
Journal of Information Processing Vol.24 No.3 504–511 (May 2016)

[DOI: 10.2197/ipsjjip.24.504]

Regular Paper

Android Video Processing System Combined with
Automatically Parallelized and Power Optimized Code by

OSCAR Compiler

Bui Duc Binh1,a) Tomohiro Hirano1 HirokiMikami1

Hideo Yamamoto1 Keiji Kimura1 Hironori Kasahara1

Received: May 19, 2015, Accepted: January 12, 2016

Abstract: The emergence of multi-core processors in smart devices promises higher performance and low power
consumption. The parallelization of applications enables us to improve their performance. However, simultaneously
utilizing many cores would drastically drain the device battery life. This paper shows a demonstration system of real-
time video processing combined with power reduction controlled by the OSCAR automatic parallelization compiler
on ODROID-X2, an open Android development platform based on Samsung Exynos4412 Prime with 4 ARM Cortext-
A9 cores. In this paper, we exploited the DVFS framework, core partitioning, and profiling technique and OSCAR
parallelization - power control algorithm to reduce the total consumption in a real-time video application. The demon-
stration results show that it can cut power consumption by 42.8% for MPEG-2 Decoder application and 59.8% for
Optical Flow application by using 3 cores in both applications.

Keywords: low-power consumption, automatic parallelizing compiler, multi-core processor, Android

1. Introduction

Recently, smart devices have become progressively affordable
and powerful with significant growth in the number of consumers.
Users’ expectation of higher performance leads to demands on
the speed of processors as well as requiring efficiency when us-
ing limited energy resource. In smart devices, video applica-
tions including video players and image recognition make one
of the most used application areas. However, it consumes a huge
amount of energy due to high calculation complexity. Since the
growth in capacity of the battery is limited, research into opti-
mizing the power consumption of video applications in Android
devices is significantly important.

Generally, Android applications are developed in Java lan-
guage. It is possible to parallelize applications in Java as shown in
Ref. [1]. However, it is also indicated that Android applications
can be sped up by using Android NDK and JNI [1], [2]. An-
droid NDK and JNI enable Android developer to use native code
written in C or C++, which is much faster than Java at doing
arithmetic operations. Another way of parallelizing applications
is to parallelize them in a native language such as C, then build
shared library by NDK, finally use that library to compute the
data passed by Java side through JNI.

One way of reducing power consumption is to make use of the
power management classes provided in the application layer of
Android platform framework [14]. However, this method is lim-

1 Department of Computer Science and Engineering, Waseda University,
Shinjuku, Tokyo 162–0042, Japan

a) binh@kasahara.cs.waseda.ac.jp

ited by a few of functionalities such as switching between on/off
statuses of the screen, adjusting the brightness of the screen or
applying and releasing the WakeLock. These operations are not
enough to give an optimized solution for power consumption is-
sue in Android smart devices. Therefore, utilizing DVFS, clock
gating and power gating by native code written in C or C++ is
required in order to control the power consumption of Android
application.

Parallelization of applications is a very effective way to ben-
efit from a multi-core system. However, manually parallelizing
a large program is very time-consuming, and moreover, most of
the current applications were not developed with the multi-core
system and power optimization as a priority. There are some
parallelizing compilers, such as OpenMP Compiler [3] and OS-
CAR compiler [4], [5]. For all of these parallelizing compilers,
OSCAR Compiler can achieve not only application paralleliza-
tion but also power optimization [6], [7]. In Ref. [8], it is showed
that on ODROID-X2 [10] 4-cores (processor element - PE) board
running Android 4.1.2, using OSCAR compiler and its power
control module can save 86.7% power consumption when uti-
lizing 3 cores versus the ordinary 1 core execution without OS-
CAR power control in case of MPEG-2 Decoder application, and
86.5% power consumption when utilizing 3 cores against the or-
dinary 1 core execution without OSCAR power control in case of
Optical Flow application, respectively. However, this paper only
measured the power consumption of computation part in those
applications. In other words, no real-time display task had been
done in spite of both experiment applications are multimedia ap-
plications. In order to implement real-time video processing task,

c© 2016 Information Processing Society of Japan 504



Journal of Information Processing Vol.24 No.3 504–511 (May 2016)

it is necessary to separate displaying work from calculating work
and consider the application performance at different frequency
steps.

This paper shows a full implementation of a demonstration sys-
tem of low power real-time video processing applications by us-
ing OSCAR compiler. The completed Android video applica-
tions are built with Android NDK, core partition and OSCAR
power optimized shared library. Moreover, the power-optimized
result is improved by providing more precise profiling informa-
tion feedback to OSCAR compiler power control module.

The rest of this paper is structured as follows. Section 2 in-
troduces the CPU frequency scaling on Android platform, and
Section 3 introduces the OSCAR compiler. Section 4 and 5 ex-
plain the structure of the demonstration system. Section 6 shows
the power consumption evaluation results, and Section 7 gives the
conclusion of the paper.

2. CPU Frequency Scaling in Linux System

This section shows a brief introduction about the power man-
agement framework of the Linux Kernel in an Android system,
which is used by the OSCAR compiler for low power optimiza-
tion in the proposed demonstration system.

The linux kernel provides a DVFS framework for controlling
DVFS, namely CPUFreq. There are five kinds of governors, each
of them offers its own strategy of working frequency in the fol-
lowings.
• performance – sets the frequency to the highest supported

CPU frequency.
• powersave – sets the frequency to the lowest supported CPU

frequency.
• userspace – sets the frequency from a userspace program,

our work uses this governor.
• ondemand – adjusts the frequency based on system utiliza-

tion, our work uses this governor for comparison.
• conservative – adjusts gradually based on utilization.
In a Linux system, the ondemand governor is enabled by

default. The ondemand governor changes the CPU frequency
based on the CPU utilization. Figure 1 shows the original on-
demand power control algorithm [11]. For every CPU, the kernel
checks the current utilization. If it is larger than the upper bound

Fig. 1 Original ondemand algorithm.

value, the kernel will set the working frequency to the maximum
value. Likewise, if the current utilization is smaller than the lower
bound, the working frequency will be decreased by 20%. The on-
demand governor is suitable to periodical applications since the
operating system can predict the proper frequency based on the
previous CPU utilization, which is quite stable in case of periodic
applications.

In userspace governor, the user changes the working fre-
quency through the sysfs interface. The desired frequency value
can be explicitly set by writing to a sysfs file system such as
/sys/devices/system/cpu/cpu<n>/cpu freq/scaling set speed.

3. OSCAR Compiler

The following briefly describes the OSCAR (Optimally Sched-
uled Advanced Multiprocessor) Compiler and OSCAR API,
which are used for parallelization and power optimization of ap-
plications in this paper.

The compiler exploits 3 kinds of tasks called macro-tasks
(MT): basic block (BB), loop (RB), and subroutine call (SB) from
a sequential source program. In constraints of control dependen-
cies and data dependencies, the parallelism among MTs is ex-
ploited by the compiler and the result is represented as a hierar-
chically defined Macro Task Graph (MTG) [4]. Then macro-tasks
are scheduled to available processors.

Based on the result of tasks scheduling, the power optimiza-
tion is applied. In order to save power consumption, OSCAR
compiler manages to reduce the working frequency as well as ex-
ploit clock gating and power gating. In this paper, 4 levels of
frequency namely HIGH (100% of the highest frequency), MID
(52% of the highest frequency), LOW (23% of the highest fre-
quency) and VLOW (11% of the highest frequency) are used [7].

In the OSCAR compiler, a task cost is defined as the number
of clock cycles needed to finish the task. Moreover, for each kind
of hardware architecture, it is necessary to specify configuration
information so that the compiler can give more precise power op-
timization for the target hardware architecture. The CPU static
energy, dynamic energy, leak current, CPU frequency switching
latency time are examples of the configuration information.

Finally, the parallelized and power optimized C or FORTRAN
codes are generated with OSCAR API directives [6]. The results
can be improved to be more precise and compatible with the tar-
get architecture by providing additional information such as num-
ber of cores, cache memory size in the form of compiler options.

4. Video Processing Demonstration System

The purpose of this paper is to show a demonstration system of
automatically parallelized and power optimized real-time video
applications. This section describes the details of the demonstra-
tion that has been developed in this paper.

The applications are divided into 2 parts: Java part and arith-
metic part with the JNI interface. The former runs on UI (User
Interface) thread which is programmatically assigned to CPU
0. This core is responsible for displaying computed data, doing
garbage collection and other system related works while waiting
for the results from the arithmetic thread. Since the long-running
operations should not be performed on the UI thread, it is neces-

c© 2016 Information Processing Society of Japan 505



Journal of Information Processing Vol.24 No.3 504–511 (May 2016)

Fig. 2 Simple video player model.

sary to create new threads and process intensively heavy calcula-
tion by those threads, asynchronously. By doing so, the UI can
still operate during processing. Arithmetic threads are assigned
to the remaining cores by using the CPU affinity mask. The C
source code for those computations is generated by the OSCAR
compiler. In this experiment, we create new worker threads on
different cores to take advantage of the OSCAR compiler as well
as multi-core architecture. This core partitioning implementation
can efficiently avoid the interference between Java part and arith-
metic part, such as task migration and cache pollution. Here, we
try to restrict the CPU affinity to a certain core to take advan-
tage of CPU cache and therefore, maintain the application perfor-
mance.

Figure 2 shows the completed process to compute the data and
display the result on the device screen. Firstly, the UI Thread
invokes a method to request the data of the frame N. This pa-
rameter N is passed as an input parameter of the native method
through JNI. Depending on how many cores the developer wants
to utilize, it forks into 1 or more threads working simultaneously.
The forked threads will process all arithmetic calculations and
join after finishing all tasks. When all operations are completed,
the shared C library returns the result and passes them to Java
thread through JNI interface. Finally, the calculated result will be
displayed on a screen.

During the time of working on arithmetic computations, the
frequency is scaled up and down according to the power opti-
mization result by the OSCAR compiler. Since C is a processor
bound language, it is possible to adjust the working frequency
programmatically at the native level by opening and writing to
a specific sysfs interface as described in Section 2. Meantime,
the UI Thread on CPU 0 will take care of rendering, displaying 1
frame of the video, executing garbage collection and so on. This
process is repeated until all frames are displayed.

One point to be noticed here is the JNI communication delay
between Java part and arithmetic part. It is shown in Ref. [12] that
it takes about 0.15 microseconds to pass a string from native C li-
brary on to the application. Since the deadline for a multimedia
application is larger than 10 milliseconds, this delay is negligible.

5. Demonstration Board Setup

5.1 ODROID-X2 Board
In this experiment, the ODROID-X2 is used as the develop-

Fig. 3 Modified ODROID-X2 Board.

ment board. ODROID-X2 has the Samsung Exynos4412 Prime
chip [9] which is integrated by 4 ARM Cortex-A9 cores driven at
1.7 GHz and having 2 GB main memory. The board is installed
with Android 4.1.2. Moreover, in the ODROID-X2 board, all 4
cores must be switched into the same clock frequency by DVFS.

Since the ODROID-X2 board does not support power mea-
surement on any part of it, some modifications are made in or-
der to measure the power consumption. A circuit is wired near
the PMIC (Power Management IC) [13]. That circuit includes a
40 [mΩ] shunt resistor and an amplifier. The power consumption
is calculated by the following formula:

P =
1

40 × 10−3
× dV × V

where P is power consumption, dV is the potential difference,
and V is the supply voltage. This formula calculates the instan-
taneous power consumption coming to the CPU of the develop-
ment board. When we collect the data, we actually use the av-
erage power consumption over the execution time by using the
measurement software for the evaluation.

5.2 Experimental Demonstration Structure
The demonstration is arranged as shown in Fig. 4 and the

demonstration screen is shown in Fig. 5, respectively. The inten-
sive computation is run on the ODROID-X2 board, and the calcu-
lated result is shown on a separated monitor, simultaneously. The
execution time is shown on the screen in the form of fps (frames
per second) so that we can keep track of the application perfor-
mance.

In the development board ODROID-X2, Power Management
IC part (below the cooler metal block shown in Fig. 3) is con-
nected to an amplifier. The amplifier is then connected to a
measurement device whose power consumption information is
recorded on a different PC. There are several options for the mea-
surement software such as sampling frequency or number of pre-
cision digits. In addition, it is also possible to capture the power
waveform and obtain the average power consumption as well as
export data to a CSV file.

c© 2016 Information Processing Society of Japan 506



Journal of Information Processing Vol.24 No.3 504–511 (May 2016)

Fig. 4 Experimental demonstration structure.

Fig. 5 A screenshot of the demonstration system.

6. Power Consumption Evaluation

6.1 Evaluated Applications
In this section, we explain 2 real-time video applications used

in our demonstration. This paper used the video that was con-
tributed by the Institute of Image Information and Television En-
gineers. Among about 70 video samples, we selected one video
for the purpose of the demonstration. It is a 15 seconds yuv video
of the size 352 × 240. The video shows an orca jumping out of
the pool in front of a large audiences in a public performance in
an aquarium. It was taken using a pan to follow the shot of the
orca moving from left side to right side. This situation makes it
difficult to compress as well as decode the video because of the
fine pattern of the audiences. Since this is a highly intensive pro-
cessing video, we chose this video as the input of our experiment.
The information about the video sample can be found at Ref. [15].
6.1.1 MPEG-2 Decoder

MPEG-2 Decoder is a standard video coding application from
Mediabench. It converts MPEG-2 video coded bitstream into un-
compress video frames. In our experiment, a raw video output
“.yuv” extension file is obtained after running the application. We
convert frame data into an RGB bitstream of the 352× 240 frame
size and show that on the device screen by placing the data result
into a SurfaceView, which is a dedicated drawing surface by the

Table 1 Comparison of application performance in case of implementing
core partitioning and not implementing core partitioning (MPEG-2
Decoder).

Table 2 Comparison of application performance in case of implementing
core partitioning and not implementing core partitioning (Optical
Flow).

Android system.
The input data of MPEG-2 Decoder application is partitioned

into slices, and the application decodes the input data slice by
slice. The OSCAR compiler exploits the slice level parallelism.
The deadline for MPEG-2 Decoder is set to 60 [fps] (16 [ms] per
frame).
6.1.2 Optical Flow

The Optical Flow tracks specific objects in an image across
multiple frames. In our experiment, the Optical Flow is used to
draw a vector field of displacement vectors showing the move-
ment of 16 × 16 blocks from 2 consecutive frames. In our exper-
iment, the frame size is 640 × 360 pixels.

The OSCAR compiler exploits the parallelism on computing
the motion vectors of each pixel block in 2 images. The deadline
for Optical Flow is also set to 10 [fps] (100 [ms] per frame) in this
evaluation.
6.1.3 Application Parallelization and Power Optimization

After being parallelized by the OSCAR compiler, both 2 ap-
plications are parallelized, and the shared libraries are built by
ndk-build. The compiler flag is “-O3 -pthread -mfpu=neon
-ftree-vectorize,” the target CPU is set to “armeabi-v7a.” By im-
plementing core partitioning, which means that we run display
task and calculation tasks on separated threads, and assign those
threads onto different cores, we can obtain higher performance
than doing everything on the core 0. Table 1 and Table 2 show
the performance of MPEG-2 Decoder and Optical Flow applica-
tions, respectively, with core partitioning and without core parti-
tioning. “Without core partitioning” means that both UI thread
and arithmetic thread are assigned onto core 0. Otherwise, the
core 0 is used for UI thread and the core 1 is used for arithmetic
thread. From those 2 tables, it can be seen that the number of
frames per second in case of using core partitioning is more than
twice as large as that in the case of not using core partitioning.
In other words, the application can have double-speed with core
partitioning.

At this time, it is confirmed that both 2 applications have room
for power optimization by the OSCAR compiler since both ap-
plications attain higher FPS than the target FPS. This implies we
likely have a chance to reduce the working frequency as well as
keeping the CPU at the idle state longer. Therefore, the power
consumption can be saved.

The OSCAR compiler precalculates the costs of all macro-

c© 2016 Information Processing Society of Japan 507



Journal of Information Processing Vol.24 No.3 504–511 (May 2016)

Table 3 Measurement results of profiling cost in each frequency level for
the main loop in MPEG-2 Decoder.

Table 4 Measurement results of profiling cost in each frequency level for
the main loop in Optical Flow.

tasks based on their number of arithmetic operations. These data
are stored in the data structure of the OSCAR compiler. By using
the pre-calculated data and the imported deadline information,
the OSCAR compiler estimates the execution time, the cost, the
energy of each macro-task in the application and tries to make the
best decision on the working frequency for each block.

The OSCAR uses 4 levels of working frequency in this evalua-
tion: HIGH, MID, LOW, VLOW. For instance, in the current tar-
get platform ODROID-X2, which supports the frequency in the
range of 200 MHz to 1,700 MHz, HIGH is 1,700 MHz (100%),
MID is 800 MHz (52%), LOW is 400 MHz (23%), VLOW is
200 MHz (11%), respectively.

Since our applications are soft real-time applications, we ap-
plied profiling technique to improve power control result. With
the help of additional profiling information, the OSCAR deter-
mines the most proper frequency for each macro task. It is usual
to say that for a task, if we reduce the working frequency to half,
the execution time of that task will become twice as long as the
origin. However, the cycles for cache miss penalty might be rel-
atively reduced when the clock frequency becomes lower. In this
case, the execution time of that task will become shorter than ex-
pected.

The OSCAR compiler calculates a task cost based on the num-
ber of clock cycles normalized to HIGH mode when the profiled
feedback is not used. It means, for instance, when the number of
the clock cycle is 500 at the half clock frequency of the HIGH
mode, the task cost is dealt as 1000 in the OSCAR compiler. In
this paper, we measured the actual cost of the specific tasks at
several frequency steps: [HIGH, MIDDLE, LOW, VLOW] and
pass that profiling information to the OSCAR compiler. Table 3
shows the profiling measurement results at the sequential exe-
cution in the case of MPEG-2 Decoder application and Table 4
shows the profiling measurement results in the case of MPEG-2
Decoder application, respectively. In these tables, all profiling
costs are normalized to the HIGH mode.

In Table 4, the profiling cost is almost the same in all work-

ing frequencies. On the other hand, in Table 3, it is clear that the
profiling cost is not the same in all working frequencies. There-
fore, it is necessary to pass the measured profiling information
to the compiler in order to obtain better results in power opti-
mization, especially for the case of MPEG-2 Decoder. If there is
no feedback information given to OSCAR compiler, the compiler
will use the default task cost which is calculated based on the
number of arithmetic operations in the task. The feedback infor-
mation is obtained by profiling the application that means mea-
suring the cost or the number of clock cycles taken by the related
code blocks under multiple frequency steps such as HIGH, MID-
DLE, LOW, VLOW. The profiled block costs are then passed to
OSCAR compiler by compiler directives in the form of pragma
parameter. For instance, we might have a line of code as the fol-
lowing.

#pragma BLOCK COST 100000 70000 50000 20000

Those 4 values correspond to the block costs when the working
frequency is HIGH, MID, LOW, and VLOW respectively. The
OSCAR compiler uses that profiling information instead of the
default block cost information to optimize the power control of
the application.

The OSCAR compiler also computes the idle time until the
deadline and generates some codes to notify the CPU to go to
idle state. Besides that, there are some cases when it is impossible
to parallelize a sequential set of tasks. Those tasks are assigned
to one specific CPU, and the OSCAR will force other CPU(s) to
idle state while waiting for those tasks completed. Once they are
finished, the working CPU will wake all remaining CPU(s) up.

6.2 Power Consumption Evaluation Results
This section shows the results of power measurements on the

ODROID-X2. We compare the power consumptions of 2 appli-
cations in the case of using the OSCAR compiler and not using
the OSCAR compiler. With the OSCAR compiler power con-
trol, the cpufreq governor is set to “userspace.” In contrast, the
benchmark application without power control is executed with
the Linux “ondemand” governor.

Figure 6 shows the power consumption results of MPEG-2 De-
coder in the case of 1, 2 and 3 cores, respectively. The power
consumption in case of 1 core with OSCAR power optimization
is 1.1 [W] which is almost the same as that in Linux ondemand
governor 1.31 [W]. The power consumption of 2 cores with power
control consumes 0.81 [W] compared to 2.2 [W] with ondemand
governor. In the case of 3 cores, the power consumption with OS-
CAR is 0.76 [W] versus 3.15 [W] with ondemand governor. The
power consumption in the case of 3 cores with OSCAR power
control 0.76 [W] is reduced by 42.8% compared to 1 core in the
default Linux ondemand governor 1.31 [W].

Figure 7 shows the power consumption results of Optical Flow
application in 3 cases: 1 core, 2 cores, and 3 cores. For 1 core,
the power consumption is 1.04 [W] with OSCAR power opti-
mization. In contrast, with ondemand power control, the result
is 1.07 [W]. There is no big difference in power consumption in
this case. For 2 cores, with power control, the power consump-
tion is 0.55 [W] while it is 1.74 [W] without using OSCAR power

c© 2016 Information Processing Society of Japan 508



Journal of Information Processing Vol.24 No.3 504–511 (May 2016)

Fig. 6 Power consumption of MPEG-2 Decoder.

Fig. 7 Power consumption of Optical Flow.

control. In the case of 3 cores, the power consumption is 0.43
with OSCAR and 2.67 [W] with ondemand governor. The power
consumption in the case of 3 cores with OSCAR power control
0.43 [W] is reduced by 59.8% versusu the execution with 1 core
in Linux ondemand governor 1.07 [W].

Figures 8 and 9 show the power waveforms with OSCAR
power optimization. In this figure, we can observe the peaks in
the waveform. These peaks indicate the time when the application
finishes calculating 1 frame data and transfers the calculated data
to UI thread to display the frame. During this time, the system

Fig. 8 Power waveform with OSCAR power control
(MPEG-2 Decoder – 1 core).

Fig. 9 Power waveform with OSCAR power control
(Optical Flow – 1 core).

Fig. 10 Power waveform with ondemand governor
(MPEG-2 Decoder – 1 core).

Fig. 11 Power waveform with ondemand governor (Optical Flow – 1 core).

is running at the highest frequency or in OSCAR’s HIGH mode.
In other times, OSCAR tries to scale the working frequency as
low as possible at the calculation time. As the results, MPEG-2
Decoder is executed with 1.1 [W] and Optical Flow is executed
with 1.04 [W] as shown in Fig. 6 and Fig. 7, respectively.

On the other hand, Figs. 10 and 11 point out a characteristic of
ondemand power control. Since the ondemand governor decides

c© 2016 Information Processing Society of Japan 509



Journal of Information Processing Vol.24 No.3 504–511 (May 2016)

the working frequency based on the CPU utilization and previous
system workload, it tends to keep frequency stable when dealing
with periodic applications because there is not much difference
between the numbers of computations in 2 consecutive frames.
With the ondemand governor, the applications run at a fixed fre-
quency most of the time except the beginning of the application
and the time of garbage collection. As a result, MPEG-2 De-
coder is executed with 1.3 [W] and Optical Flow is executed with
1.07 [W] as shown in Fig. 6 and Fig. 7, respectively.

In our experiment, the ondemand governor keeps the system
running at the frequency close to OSCAR’s MID step. This might
be a characteristic of ondemand or most of current architecture
which is to run at an average frequency to assure the performance
and avoid switching frequency as much as possible. However,
DVFS have been showing that it is useful to reduce the power
consumption. By making use of DVFS, OSCAR keeps the appli-
cation running at a lower frequency for longer time, and it results
in the reduction of power consumption.

The power control by the OSCAR compiler includes DVFS,
clock gating and power gating as described in Section 3. In order
to make a comparison between CPU clock frequency scaling and
clock gating, we evaluated more experiments under the following
two scenarios. Firstly, we measure the power consumption by us-
ing only CPU clock frequency and voltage scaling (only DVFS).
In this scenario, DVFS is utilized appropriately by the OSCAR
compiler. However, when one frame is decoded, all the cores
must wait for the next frame at VLOW frequency. Secondly,
we measure the power consumption by using only clock gating
(only clock gating). In this scenario, the cores run at HIGH fre-
quency for decoding one frame then wait for the next frame by
utilizing clock gating. The measurement results are also shown
in Figs. 6 and 7. Note that the OSCAR compiler did not utilize
power gating in our experiment due to the expensive overhead for
the ODROID-X2 running Android 4.1.2.

Two figures show that CPU clock frequency scaling is more ef-
ficient than clock gating in the case of MPEG2-Decoder and Op-
tical Flow applications executed on the Odroid-X2 board running
Android 4.1.2. These figures also show that only DVFS and only
clock gating consume higher power that the power control by the
OSCAR compiler, which combines both of DFVS and clock gat-
ing. It means that we first apply CPU clock frequency to run the
system at low frequency as long as possible, then we apply the
clock gating to the remaining time until the deadline if any. As
the result, for the case of MPEG-2 Decoder, the power control by
OSCAR with 3 cores attains 0.76 W while the power consump-
tion by DFVS and clock gating are 1.09 W and 1.48 W, respec-
tively. Similarly, for the case of Optical Flow with 3 cores, the
power consumption by the OSCAR compiler, DFVS, and clock
gating are 0.43, 0.51, 0.80 respectively.

7. Conclusion

Reducing energy consumption is gradually becoming one of
the most important issues in smart device industry and automati-
cally optimizing the power consumption by a compiler is a very
promising way to attack that issue. This paper shows a real-time
video demonstration system for parallelization and power reduc-

tion controlled by the OSCAR Automatic Parallelization Com-
piler. In addition, core partitioning and per-frequency profiling
are applied to maximize the efficiency of the power control by
the OSCAR compiler. MPEG-2 Decoder Application showed
42.8% power reduction from 1.31 [W] on ordinary execution to
0.76 [W] on execution with power optimization by OSCAR com-
piler using 3 cores. Similarly, Optical Flow Application showed
59.8% power reduction from 2.67 [W] on ondemand Linux gov-
ernor 1 core to 0.43 [W] on execution with power optimization by
OSCAR compiler using 3 cores.

References

[1] Kundu, T.K. and Paul, K.: Improving Android Performance and En-
ergy Efficiency, 2011 24th International Conference on VLSI Design
(VLSI Design), pp.256–261 (2011).

[2] Son, K.C. and Lee, J.Y.: The method of android application speed
up by using NDK, 2011 3rd International Conference on Awareness
Science and Technology (iCAST), pp.382–385 (2011).

[3] OpenMP, available from 〈http://openmp.org/wp/〉.
[4] Kasahara, H., Obata, M. and Ishizaka, K.: Automatic coarse grain task

parallel processing on smp using openmp, Workshop on Languages
and Compilers for Parallel Computing, pp.1–15 (2001).

[5] Obata, M., Shirako, J., Kaminaga, H., Ishizaka, K. and Kasahara, H.:
Hierarchical Parallelism Control for Multigrain Parallel Processing,
Lecture Notes in Computer Science, Vol.2481, pp.31–44 (2005).

[6] Kimura, K., Mase, M., Mikami, H., Miyamoto, T., Shirako, J. and
Kasahara, H.: OSCAR API for Real-time Low-Power Multicores and
Its Performance on Multicores and SMP Servers, Lecture Notes in
Computer Science, pp.188–202 (2010).

[7] Shirako, J., Oshiyama, N., Wada, Y., Shikano, H., Kimura, K. and
Kasahara, H.: Compiler Control Power Saving Scheme for Multi Core
Processors, Lecture Notes in Computer Science, pp.362–376 (2007).

[8] Yamamoto, H., Hirano, T., Muto, K., Mikami, H., Goto, T., Hillen-
brand, D., Takamura, M., Kimura, K. and Kasahara, H.: OSCAR
Compiler Controlled Multi-core Power Reduction on Android Plat-
form, The 26th International Workshop on Languages and Compilers
for Parallel Computing (2013).

[9] Samsung Electronics Co., Ltd.: White Paper of Exynos 5, Vol.1, No.1,
pp.1–8 (Apr. 2011).

[10] Hardkernel: ODROID-X2, available from 〈http://www.hardkernel.
com/renewal2011/products/prdtinfo.php?gcode=G135235611947〉.

[11] The Ondemand Governor, available from 〈https://www.kernel.org/
doc/ols/2006/ols2006v2-pages-223-238.pdf〉.

[12] Lee, S. and Jeon, J.W.: Evaluating performance of Android platform
using native C for embedded systems, 2010 International Conference
on Control Automation and Systems (ICCAS), pp.1160–1163 (2010).

[13] SAMSUNG ELECTRONICS: Samsung Semiconductors Global Site,
available from 〈https://www.samsung.com/global/business/
semiconductor/product/poweric/overview, http://www.hardkernel.
com/main/products/prdt info.php?g code=G13523〉.

[14] Android Develop Site, available from 〈http://developer.android.
com/guide/basics/what-is-android.html, http://developer.android.com/
images/system-architecture.jpg〉.

[15] Video Sample, available from 〈http://www.nes.or.jp/gaiyo/index.html,
http://www.nes.or.jp/gaiyo/pdf/ite hyoujundouga sample.pdf〉.

Bui Duc Binh is currently a Master stu-
dent in Department of Computer Science
and Communications Engineering, Grad-
uate School of Fundamental Science and
Engineering, Waseda University, Tokyo,
Japan. He received his B.S. degree of
Computer Science from Waseda Univer-
sity in 2014. His research interests in-

clude automatic parallelizing compiler, green computing, oper-
ating system and applications in Android platform.

c© 2016 Information Processing Society of Japan 510



Journal of Information Processing Vol.24 No.3 504–511 (May 2016)

Tomohiro Hirano received his M.S. de-
gree in Fundamental Science and En-
gineering of Waseda University, Tokyo,
Japan and B.S. degree in Fundamental
Science and Engineering from the same
University. His research interests include
automatic parallelizing compiler, green
computing, operating system, reduction of

power consumption.

Hiroki Mikami received his M.S. degree
in Computer Science and Engineering
from Waseda University in 2009. He
was a research associate of Department
of Computer Science and Engineering in
2011 and has been a research associate of
Green Computing Systems R&D Center
since 2014 at Waseda University. His re-

search interests include parallelizing applications, automatic par-
allelizing compiler, and multicore architecture.

Hideo Yamamoto is Adjunct Researcher
in Department of Computer Science and
Communications Engineering, Graduate
School of Fundamental Scienceand En-
gineering, Waseda University, Tokyo,
Japan. His research interests are in the
areas of parallel computing, embedded
computing and compilers.

Keiji Kimura received his B.S., M.S.
and Ph.D. degrees in electrical engineer-
ing from Waseda University, in 1996,
1998, 2001 respectively. He was an assis-
tant professor at 2004, an associate pro-
fessor at 2005, and has been a professor
of Department of Computer Science since
2012 at Waseda University. His research

interest includes multicore processor architecture and paralleliz-
ing compilers. He is a member of IPSJ, IEICE, ACM and IEEE.

Hironori Kasahara received his Ph.D.
degree in electrical engineering from
Waseda University, Tokyo in 1985. He
has been a professor of Department of
Computer Science and Engineering since
1997 and a director of the Advanced Mul-
ticore Processor Research Institute since
2004, Waseda University via an assistant

professor in 1986 and an associate professor in 1988. He was
a visiting scholar at University of California, Berkeley and Uni-
versity of Illinois at Urbana-Champaign’s Center for Supercom-
puting R&D. He received IEEE Computer Society Golden Core
Member Award, IFAC World Congress Young Author Prize, IPSJ
Fellow and Sakai Memorial Special Research Award and a Sci-
ence and Technology Prize in the commendation by Minister
of Education, Culture, Sports, Science and Technology. He
has served as a chair or a member of 220 society and govern-
ment committees including IPSJ, IEEE Computer Society, ACM,
METI, MEXT and so on.

c© 2016 Information Processing Society of Japan 511


