mechanism, Phaser al-
lows barrier or producer-consumer synchronizations among ac-
tivities, and the programmer can set data dependency between
operations. However, Phaser cannot specify priority among con-
current tasks. If a programmer wants to give higher priority to
the computation of P rather than Q, he or she must set explicit
dependency between them. By contrast, our library does not of-
fer syntax extension of X10, and the programmer must divide the
problem into separately described tasks. Using our multistage
mechanism, the programmer can easily specify global priority
of tasks. However, the dependency between tasks must be im-
plemented through task creation relationship or guard conditions
for task executions, as in the second program described in Sec-
tion 4.4. Phaser has an obvious advantage in its natural descrip-
tion of synchronizations.

However, Phaser is designed for shared memory environments
and evaluated on large-scale symmetric multiprocessor systems,
but it does not support distributed memory environments. When
the programmer wants to use a phaser array to describe depen-
dency of tasks, he or she must consider the distribution of phaser
elements over nodes, while considering dynamic task relocation.
In our library, the programmer must describe data dependency
among tasks explicitly, but he or she can easily define task priority
using the stage mechanism. The system realizes global schedul-
ing of tasks, offering load balancing and termination detection of
staged tasks.

8. Conclusion

This study proposed an extension to the GLB library, in order
to introduce multithread and multistage features. We presented
our system design and implementation method. The system re-
veals high scalability to a maximum of 256 nodes. However, im-
plementation problems remain that appear to be caused by net-
work message scheduling, and the system currently requires one
thread that concentrates on message processing at each comput-
ing node. We plan to release our library after correcting these
problems. In a future study, we plan to enable coordination be-
tween dynamic load balancing and data sharing over places and
develop actual applications that utilize multithread or multistage
features.

Acknowledgments This work was supported by CREST,
JST. Part of the results is obtained by using the K computer at
the RIKEN Advanced Institute for Computational Science.

References

[1] Blumofe, R.D., Joerg, C.F., Kuszmaul, B.C., Leiserson, C.E., Randall,
K.H. and Zhou, Y.: Cilk: An Efficient Multithreaded Runtime
System, SIGPLAN Not., Vol.30, No.8, pp.207–216 (online), DOI:
10.1145/209937.209958 (1995).

[2] Cray Inc.: Chapel Language Specification Version 0.91 (2012).
[3] Saraswat, V., Bloom, B., Peshansky, I., Tardieu, O. and Grove, D.: X10

Language Specification Version 2.5 (2015).
[4] Saraswat, V.A., Kambadur, P., Kodali, S., Grove, D. and

Krishnamoorthy, S.: Lifeline-based Global Load Balancing, Proc. 16th
ACM Symposium on Principles and Practice of Parallel Programming,
PPoPP ’11, New York, NY, USA, pp.201–212, ACM (online), DOI:
10.1145/1941553.1941582 (2011).

[5] Zhang, W., Tardieu, O., Grove, D., Herta, B., Kamada, T., Saraswat, V.
and Takeuchi, M.: GLB: Lifeline-based Global Load Balancing Library
in X10, Proc. 1st Workshop on Parallel Programming for Analytics Ap-

c© 2016 Information Processing Society of Japan 423



Journal of Information Processing Vol.24 No.2 416–424 (Mar. 2016)

plications, PPAA ’14, New York, NY, USA, pp.31–40, ACM (online),
DOI: 10.1145/2567634.2567639 (2014).

[6] Gupta, R.: The Fuzzy Barrier: A Mechanism for High Speed Synchro-
nization of Processors, Proc. 3rd International Conference on Archi-
tectural Support for Programming Languages and Operating Systems,
ASPLOS III, New York, NY, USA, pp.54–63, ACM (online), DOI:
10.1145/70082.68187 (1989).

[7] Shirako, J., Peixotto, D.M., Sarkar, V. and Scherer, W.N.: Phasers: A
Unified Deadlock-free Construct for Collective and Point-to-point Syn-
chronization, Proc. 22nd Annual International Conference on Super-
computing, ICS ’08, New York, NY, USA, pp.277–288, ACM (online),
DOI: 10.1145/1375527.1375568 (2008).

[8] Cavé, V., Zhao, J., Shirako, J. and Sarkar, V.: Habanero-Java: The
New Adventures of Old X10, Proc. 9th International Conference on
Principles and Practice of Programming in Java, PPPJ ’11, New York,
NY, USA, pp.51–61, ACM (online), DOI: 10.1145/2093157.2093165
(2011).

Kento Yamashita received his B.E. de-
gree from Kobe University in 2015. Now
he is a student of the graduate school of
Kobe University. His research interest
is dynamic load balancing on large-scale
distributed-memory computers.

Tomio Kamada received his B.E. and
M.E. degrees from The University of
Tokyo in 1993 and 1995, and received
his Ph.D. degree from Kobe University
in 2004. He was a research associate at
Kobe University during 1998–2010, and
became a lecturer in 2010. His research
interest includes parallel and distributed

computations, and the runtime systems of programming lan-
guages.

c© 2016 Information Processing Society of Japan 424


