Journal of Information Processing Vol.24 No.3 483-491 (May 2016)

[DOI: 10.2197/ipsjjip.24.483]

Regular Paper

Performing STFT and ISTFT in the Microsound Synthesis
Framework of the LC Computer Music Programming

Language

Hirok1 Nisuivo!*® Ryoner Nakarsu2-?)

Received: July 31, 2015, Accepted: February 8, 2016

Abstract: This paper describes how the short-term Fourier transform (STFT) and inverse short-term Fourier transform
(ISTFT) are integrated within the sound synthesis framework of LC, a new computer music programming language,
which the authors prototyped, and discusses its benefits for computer music programming. In addition to the traditional
unit-generator-based sound synthesis framework, LC provides a framework for microsound synthesis, which is highly
independent from the unit-generator concept, and STFT and ISTFT can be also performed within the same framework.
While the unit-analyzer concept in the ChucK audio programming language shows a certain degree of similarity to
LC’s programming model for STFT and ISTFT, in that both languages allow direct access to low-level spectral data
from user programs, due to the dependence on the unit-generator-based sound synthesis framework, a ChucK program
that utilizes unit analyzers can exhibit unnecessary complexity in its implementation, when the hop sizes differ among
the STFT frames in the program. On the other hand, thanks to the high independence from the unit-generator concept,
LC’s microsound synthesis framework can provide a simpler and terser programming model and avoid such unnec-
essary complications. As other unit-generator languages can also exhibit similar problems as seen in ChucK’s unit
analyzers, depending on its sound synthesis framework design, such a language design of LC would be beneficial, not
just as a design exemplar for next generation computer music languages, but also to reconsider the design of existing
unit-generator languages on such issues regarding how STFT should be integrated in a unit-generator language and
whether unit-generators should fully synchronize the audio computation with the advance of global system time.

Keywords: computer music, unit generator, unit analyzer, spectral sound processing, programming language

1. Introduction

The short-term Fourier transform (STFT) is already an essen-
tial feature that a computer music language is expected to sup-
port. Various STFT-based sound synthesis and processing tech-
niques are involved in today’s creative practices in computer mu-
sic[3], [18]. Yet, in unit-generator languages, extra care is of-
ten required in programming when performing STFT. For in-
stance, in a programming environment that does not provide any
useful features to facilitate the implementation of the overlap-
add method for FFT frames, users have to make extra effort to
write their own code to realize overlapping FFT frames. Fur-
thermore, in many computer music programing languages and
environments, spectral processing and feature extraction tech-
niques that utilize STFT are normally encapsulated within low-
level built-in modules written in other languages (e.g., C or C++),
since the algorithms are often hard to describe just by combining
unit-generators.

Some computer music languages try to overcome such deficits
by allowing direct access to low-level data within FFT frames.

! Keio-NUS Cute Center, National University of Singapore, Heng Mui

Keng Terrace, Singapore 119613

Interactive and Digital Media Institute, National University of Singapore,
Heng Mui Keng Terrace, Singapore 119613

hiroki.nishino@acm.org

nakatsu.ryohei @gmail.com

a)
b)

© 2016 Information Processing Society of Japan

Nyquist [6] is one of the earliest examples of a computer music
language of this kind. Such an approach is beneficial in that users
can describe desired spectral processing and analysis algorithms
within the language itself, without writing built-in modules in an-
other language. While Nyquist is basically designed for non-real-
time sound synthesis and analysis, ChucK [18] is an example of a
real-time, interactive computer music language that allows direct
access to low-level frame data through its unit analyzers [19].

A new interactive real-time computer music language we pro-
totyped, LC[9], [10], is another example designed with a sim-
ilar idea. LC’s microsound synthesis framework is highly inde-
pendent of the traditional unit-generator concept and significantly
focuses on microsound synthesis (as its name indicates). Unlike
most existing computer music languages, LC can perform STFT
and ISTFT within this microsound synthesis framework, with-
out involving unit generators and even without the advance of
logical time. In addition, LC provides the unit-generator-based
sound synthesis framework and the seamless collaboration be-
tween these two frameworks with significant different abstrac-
tions. Such language design of LC provides simple and terse
programming models for spectral processing as well, whereas
ChucK and other unit-generator languages may involve a con-
siderable degree of complexity in the resulting code in certain
situations, as we describe in later sections.

Generally speaking, as ChucK’s unit analyzers still highly de-

483

Journal of Information Processing Vol.24 No.3 483-491 (May 2016)

pend on the unit-generator-based sound synthesis framework, the
implementation can exhibit a considerable degree of complica-
tion, even for simple STFT related techniques when the hop sizes
differ among STFT and ISTFT frames. This problem is largely
due to the design of ChucK’s sound synthesis framework, in
which all unit generators (and unit analyzers) synchronize the
audio computation with the advance of the system’s global logi-
cal time. Hence, the same kind of problems may easily occur in
other unit-generator languages with similar software framework
design; thus, the language design of LC can benefit not just by
offering a design exemplar for next generation computer music
languages but also by reconsidering the design of unit-generator-
based sound synthesis frameworks.

2. Related Work

2.1 STFT in Unit-generator Languages

As previously mentioned, to perform STFT-related techniques
in a unit-generator language, extra effort is often required to real-
ize the overlap-add method. Figure 1 describes a typical exam-
ple in Max to perform STFT [4]. The example involves two ffi~

#]

objects to overlap-add two FFT frames*' and the windowing is
realized by multiplying the incoming audio input by the output
signals of one cycle~ object *> for each FFT frame, respectively.
When more FFT frames must be overlapped, more objects must
be utlized, and the arguments must be also set up according to
the number of overlapping frames. Thus, the implementation can
be more complicated when increasing the number of overlapping
FFT frames.

Since such tasks (i.e., windowing of incoming samples, buffer-
ing of the samples for FFT, and overlap-adding of FFT frames)
are normally involved when STFT is performed, many computer

d-spslate~

711024,

43.066406 | band size (hz) 1024-sample window
repeats at this frequency

cycle~ wind D.g
?(0.5 phase argument indicates this
* cycle~ is sync'ed to the half-frame)

cycle~ wing

. -
a~ NS -
fit~ 1024 1024 0 = fft~ 1024 1024 512
v - il - —

H . e

BEe B8 8

Fig. 1 STFT example in Max [4].

I As for Max’s fft~ object, “the first argument specifies the number of

points (samples) in the FFT” and “the second argument specifies the
number of samples between successive FFTs”. “The third argument
specifies the offset into the interval where the FFT will start” [S]. Thus,
in Fig. 1, the FFT frame sizes for both ffi~ objects are 1024 and the FFT
are performed successively with the interval of 1024 samples, where the
it~ object on the right is given the offset of 512 to overlap-add two FFT
frames.

There are two objects and one is given the argument of 0.5 (‘cycle wind
0.5”) so that the cycle~ object can have a phase difference of half a period
from the other object.

© 2016 Information Processing Society of Japan

music languages provide special objects that encapsulate these
tasks to allow users to focus on the implementation of desired
algorithms. For instance, Max provides the pfft~ object and Su-
perCollider [20] offers the FFT/IFFT unit generators, as described
in Ref. [19].

2.2 Accessibility of Low-level Audio Data

While such a strategy to provide certain objects to encapsulate
common tasks would be quite useful to facilitate the implemen-
tation of STFT-related techniques, the actual spectral processing
and analysis tasks must be performed after obtaining FFT frame
data. Generally, however, “the analysis functionality of these
systems relies on pre-made, black-box objects (e.g., coded and
imported from C/C++) to meet the needs for common specific
analysis tasks” in many unit-generator languages, as Wang et al.
discussed in Ref. [19].

Brandt indicated that the unit-generator concept significantly
depends on black box abstraction, and considered it a significant
problem in computer music language design, since “if a desired
operation is not present, and cannot be represented as a compo-
sition of primitives, it cannot be realized within the language” [1,
p-4]. As many algorithms for spectral processing and analysis can
be complicated and often hardly realizable through just the com-
bination of unit generators, the black-box abstraction nature of
the traditional unit-generator concept can be problematic, when
a desired operation is not provided as a unit generator, as Brandt
discussed.

Thus, to make a computer music language more expressive in
spectral processing and analysis, it is desirable to allow direct
access to low-level data in each frequency bin and to provide
a means to describe a desired algorithm within the language it-
self. Nyquist[6] is a precursor example (and possibly the first
language) that is designed with such a concept. Brandt’s Chronic
computer music language [1] is another good example, which
provides users with accessibility to low-level audio data and the
expressiveness to describe desired algorithms. While these two
works are of significant interest as design exemplars, these two
languages are, however, non-real-time sound synthesis languages
and are not designed for real-time interactive computer music.

2.3 ChucK Audio Programming Language and Its Unit-
analyzer Concept

The unit-analyzer concept in the ChucK audio programming
language [19] provides a good design exemplar for a real-time in-
teractive computer music language with accessibility to low-level
spectral data and expressiveness of desired spectral processing al-
gorithms. Yet, before getting into the details of the unit-analyzer
concept, we briefly describe ChucK’s strongly-timed program-
ming concept, which realizes the sample-rate accuracy in timing
behavior. This programming concept is important in order to un-
derstand the code examples of the unit analyzers given in the fol-
lowing sections.
2.3.1 Strongly-timed Programming

Broadly speaking, the strongly-timed programming concept
is a variation of synchronous programming, which is based on
the ideal synchronous hypothesis. In the ideal synchronous hy-

484

Journal of Information Processing Vol.24 No.3 483-491 (May 2016)

Q1: // synthesis patch
02: SinOsc foo => dac;
03:

04: // infinite time loop
05: while(true)

06: {

07: // randomly choose a frequency
08: Std.rand2f(30, 1000) => foo.freq;
09: // advance time

10: 100::ms => now;

11: %}

Fig. 2 Strongly-timed programming example in ChucK [18].

pothesis, “all the computation and communication is assumed to
take zero time (that is, all temporal scopes are executed instanta-
neously)” and “during implementation, the ideal synchronous hy-
pothesis is interpreted to imply [that] the system must execute fast
enough for the effect of the synchronous hypothesis to hold” [2,
p.360].

While many other synchronous programming languages are
designed for reactive-systems *3, ChucK adopts the concept of
synchronous programming into an imperative programming lan-
guage for interactive systems, with a significant focus on pre-
cise timing behavior. In strongly-timed programing, a user pro-
gram can explicitly control the advance of its logical synchronous
time, otherwise the logical time will not be advanced at all. In
Chuck, the audio computation is performed only when the user
program explicitly advances the logical time. Figure 2 describes
a simple strongly-timed program example, as Wang described in
Ref. [18, p.43]*.

Such an issue of timing precision can also be important in spec-
tral processing and analysis algorithms. If the audio computation
is performed ‘out-of-sync’ with a spectral processing/analysis al-
gorithm, the result of the computation will be different from what
users expect.

2.3.2 Unit-analyzer Concept

To support more expressiveness in spectral processing and
analysis, ChucK introduces the concept of the unit analyzer,
“which carries with it a set of operations and a connection model
that resemble but are distinct from those of a unit-generator” [19].
The unit-analyzer concept resembles the unit-generator concept
in that it follows the similar connection model, and a unit ana-
lyzer (UAna, plural UAnae) “defines a set of control parameters
and can be dynamically patched with other UAnae and UGens”.
The difference is that unit analyzers “pass generic data that may
be in the form of spectral frames, feature vectors, metadata, or
any other (intermediate) products of analysis™ [19] whereas unit

*3 Reactive systems are “computer systems that continuously react to their
environment at a speed determined by this environment”, while interac-
tive systems “continuously interact with their environment, but at their
own rate” [8].

An approach similar to synchronous programming can be seen in other
computer music programming languages. For example, LuaAV [17] uti-
lizes coroutines in its sound synthesis framework to realize synchronous
behavior. For another example, PureData (Pd)[14] also adopts a syn-
chronous approach. In PureData, “audio and message processing are in-
terleaved in Pd” [13]. In other words, the audio computation is blocked
until the system finishes processing all the events at the timing. It should
be noted, however, that strongly-timed programming is a programming
concept based on the ideal synchronous hypothesis, while these lan-
guages realize similar behavior by implementation.

© 2016 Information Processing Society of Japan

01: //load the sound files to the buffer objects.
02: “/sound/violin.wav” => string filenamel;
03: “/sound/cherokee.aif” => string filename2;
04: SndBuf srcil;

05: SndBuf src2;

06: filenamel => srcl.read;

07: filename2 => src2.read;

09: //build a synthesis graph.

10: srcl => FFT fftl => blackhole;
11: src2 => FFT fft2 => blackhole;
12: IFFT ifft => dac;

13: 800 => ifft.gain; //gain for ifft.

15: //set up FFT parameters.

16: 1024 => fftl.size => fft2.size => ifft.size
17: => int FFT_SIZE;

18: FFT_SIZE / 2 => int HOP_SIZE;

20: Windowing.hann(FFT_SIZE) => fftl.window;
21: Windowing.hann(FFT_SIZE) => fft2.window;
22: Windowing.hann(FFT_SIZE) => ifft.window;

24: //to store the cross synthesis result.
25: complex Z[FFT_SIZE / 2];

27: //main loop.

28: while(true){

29: //perform FFT for two inputs.
30: fftl.upchuck(Q);

31: fft2.upchuck(Q);

32

33: //cross synthesis

34: for (0 => int i; 1 < fftl.sizeQ) / 2; i++){
35: fftl.cval(i) $ polar => polar a;

36: fft2.cval(i) $ polar => polar b;

37: %Ca.mag * b.mag, a.phase) => polar c;

38: c $ complex => Z[i];

39: }

40:

41; //perform IFFT.
42: ifft.transform(2);

44; //sleep until the next frame.
45: HOP_SIZE::samp => now;

Fig. 3 Cross synthesis example in ChucK.

generators stream the audio samples.

ChucK’s unit analyzers are designed to work within the unit-
generator-based sound synthesis framework. One of the benefits
of the unit-analyzer concept is that the various types of data can
be obtained from the unit-generator outputs and even low-level
data are made directly accessible from a user program. For in-
stance, in the Fig.3 example of cross synthesis [16] in ChuckK,
the FFT unit analyzers provide direct access to each frequency
bin (lines 35-36) and the algorithm of cross synthesis can be per-
formed only by the user code. Unlike many other unit-generator
languages, there is no necessity to involve a unit-generator object
designed for cross synthesis.

While ChucK is not the first language that allows the direct ac-
cess to low-level data as already described earlier in this article,
such a design of the unit analyzers contributes to avoiding the
problem, as Brandt discussed. Even if a desired operation is not
present, users can realize it by writing their own code in ChucK.

Yet, since ChucK’s unit-analyzer concept significantly depends
on its unit-generator-based sound synthesis framework, such de-
pendency can lead to usability difficulties when the hop sizes dif-
fer among the FFT and IFFT frames, as described in detail in the
later section.

485

Journal of Information Processing Vol.24 No.3 483-491 (May 2016)

3. STFT in the Microsound Synthesis Frame-
work of LC

3.1 Microsound Synthesis Framework of LC

Before we describe how STFT can be performed in LC, we
provide a brief overview of its microsound synthesis framework,
in which STFT modules are integrated. While LC is a computer
music programming language, first developed as a host language
for the LCSynth sound synthesis language [11], [12], significant
extension has been made to its language specification until the
current version 3.

While LC is still equipped with the unit-generator-based sound
synthesis framework, it also offers the microsound synthesis
framework, which is highly independent of the unit-generator
concept, together with the seamless collaboration mechanism be-
tween these two different sound synthesis frameworks.

In LC, there are two objects utilized to represent microsounds:
Samples and SampleBuffer objects. Both of these objects can
contain an arbitrary number of sample values (as long as enough
memory can be allocated in runtime). The difference between
Samples and SampleBuffer is that the former is an immutable ob-
ject and the latter is mutable *°. Figure 4 briefly describes how
Samples and SampleBuffer can be created. Both objects have var-
ious methods for manipulations. As Samples is immutable, call-
ing these methods return new Sample objects, and the original
object will remain unchanged. Samples and SampleBuffer are

Q1: //create a new Samples obj from the buf no 0.
02: LoadSndFile(@, "/sound/samplel.aif");

03: var snd = ReadBuf(@, 256::samp);

04:

05: //create another by generating a window.

06: var win = GenWindow(512::samp, \hanning);

08: //create Samples objects by the method calls.
09: var grain snd->applyEnv(win);

10: var halfAmp snd->amplify (0.5);

11: var octup snd->resample(snd.size / 2);

12: var reversed = snd->reverse();

13:

14: //use a unit-generator to create a Samples obj.
15: var sin = new Sin~(freq:440);

16: var out = sin->pread(@.5::second);

17: PanOut(out, @); //output it directly to the DAC.
18: now += 1::second,;

20: //a patch can also generate a Samples obj.

21: var dur = 1::second;

22: var pat = patch {

23: Sin~(freq:440) => env:TriEnv~(dur)

24: => defout:Outlet~Q);

25: 1

26: pat.env->trigger(Q);

27: out = pat->pread(dur);

28: PanOut(out, @);

29:

30: //convert it to a SampleBuffer obj.

31: var sbuf = snd->toSampleBuffer();

32: //convert the SampleBuffer back to a Samples obj.
33: var snd2 = sbuf->toSamples();

34:

35: //create a new SampleBuffer by ‘new’ operator.
36: var sbuf2 = new SampleBuffer(128);

Fig. 4 Samples and SampleBuffer objects in LC.

mutually convertible by the toSampleBuffer and toSamples meth-
ods, respectively.

Figure S describes an example of indexed access. Each sam-
ple within these objects is directly accessible by the ‘[]” operator.
While Samples is immutable, the samples within SampleBuffer
can be changed by assigning a new value by indexed access.

Figures 6 and 7 describe examples of synchronous granular
synthesis *’ and pitch shifting by granulation [15, p.197], respec-
tively. As shown in these, LC can perform microsound synthe-
sis without involving unit generators at all (as on lines 01-28
in Fig. 7), while it is also possible to generate a Samples object
from a unit generator or a patch (lines 15-16 and lines 22-27 in
Fig. 4, respectively) and to give a Samples object to a unit gen-
erator or a patch as the input signal to its inlet (lines 30-51 in
Fig. 7). It should be noted that LC is a strongly-timed language
with sample-rate accurate timing behavior (line 13 in Fig. 6 and
line 49 in Fig. 7).

3.2 Short-term Fourier Transform in LC

As described in Fig. 3, Samples and Samples objects in LC al-
low direct access to low-level sample data. Such a feature of LC’s
microsound synthesis framework can also be beneficial to per-
form STFT. While the current version of LC offers only basic
STFT-related library functions as shown in Table 1, this acces-
sibility to low-level data allows users to describe their desired
operations within just LC, similarly to ChucK’s unit analyzers.

Figures 8 and 10 describe simple examples of cross synthesis
and time-stretching by phase vocoding, respectively. While the
code uses the mul method of Samples to multiply the magnitudes

Q1: //create a new SampleBuffer object (size = 128)
02: var sb = new SampleBuffer(128);

04: //assigning sample values by indexed-access.
05: for (var i = @; i < sb.size; i += 1){
06: sb[i] =i * 2;

07: }

08:

09: //convert it to a Samples object.

10: var snd = sb->toSamples();

11: //Samples is immutable. Read-only.

12: for (var i = @0; i < snd.size; i += 1){
13: println('snd[" .. i .. "] =".. snd[i]);
14: }

Fig. 5 Indexed-access example in LC.

@1: //generate Samples obj from the ugen output.
02: var sin = new Sin~(freq:SampleRate / 256.0);
03: var tmp = sin->pread(1024::samp);

04:

05: //apply a hanning window to make a grain.
06: var win = GenWindow(tmp.dur, \hanning);

@7: var grn = tmp->applyEnv(win)->resample(440);

@9: //perform sync gran synth for 5 second.

10: within(5::second) while(true){

11: PanOut(grn, 0.0); //0.0 = center

12: //sleep until the next grain sched timing.
13: now += grn.dur / 4;

14: }

Fig. 6 Synchronous granular synthesis example in LC.

#5
#6

Our paper [10] gives a brief overview of the language features of LC.
This difference between Samples and SampleBuffer in LC is similar to
the difference between String and StringBuf in Java [7].

© 2016 Information Processing Society of Japan

*7In synchronous granular synthesis, the sound “results from one or more

stream of grain” and “the grains follow each other at regular inter-
vals” [15, p.93].

486

Journal of Information Processing Vol.24 No.3 483-491 (May 2016)

s1: //1load a sound file and set up the pargmeters. . .
02: LoadSndFile(®, ““/sound/cherokee.aif “); 01: //load two sound files to buf 0 and bufl.
. _ @2: LoadSndFile(0, /sound/violin.wav);
03: var pitch = //shift octave upper . “ e)
04: var rpos _ @ :second; //the buf read pos 82 LoadSndFile(l, “/sound/cherokee.aif”);
05: var grnsize = 512; :
26 xgr‘ gr‘ndllji - gr‘nélze samp; @5: //the widnow size and the num of overlap-add.
@7: var win = GenWlndow(grndur, \hanning); gg Vg: gu{pl = éozizizgmmz
08: var rdur = grndur * pitch; LV v =¢, ov =<5
09: 08:
10: var entireDur = 2::second; 09: //process 800 frames.)
11: 10: for (var i =0; i < 800; i += 1){
12: //perform gr'anu]_ar* DltCh-Shlftlng 11: //read snd fragments from the bu_ffer's.
13: within(entireDur) while(true){ 12: var srcl = ReadBuf(@, dur, offset:i * dur / ovlpl);
14: //get a snd fragment from the buffer. 13: var src2 = ReadBuf(1, dur, offset:i * dur / ovlp2);
2 o 14
15: var snd = ReadBuf(@, rdur, offset:rpos); :
16: 15: //PFFT returns an array of Samples objects,
17: //resample to pitch-shift. apply an envelope. 16: //[magnitude, phase].
18: var tmp = snd->resample(grnsize); 17: var pfftl = PFFT(srcl, \hanning);
%—8: var grn = tmp->applyEnv(win); 18: var pfft2 = PFFT(src2, \hanning);
: 19:
21: //send the grain to the DAC. 20: //perform cross synthesis.
%g: WriteDAC(grn); 21: var ppved = pfftl[0]->mul(pfft2[0]);
: 22:
24 //advance the time & the read pos.) 23: var pifft = PIFFT(ppved, pfftli[1], \hanning);
25: //change the inc value for time-stretching. 24:
26: now += grn.dur / 2; 25: PanOut(pifft, ©.0); //center = 0.0
27: rpos += grn.dur / 2; 26:
28: } 27: now += srcl.dur / ovlpl;
29:) 28: }
30: //now, we apply the triangle envelope and

31: //the reverberation, using a patch.
32: //first, let’ s create a patch. Fig. 8 Cross synthesis example in LC.
33: var p = patch {

34: defin:Inlet~() => env:TriEnv~(entireDur)
35: => Freeverb~() => DAC~();

36: };))

37: p.env->trigger(); //trigger the envelope. @1: var tmp = new SampleBuffer(dur / 1::samp);

gg: p->start(); //play the patch right now. 02: for (var i = 0; i < pfftl[@].size; i +=1){
: 03: t i] = pfftl[@][i] * pfft2[@][i];

4Q: //perform the same algorithm, but with a patch. 04: } melil = p reicil * p reti

41: rpos = @::second; //reset rpos. . d = tmp->toSampl .

42: withinCentireDur) while(true){ 05: var ppve mp->toSamples();

43: var snd = ReadBuf(@, rdur, offset:rpos);

44: var tmp = snd->resample(grnsize); Fig. 9 Performing cross-synthesis using a for loop.
45: var grn = tmp->applyEnv(win);

47: //this time, write to a patch instead.
48: p->write(grn);

ég now += gr‘n.gur‘ ; %’ 01: //load two sound files to buf 0.
: rpos += grn.aur ’ 02: LoadSndFile(@, “src@.wav’);
51: } 03-
04: //set up the parameters.
o 05: var dur = 1024::samp; //the FFT frame size
Fig. 7 Granular pitch-shifting example in LC. 06: var ovlp = 4; //overlap x 4
Q7: var strc = 4; //stretch x 4
08:
Table 1 Library functions for STFT in LC. 09: //set up the initial phase.
10: var firstFrame = ReadBuf(@, dur);
FFT(var samples) 11: var ffted = PFFT(firstFrame);
IFFT(var real, imag) 12:
FFT (The current version just perform real FFT only) 13: var prev = ffted[1];
. 14: var accum= prev;
and Inverse Fast Fourier Transform. FFT returns an array 15:
of [real, imag]. 16: //perform time-stretching for 24 second.

17: within(24::second) while(true){

CarToPol(var real, imag) 18: //read one more frame and perform FFT.
PolToCar(var mag, phase) 19: var snd = ReadBuf(@, dur, offset:pos);
conversion between Cartesian coordinate and polar %2 var ffted= PFFT(snd);
coordinate 22: //calc the phase diff and accumulate it.
PFFT(var samples, window) 23: var dif = ffted[1]->sub(prev)->amplify(strc);
PIFFT(var mag, phase, window) ;g accum = accum->accumulatePhase(dif);
FFT/IFFT with windowing. PIFFT returns the frame data 26+ //perform IFFT with the accumulated phase.
in polar coordinate. PFFT returns an array of [mag, phase]. 27: var ifft = PIFFT(ffted[0], accum);
28: PanOut(iffted, 0.0); //send to the DAC output
29:

30: //update prev phase

31: prev = ffted[1];

be performed entirely in the user code as in Fig. 9, which can re- 32:

33: //update pos and sleep until the next frame.

of two FFT frames in Fig. 8 (on line 21), the same operation can

place line 21 in Fig. 8. Likewise, the other methods (sub, amplify, 34: pos += dur / (ovlp * strc);
accumulatePhase) in Fig. 9 can also be expressed entirely within 33;(55 . now += dur / ovlp;

the user code.

Thus, LC also provides direct access to low-level data together Fig. 10 Phase vocoder example (time-stretching) in LC.

with good expressiveness of the algorithms to perform spectral

© 2016 Information Processing Society of Japan 487

Journal of Information Processing Vol.24 No.3 483-491 (May 2016)

synthesis and analysis. Moreover, in LC, STFT can be performed
within just its microsound synthesis framework without involving
any unit generator, whereas ChucK’s unit analyzers still signifi-
cantly depend on its unit-generator-based sound synthesis frame-
work. Such independence from the unit-generator concept is one
of the key factors in the language design of LC that makes it pos-
sible to avoid unnecessary complexity in the implementation (in
other words, usability difficulties in programming), which ChucK
and other unit-generator languages with similar designs exhibit in
certain situations. We discuss this issue in more detail in the next
section.

4. Discussion

One of the typical problems in performing STFT within the
unit-generator-based sound synthesis framework is the difficulty
in implementing windowing and overlap-adding. The Fig. 1 ex-
ample in Max exhibits this typical problem; windowing must be
implemented and multiple FFT objects must be utilized to im-
plement overlapping FFT frames. Furthermore, the time must be
advanced to feed the input samples. This can introduce latency,
even when all the sample data is already loaded in the buffer.

While the problems as above (except the latency) can be solved
by providing a utility object that automatically performs buffer-
ing, windowing and overlap-adding all at once, (e.g., pfft~ in Max
and the FFT unit generator in Supercollider), there remains a
serious problem of the expressiveness of the related algorithms
and accessibility to lower-level data, as Brandt and Wang dis-
cussed, which is described in Section 2. Based on the idea sim-
ilar to Nyquist and Chronic, both of which are non-real-time
computer music languages, ChucK’s unit-analyzer concept seems
to succeed in providing one solution for an interactive real-time
computer music language by allowing direct access to low-level
spectral data. Strongly-timed programing in ChucK also pro-
vides sample-rate accurate synchronization between the algo-
rithms written within the language and the unit-generator-based
sound synthesis. Thus, Chuck achieves a considerable degree of
expressiveness in spectral processing and analysis; however, as it
is highly dependent on the unit-generator-based sound synthesis
framework, the latency issue remains. As it is still required to ad-
vance the logical time to feed the input samples to the FFT unit
analyzer, the latency of the FFT frame size must be involved.

To make matters worse, the dependency on the unit-generator-
based framework can cause another problem in ChucK when the
hop sizes can differ among the FFT frames. Think of the situation
in which two FFT objects are utilized in cross synthesis and the
hops sizes differ between them. For instance, one may want to
use a smaller hop size for one of the sound sources (from which
we extract its formant for cross synthesis), as the duration of the
sound source is shorter than the other. Figure 11 describes such
a ChucK example in which the hop sizes for two input sources
differ. As presented, the code is much more complicated than the
Fig. 3 example.

To comprehend this example better, consider the situations as
follows. First, we discuss what is performed in the previous ex-
ample in Fig. 3. In Fig. 3, if the time is advanced for 512 samples
(the hop size for IFFT), both the FFT unit analyzers (fft/ and ff2)

© 2016 Information Processing Society of Japan

discard the oldest 512 samples in the internal buffers and receive
the input of 512 new samples from their sound sources (src/ and
src2). Thus, the hop sizes for these FFT unit analyzers become
the same as IFFT.

Now, suppose that we want to read the second sound source
at half speed. To implement such a program, one has to change
the hop size for fft2 to 256 samples but still keep the hop sizes
for fft] and ifft at 512 samples. In this case, ff2 must discard
only the oldest 256 samples and accept 256 new input samples
instead, but fft/ and ifft still require the advance of 512 samples.
For this reason, one must utilize two pairs of SndBuf and FFT for
the second sound source (source2a and fft2a, source2b and fft2b)
as in the Fig. 11 example, and then update the reading positions
of each SndBuf so that the samples can be fed from the correct
positions of the buffers, according to the given hop sizes. This
problem is indeed rooted in the design of ChucK’s unit-generator-
based sound synthesis framework, in which all the unit generators
and unit analyzers synchronize their audio computations with one
global system time. Hence, a similar problem can also be exhib-
ited in other unit-generator languages, if they are similarly de-
signed.

It may be possible to describe the same algorithm just by the
combination of unit generators. For instance, the algorithm to up-
date the read position may be implemented by a phasor unit gen-
erator. The reading position from the sound buffer can be given
as the sum of the output from a phasor unit-generator that ranges
from zero to 1,023 and the offset value, which represents the start-
ing position to read from the buffer for the current frame. This
offset value must be updated at the beginning of each frame. The
resulting code for the synthesis graph, however, would be more
complicated and less comprehensive for users.

Another possible solution for this problem, which is a little
simpler, is to control the number of the samples to be fed into the
FFT unit analyzer for the second source by temporarily discon-
necting a connection between the FFT unit analyzer and a black-
hole unit generator. In ChuckK, a blackhole unit generator, which
simply discards any given input, is a unit-generator that can be
the starting node of a depth-first-search for the audio computa-
tion, as well as the dac unit generator. A unit generator (or unit
analyzer) does not produce its output, if a unit generator (or unit
analyzer) is not traceable from any dac or blackhole unit genera-
tor in ChucK’s sound synthesis framework.

Thus, one can control the amount of the samples to be fed
into an FFT unit analyzer by disconnecting it from a blackhole
unit generator and can temporarily suspend its audio computa-
tion. Figure 12 describes such an example. The example first
advances the time only for the hop size for ff#2 and then imme-
diately disconnects the connection between fft2 and blackhole to
deactivate fft2. After this disconnection, no more samples are fed
from soruce? to fft2. Then, the code advances the time until the
next timing when cross synthesis must be performed. Right after
waking up from sleep, the code connects ff#2 again to blackhole
so that it can be fed the input samples. In this way, modifying
the synthesis graph in this example controls the hop size for ffi2.
As clearly seen, the example does not utilize an additional pair of
SndBuf and FFT and is much simpler than the Fig. 11 example.

488

Journal of Information Processing Vol.24 No.3 483-491 (May 2016)

01:
02:
03:
04:
05:
06:
o7:
: filenamel => sourcel.read;
09:
10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:
31:
32:
33:
34:
35:
36:
37:
38:
39:
40:
41:
42:
43:
44
45:
46:
47:
48:
49:
50:
51:
52:
53:
54:
55:
56:
57:
58:
59:
60:
6l:

63:
64:
65:
66:
67:
68:
69:
70:
71:
72:
73:
74:
75:
76:
77
78:
79:
80:
81:

//load two sound files
“/sound/violin.wav” ~=> string filenamel;
“/sound/cherokee.aif” => string filename2;

SndBuf sourcel;
SndBuf sourceZa;
SndBuf source2b;

filename2 => source2a.read;
filename2 => source2b.read;

//build a synthesis graph for cross synthesis.
sourcel => FFT fftl => blackhole;
source2a => FFT fft2a => blackhole;
soruce2b => FFT fft2b => blackhole;

IFFT ifft => dac;
800 => ifft.gain; //adjust the output volume.

1024 => fftl.size => fft2a.size => fft2b.size
=> ifft.size => int FFT_SIZE;

FFT_SIZE / 2 => int HOP_SIZE_OUT;
FFT_SIZE / 4 => int HOP_SIZE_SRCZ;

Windowing.hann(FFT_SIZE) => fftl.window;
Windowing.hann(FFT_SIZE) => fft2a.window;
Windowing.hann(FFT_SIZE) => fft2b.window;
Windowing.hann(FFT_SIZE) => ifft.window;

complex Z[FFT_SIZE / 2];

0 => int posA;
0 => int posB;

//after 512 samples, we need to the read posi-
//tion for source2b so that it can be fed the
//samples from the correct position (the start
// the pos of the source2a + hop size).
HOP_SIZE_OUT::samp / 2 +=> now;

HOP_SIZE_SRC2 => posB => source2b.pos;
HOP_SIZE_OUT::samp / 2 +=> now

//now, sourcel and source2a have been fed

//1024 samples from the heads of their buffers.

//the source2b has been fed 512 samples from
//the head of its buffer + the hop size.

//we are ready to start cross synthesis.
while(true){

//first, process sourcel & source2a.
fftl.upchuck(); //perform FFT for sourcel.
fft2a.upchuck(); //perform FFT for sourceZa.

for (0 => int i; 1 < fftl.size() / 2; i++){
fftl .cval(i) $ polar => polar a;
fft2a.cval(i) $ polar => polar b;
%Ca.mag * b.mag, a.phase) => polar c;
c $ complex => Z[1i];

}
ifft.transform(Z);

//update the next read pos for the source2a
//so that the next frame can be read from
//(the head of the sourceZb + the hop size).
HOP_SIZE_SRC2 * 2 +=> posA;

posA => source2a.pos;

//advance the time to process the next frame.

HOP_SIZE_OUT: :samp +=> now;

//now, process sourcel & sourceZb.
fftl.upchuck(); //perform FFT for sourcel.
fft2b.upchuck(); //perform FFT for sourcez2b.
for(@ => int i; i < fftl.size() / 2; i++){
fftl .cval(i) $ polar => polar a;
fft2b.cval(i) $ polar => polar b;
%Ca.mag * b.mag, a.phase) => polar c;
c $ complex => Z[i];

Fig. 11 Another example of cross synthesis in ChucK.

© 2016 Information Processing Society of Japan

82: ifft.transform(2);
83: //update the next read pos for the sourcez2b
84: HOP_SIZE_SRC2 * 2 +=> posB;

85: posB => source2b.pos;

86:

87: //advance the time to process the next frame.
88: HOP_SIZE_OUT: :samp => now;

89: }

Fig. 11 Another example of cross synthesis in ChucK (continued).

01: //load the sound files to the buffer objects.
02: “/sound/violin.wav” => string filenamel;
03: “/sound/cherokee.aif” => string filename2;
04: SndBuf srcl;

05: SndBuf src2;

06: filenamel => srcl.read;

07: filename2 => src2.read;

09: //build a synthesis graph.

10: srcl => FFT fftl => blackhole;

11: src2 => FFT fft2 => blackhole;

12: IFFT ifft => dac;

13: 800 => ifft.gain; //gain for ifft.

15: //set up FFT parameters.

16: 1024 => fftl.size => fft2.size => ifft.size
17: => int FFT_SIZE,;

18: FFT_SIZE / 2 => int HOP_SIZE;

19: FFT_SIZE / 4 => int HOP_SIZE_SRCZ;

21: Windowing.hann(FFT_SIZE) => fftl.window;
22: Windowing.hann(FFT_SIZE) => fft2.window;
23: Windowing.hann(FFT_SIZE) => ifft.window;

25: //to store the cross synthesis result.
26: complex Z[FFT_SIZE / 2];

28: //main loop.

29: while(true){

30: //perform FFT for two inputs.
31: fftl.upchuck(Q);

32: fft2.upchuck(Q);

34: //cross synthesis
35: for (0 => int i; i < fftl.size() / 2; i++){

36: fftl.cval(i) $ polar => polar a;

37: fft2.cval(i) $ polar => polar b;

38: %Ca.mag * b.mag, a.phase) => polar c;
39: c $ complex => Z[1i];

40: }

41:

42: //perform IFFT.
43: ifft.transform(2);

45: //advance the time for the source2 hop size.
46: HOP_SIZE_SRC2::samp +=> now;

47: //disconnect fft2 from the blackhole ugen.
48: //so that no more samples are fed from src2.
49: fft2 =< blackhole;

51: //sleep until the timing for the next frame.
52: (HOP_SIZE::samp - HOP_SIZE_SRC2::samp) +=> now;
53: //connect fft2 again to the blackhole ugen.
54: fft2 => blackhole;

Fig. 12 Yet another example of cross synthesis in ChucK.

However, aside from whether or not other unit-generator lan-
guages allow direct access to low-level data from algorithms that
users describe themselves, as in Chuck’s unit analyzers, the solu-
tion in the Fig. 12 example may be more specific to ChucK than
the Fig. 11 example since some unit-generator languages may not
support the dynamic modification of a sound synthesis graph as
required in Fig. 12. Moreover, even in the language that allows
the dynamic modification of a unit-generator graph, the discon-
nection and reconnection may not be performed with sample-rate
accuracy, failing to modify the synthesis graph at the expected
timing. Furthermore, both examples can be even more compli-
cated when the hop sizes for all the FFT/IFFT frames differ. In

489

Journal of Information Processing Vol.24 No.3 483-491 (May 2016)

the Fig. 11 example, one would need to add more pairs of SndBuf
unit generators and FFT unit analyzers. In Fig. 12, more dynamic
modification of the synthesis graphs must be involved.

In contrast, the Fig. 8 example in LC can simply use the dif-
ferent hop sizes by changing the parameters ovipl and ovip2 on
line 07. Moreover, no latency is involved, as it is not neces-
sary to advance the time to feed the samples to an FFT object,
as in ChucK or other unit-generator languages. Thus, the inde-
pendence of LC’s microsound synthesis framework from the unit-
generator concept plays a significant role in avoiding unnecessary
complexity in these situations. Furthermore, since LC’s unit gen-
erators and patches can compute the output samples even without
the advance of time (lines 14—15 and lines19-25 in Fig. 4), even
when one of the sound sources is generated by a unit generator
or a patch, there would not be much difference in complexity. A
Samples object obtained from the output of a unit generator or
patch can be directly used for spectral processing.

In addition, LC’s microsound synthesis framework may also
be suggestive to the sound synthesis framework design for unit-
generator languages. The complexity in using different hop sizes
among FFT frames is largely due to the software design in which
unit generators fully synchronize their behaviors with one global
system time. Yet, this issue has not been discussed in the design
of existing computer music languages and has been neglected,
while the use of different hop sizes among FFT frames can be
important when computer musicians creatively explore spectral
synthesis and analysis techniques. As described in this article,
even to utilize a simple time-stretching technique for the formant
source in cross synthesis, hop sizes can differ among FFT frames
and then lead to complexity in the resulting code. The code can be
more complicated when applying various spectral synthesis and
analysis techniques at once. As this issue can damage the expres-
siveness of a computer music programming language and hin-
der creative exploration by computer musicians, it should be re-
viewed as a usability difficulty in computer music programming.

5. Conclusion and Future Work

We described how STFT can be performed in LC within its
microsound synthesis framework and compared it to ChucK’s
unit-analyzer concept, which shows a certain degree of similarity.
Both languages provide accessibility to low-level data and the ex-
pressiveness to describe desired operations on the low-level data
within just the language, without using dedicated built-in objects.
Yet, due to the dependence on the unit-generator-based sound
synthesis framework of ChucK’s unit-analyzer concept, these two
languages can show significant differences in the complexity of
the resulting implementation, even for a simple spectral process-
ing technique in certain situations. It was observed that ChucK
can exhibit more complexity in the resulting code when the hop
sizes differ among FFT frames.

As this complexity is not specific to ChucK but is caused by the
design of the sound synthesis framework that fully synchronizes
the audio computation of unit generators with only one global
system time, the same problem can also be exhibited in other
unit-generator languages. Thus, LC’s sound synthesis framework
design not only provides a design exemplar for further research

© 2016 Information Processing Society of Japan

in computer music language design but also is beneficial for re-
considering the design of existing unit-generator languages.

For the support of better usability and expressiveness in com-
puter music languages, it would be desirable to consider the fol-
lowing issues for further discussion, which we described by com-
paring LC’s microsound synthesis framework and ChucK’s unit-
analyzer concept: how STFT should be integrated in computer
music programming language and whether unit generators should
synchronize the audio computation completely with the advance
of global system time.

For future work, since the implementation of LC is still just a
proof-of-concept prototype and the number of library functions
is limited at this point, we are planning to provide more STFT-
related library functions and to investigate how other STFT-
related techniques can be implemented in LC and other languages
for further inquiry in computer music language design.

References

[1] Brandt, E.: Temporal Type Constructors for Computer Music Pro-
gramming, Ph.D. thesis, Carnegie Melon University (2008).

[2] Burns, A. and Wellings, A.J.: Real-time Systems and Programming
Languages: Ada 95, Real Time Java and Real Time Posix, Addiso-
Wesley (2001).

[3] Charles, J.F.: A Tutorial on Spectral Sound Processing Max/MSP and
Jitter, Computer Music Journal, Vol.32, No.3 (2008).

[4] Cycling 74, Tutorial 26: Frequency Domain Signal Processing with
pfft~, MSP Tutorial.

[5] Cycling 74, ftt~ reference, MSP Tutorial.

[6] Dannenberg, R.B.: Machie Tongues XIX: Nyquist, a Language for
Composition and Sound Synthesis, Computer Music Journal, Vol.21,
No.3 (1997).

[71 Gosling, J.: Java Language Specification, Addison-Weslely Profes-
sional (2000).

[8] Halbwachs, N.: Synchronous Programming of Reactive Systems,
Springer-Verlag (2010).

[91 Nishino, H.: LC: A Mostly-strongly-timed Prototype-based Computer
Music Programming Language that Integrates Objects and Manipu-
lations for Microsound Synthesis, Ph.D. thesis, National University of
Singapore (2014).

[10] Nishino, H., Osaka, N. and Nakatsu, R.: The Microsound Synthe-
sis Framework in the LC Computer Music Programming Language,
Computer Music Journal, Vol.39, No.4, MIT Press (2015).

[11] Nishino, H. and Osaka, N.: LCSynth: A Strongly-timed Synthesis
Language that Integrates Objects and Manipulations for Microsounds,
Proc. Sound and Music Computing Conference (2012).

[12] Nishino, H., Osaka, N. and Nakatsu, R.: Unit-generators Considered
Harmful (for Microsound Synthesis): A Novel Programming Model
for Microsound Synthesis in LCSynth, Proc. ICMC (2013).

[13] Puckette, M.: Pd Documentation.

[14] Puckette, M.: The Theory and Technique of Electronic Music, World
Scientific Publishing Company (2007).

[15] Roads, C.: Microsound, The MIT Press (2004).

[16] Settel, Z. and Lippe, C.: Real-time Timbral Transformation: FFT-
based resynthesis, Contemporary Music Review, Vol.10, No.2 (1994).

[17] Wakefield, G. et al.: LuaAV: Extensibility and Heterogeneity for Au-
diovisual Computing, Proc. Linux Audio Conference (2010).

[18] Wang, G.: The ChucK Audio Programming Language. A Strongly-
timed and on-the-fly Environ/mentality. Ph.D. thesis. Princeton Uni-
versity (2008).

[19] Wang, G et al.: Combining Analysis and Synthesis in the ChucK pro-
gramming Language, Proc. ICMC (2007).

[20] WIlson, S., Cottle, D. and Collins, N.: The SuperCollider Book, The
MIT Press (2011).

490

Journal of Information Processing Vol.24 No.3 483-491 (May 2016)

Hiroki Nishino received his Ph.D. de-
gree in Integrative Sciences and Engi-
neering from the National University of
Singapore in 2014. He also received
the Grant for Overseas Study by Young
Artists Pola Art Foundation in 2008 and
the MITOH funding from Information-
Technology Promotion Agency Japan in

Ryohei Nakatsu received his Ph.D. de-
gree in electronic engineering from Kyoto
University in 1982. Since then he has
been working in the area of communi-
cation technologies, art and technology,
robotics, etc. He is a life fellow of IEEE,
a fellow of the Institute of Electronics, In-
formation and Communication Engineers,

a fellow of the Virtual Reality Society of Japan.

© 2016 Information Processing Society of Japan 491

