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Abstract: Many activity recognition systems using accelerometers have been proposed. Activities that have been rec-
ognized are single activities which can be expressed with one verb, such as sitting, walking, holding a mobile phone,
and throwing a ball. In fact, combined activities that include more than two kinds of state and movement are often
taking place. Focusing on hand gestures, they are performed not only while standing, but also while walking and
sitting. Though the simplest way to recognize such combined activities is to construct the recognition models for all
the possible combinations of the activities, the number of combinations becomes immense. In this paper, firstly we
propose a method that classifies activities into postures (e.g., sitting), behaviors (e.g., walking), and gestures (e.g., a
punch) by using the autocorrelation of the acceleration values. Postures and behaviors are states lasting for a certain
length of time. Gestures, however, are sporadic or once-off actions. It has been a challenging task to find gestures
buried in other activities. Then, by utilizing the technique, we propose a recognition method for combined activities
by learning single activities only. Evaluation results confirmed that our proposed method achieved 0.84 recall and 0.86
precision, which is comparable to the method that had learned all the combined activities.
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1. Introduction

Along with the progress in wearable computing, many activity
recognition systems with various kinds of sensors have recently
been introduced, such as systems with electromyographs [16],
electrocardiograms [17], Galvnanic skin response (GSR) [18],
and manually configured devices [19]. Activity recognition sys-
tems are applied to many services i.e., health care [18], recogni-
tion of workers’ routine activities [5], and support during assem-
bly and maintenance tasks [20]. A health-care system [18] recog-
nizes daily activities such as eating, walking, and working in real
time by using a heat sensor, GSR sensor, accelerometer, electric
sphygmograph, and geomagnetic sensor. The system alerts lack
of exercise and occupational fatigue, and advises the user on how
to make improvements in the user’s life.

Camera, GPS, gyroscope, and geomagnetic sensor are also
known as devices that detect/obtain location and motions, how-
ever these sensors have low wearability and accuracy, and can-
not obtain both motion and static direction simultaneously. An
accelerometer can obtain motion and static direction by sensing
earth’s gravity, and has high accuracy and high resolution, and
is small enough to be attached on the body. For this reason, an
accelerometer is the best device for activity recognition.
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In the process of making an activity recognition system, devel-
opers generally define the objective activities, collect their data,
annotate them, and construct the recognition models. Therefore,
recognition results are limited within the predefined activities. In
other words, if we want to recognize the combined activity hold-

ing a mobile phone while walking *1, training data for the activ-
ity has to be collected and annotated beforehand. Otherwise, the
recognition result would be either walking or holding a mobile

phone.
Here, we define two types of activities; global activity and lo-

cal activity. Global activity is a bodywide movement, such as
walking and standing. Multiple global activities can contradict
each other at a time. Local activity is a movement of a specific
part of the body, such as throwing and holding something. Multi-
ple local activities coexist unless they are on the same body part.
The simplest way to recognize combined activity is to construct
recognition models for all the combined activity. However, this is
difficult since the number of possible combinations of global and
local activities can get immense. Suppose there are five global
activities; standing, sitting, walking, running, and cycling, and
ten local activities of hand gesture. Then, data for 50 patterns
must be collected. As one kind of hand gesture is added, data
for the gesture performed during five global activities must also
be captured, which is a time-consuming task. Moreover, if we
also consider foot gestures, the number of possible patterns is (#
global activity) × (# local hand activity) × (# local foot activity).
However, these combined activities are not negligible since they
are physically possible and may occur in our daily lives.

*1 Names of activities are denoted in italics in this paper.
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The problem of combined-activity recognition is not only the
time needed for collecting training data, but also annotating the
data as well. After collecting all the data through long experi-
ments, the data has to be annotated with ground truth. Figure 1
shows the acceleration of a chop gesture while running and while
standing. It is easy to find the starting and end points for chop

while standing, whereas it is harder to trim chop while running

through visual inspection. Someone might think that recognizing
the activity of each part of the body individually and integrating
them produce the correct activity. However, as shown in Fig. 1,
the gesture while running is different to the same gesture while
standing. Moreover, the arm swing while running is included
in the beginning and ending of the gesture unless the gesture is
trimmed with a tightfitting window. Since the motion of running
is propagated, the gesturing is slightly different, and part of the
running motion is included before and after the gesture, which
leads to misrecognition.

Our previous study worked on gesture recognition while mov-
ing. Recognized gestures in the research literature are not com-
bined ones, but single ones which change smoothly from/to a
global activity, such as walking [6]. An effective method to treat
combined activity has not been reported.

The contribution of this paper is to recognize combined activ-
ities from training data of single activities, i.e., global activities
and local activities while stationary. The proposed system clas-
sifies each part of the body according to the categories posture,
behavior, and gesture, from the fluctuations and autocorrelations
in the acceleration data. In this paper, we define posture, behav-
ior, and gesture as follows.
• Posture: State of a user remaining stationary lasting for a

certain length of time, e.g., sitting and standing.
• Behavior: State of a user doing periodical movement lasting

for a certain length of time, e.g., walking and running.
• Gesture: Not a state but a once-off action having a starting

point and an endpoint that sporadically occurs, e.g., punch

and draw a circle in the air.
Postures can easily be detected since these are static and do not

produce fluctuations in acceleration values. In general, autocorre-
lation plots of a periodical wave show high peaks. When parts of
the sensors are showing high peaks, the corresponding body parts
are meant to have constancy and are classified as behavior, oth-
erwise the parts are classified as gesture. The proposed method
then recognizes activities according to the activity type, which
means that posture is recognized with a classifier that has learned
postures only, and behavior and gesture are recognized as well.
Finally, the system outputs a conclusive recognition result from
the recognition results of each body part. Simply recognizing
an activity for each body part and combining them cannot recog-

Fig. 1 Waveform of an accelerometer mounted on the right wrist: a chop
gesture while running (left) and while standing (right).

nize the combined activity since the body part of a global+gesture
(e.g., running+punch) activity would be recognized as a global
activity (e.g., running). By using our system, combined activities
such as throw while walking and holding a mobile phone while

running are recognized only from single activities; walking, run-

ning, throwing, and holding a mobile phone, which is the main
contribution of this paper compared with our previous work in
Ref. [6].

This paper is organized as follows. Section 2 introduces related
works and Section 3 describes the system structure. The perfor-
mance of our system is discussed in Section 4. Finally, Section 5
concludes this paper.

2. Related Work

Studies on activity recognition are listed in Table 1, however
most of them focus on single activities, such as ambulation and
posture.

One study recognizes eight activities; sitting, standing, walk-

ing, walking up stairs, walking down stairs, riding elevator down,
riding elevator up, and brushing teeth, with a multimodal sensor
board (MSB) that has seven kinds of sensors such as a micro-
phone and an accelerometer [3]. The method proposed by Ravi et
al. [7] recognizes eight activities including vacuuming and brush-

ing teeth with an accelerometer attached to the pelvic region.
Naya et al. [5] proposed a workers’ routine activity recognition
system in order to support their daily work. This system recog-
nizes a nurse’s activities such as drip injection and vital check.
Another study employs twenty-two kinds of sensors to recognize
lying, rowing, running, Nordic walking, cycling, walking, sitting,
and standing [2]. Bao et al. [1] recognizes twelve activities in-
cluding walking while carrying items and folding laundry with
five biaxial accelerometers. Though the walking while carrying

items activity seems like a combined activity, it cannot be sepa-
rated and recognized by combining with other activities, i.e., the
running while carrying items activity and the holding items activ-
ity cannot be recognized according to current work in the litera-
ture.

The following studies are focusing on local activities using
parts of the body. The method proposed by Graeme et al. [4] an-
notates video-recorded activities by gesture recognition using one
accelerometer mounted on the wrist since annotating video is dif-
ficult when only analyzing video. It uses a hidden Markov model
(HMM) [14] for the recognition, resulting in one mistake in 30
trials for three kung-fu martial art movements; cut, elbow, and
punch. The Georgia Tech Gesture Toolkit [8] is a tool for sup-
porting gesture recognition that has been proposed by Westeyn et
al. This is a toolkit that enables ordinary users who do not have
enough knowledge about speech recognition to use the existing
HMMtoolkit [9] with ease. In the literature, four applications are
presented, one is gesture recognition with two 3-axis accelerom-
eters positioned at the wrist and elbow, and achieves 93.3% ac-
curacy for ten kinds of gestures such as grinding, sawing, and
screwing. The system proposed by Junker et al. [10] recognizes
ten short daily actions, such as pushing a button and drinking,
and achieves approximately 80% precision and recall. The inno-
vative point of this study is that it partitions the stream of sensor
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Table 1 Activities recognized and sensors used in past work on activity
recognition.

Ref. Activities recognized # of Kinds of sensors Sensor
sensor positions

[1] ambulation, 5 2D acc×5 left elbow,
posture, right wrist,
scrubbing, torso,
vacuuming, left knee,
folding laundry, right ankle
brushing teeth,
cycling,
working on computer,
eating or drinking,
walking carrying items

[2] ambulation, 22 air pressure, wrist,
posture, ball sensor, upper back,
putting clothes on, switch, GPS, below neck,
eating, temperature, finger,
rowing, respiratory, armpit,
cycling, heart rate×3, chest,
respiratory skin resistance, forehead,

skin temperature, shoulder
3D compass×2
3D acc×2,
light, humidity,
SaO2×2,
pulse,
mic, EKG

[3] ambulation, 3 light×3, shoulder,
posture, (All temperature×3, waist,
brushing teeth in one 2D compass×3, wrist

board) humidity×3,
3D acc×3,
barometer×3,
mic×3

[5] ambulation, 4 acc×3, head,
bed bath, IR transmitter chest,
carry patient, rear waist,
carry wheelchair, upper arm
drip injection,
vital check

[7] ambulation, 1 acc pelvic region
posture,
sit-ups,
vacuuming,
brushing teeth

[4] cut, elbow, punch 1 acc wrist
[8] hammer, file, sand, saw, 2 acc×2 wrist,

screw, vise, drill, clap, elbow
use driver, grind

[10] push button, handshake, 5 gyro×5 wrists,
phone up, phone down, upper arms,
door, coin, cutlery, upper torso
drink, spoon, handheld

[12] draw ‘>’ mark, 1 wii remote hand
square,
shift left to right,
shift right to left,
shift bottom to up,
shift up to bottom,
clockwise circle,
counter-clockwise circle

into several segments that represent atomic human movement by
using the sliding-window and bottom-up (SWAB) algorithm [11].
The method proposed by Liu et al. recognizes eight gestures such
as drawing a line and drawing a circle, which are recommended
by the Nokia laboratory, with one 3-axis accelerometer [12]. This
research captured more than 4,000 samples from eight test sub-
jects for a long period. They used the Dynamic Time Warping
algorithm (DTW) [13] as a recognition algorithm and achieved
98.6% accuracy by successively renewing the training data.

Activities that have been targeted in these works are single
activities. Combined activities have to be defined one by one.
However, the number of possible combinations increases with
the number of global and local activities, causing much time to
capture the training data. Capturing ten global activities and ten
2-second local gestures for five times takes 1,000 seconds. This is
the actual movement time and more than ten times this is needed
for the interval and rest. In addition, the effect of fatigue is not
negligible since gesture motion changes and decays through mul-
tiple iterations of gestures [15].

The following two works handle combined activities. Park et
al. [27] proposes a gesture recognition system with a hand-worn
sensor and mobile device. This system segments a gesture with a
two-stage threshold-based filter with an accelerometer and a gy-
roscope. A novel point of the paper is to automatically adjust the
threshold according to four mobility situations; RIDE, STAND,
WALK, and RUN, based on the proportion of filtered data. Then
features are extracted from the segment and recognized with an
HMM. The HMM that they proposed is a multi-situation HMM,
which changes the models according to the mobility situation.
However, the models are trained with all combinations of ges-
tures and mobility situations.

A system proposed by Korpela et al. [28] recognizes activi-
ties including gestures by considering the accuracy and power
consumption. Activities that requires light processing are rec-
ognized on the wearable device and the output label is sent to a
smartphone, while the data that requires heavy processing, i.e.,
gestures, are sent to the smartphone and recognized. This sys-
tem does not segment data but uses a sliding window approach.
Though they assume that gestures are conducted while standing,
the data of gestures while walking was used in additional experi-
ments in the paper. However, the latter experiments just examine
the performance of gesture recognition while walking and does
not recognize them as a combined activity.

3. Proposed System

3.1 System Structure
Posture and behavior are states lasting for a certain period of

time and consist of periodic patterns of acceleration waveform.
These activities are generally recognized with a classifier such as
SVM [25] after converting raw data into feature values such as
mean, variance, and fast Fourier transform (FFT) coefficient over
a time window. This approach enables high-speed recognition
since not all data in the window but only feature values are used.
Moreover, one of the advantages of using feature values is that the
recognition process does not have to consider which part of the
movement is included in the window, e.g., beginning of the win-
dow does not have to fit the specific motion of steps of walking,
since feature values discard temporal information.

On the other hand, a gesture is a once-off action that has a
starting point and an endpoint, which is different from postures
and behaviors. Feature-based approach hardly distinguishes sim-
ilar gestures such as rotating arm clockwise and rotating arm

counter-clockwise since general feature values do not have infor-
mation on how it moved, therefore gestures are recognized in a
different way. In general, gestures are recognized with a template
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matching algorithm such as dynamic time warping (DTW) or a
statistical model such as hidden Markov models (HMM), after
trimming actual movement from stream data. The conventional
method forced users to indicate a gesture interval by pushing a
button on a device or by standing still before and after the ges-
ture [21]. It is hard to stop motions or perform specific gestures
to indicate a starting point. Taking out a device or continually
holding a device to push a button while performing gestures is
also unrealistic. By recognizing a gesture without considering a
starting point and an endpoint, misrecognition can occur or the
gesture can be missed out entirely and taken to be a behavior.
Our system classifies user activities into posture, behavior, and
gesture for each body part, then applies DTW to the gesture or
applies SVM to the posture and behavior.

Our system consists of three phases, as shown in Fig. 2. The
first phase classifies activities of each part of the body into three
types; posture, behavior, and gesture. The second phase recog-
nizes activities according to the activity type. The third phase
integrates the recognition results and outputs a conclusive result.

In this paper, we assume that a user attaches five accelerom-
eters on both wrists, the hip, and both ankles. Activities are
four postures (sitting, standing, lying, and kneeling), five behav-
iors (walking, running, cycling, descending stairs, and ascend-

ing stairs), five hand-gestures (chop, throw, punch, draw a clock-

wise circle, and draw a counter-clockwise circle), and two hand-
postures (holding a mobile phone, and raising a hand). The sam-
pling frequency is 20 Hz, which is sufficient for activity recogni-
tion as previously reported [22].

3.2 Activity Classification
The activity classification phase consists of movement detec-

tion that classifies the user state into posture or movement, and
constancy decision that classifies the user movement to behavior
or gesture.
3.2.1 Movement Detection

The activity classification phase checks for movements in the
sensed data. Suppose the current time is t = T . Let the moving
average over 20-sample (1-second) sensed data be x(T ) and the
current value be x(T ), then our system detects a movement ac-
cording to the following equation. Otherwise, our system judges
that the user is maintaining a posture.

if |x(T ) − x(T )| > ε(T ) ⇒ Behavior or Gesture
otherwise ⇒ Posture

(1)

The region of x(t) ± ε(T ) is called the epsilon tube, which re-
moves movements. In this paper, ε(T ) is set as follows:

Fig. 2 Recognition flow of the system for combined activities.

ε(T ) = max

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
σR.leg(T ) + σL.leg(T )

2
200

(2)

where

σR.leg(T ) =
T∑

t=T−19

{aR.leg(T ) − aR.leg(t)} (3)

σL.leg(T ) =
T∑

t=T−19

{aL.leg(T ) − aL.leg(t)} (4)

aR.leg(t) =
√

x2
R.leg(t) + y

2
R.leg(t) + z2

R.leg(t) (5)

aL.leg(t) =
√

x2
L.leg(t) + y

2
L.leg(t) + z2

L.leg(t) (6)

aR.leg(T ) =
T∑

t=T−19

aR.leg(t) (7)

aL.leg(T ) =
T∑

t=T−19

aL.leg(t) (8)

xR.leg(t), yR.leg(t), zR.leg(t), xL.leg(t), yL.leg(t), and zL.leg(t) are accel-
eration values of x-axis, y-axis, and z-axis at time t for the sensor
on the right leg and the left leg, respectively. The vibration of the
movement of legs is propagated to other regions such as the hand.
Therefore ε(T ) is set in response to intensity of legs. While the
movement of legs is not intense, ε(T ) is set to 200 mG since the
fluctuation produced while being stationary was up to 100 mG.

Since the current value x(t) might temporarily go into the ep-
silon tube even while moving, the posture begins only after x(t)
stays within the epsilon tube for more than 0.25 seconds. These
values are obtained from our pilot studies. As shown in Fig. 3,
while the data is within the epsilon tube, the system judges that
the parts of the body are maintaining a posture. When the data
indicates movement, this process goes into a constancy decision
phase.

For a 3-axis accelerometer, the movement detection is applied
to each axis of a sensor. If all three axes of the sensor are judged
as posture, the activity of the body part is classified as posture,
otherwise the activity is classified as behavior or gesture.
3.2.2 Constancy Decision

Basically, data on walking includes iterations in rhythm with
steps. On the other hand, gestures are once-off actions and do not
have iterations. Note that we consider the iterations of once-off
actions as behaviors.

In this phase, the autocorrelation function (ACF) finds itera-
tions in the user’s movements, and classifies the movement into
behavior or gesture. The discrete ACF Rxx(τ) at lag τ for a data
sequence x(t) is defined as

Fig. 3 Movement detection.
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Rxx(τ) =
N−1∑
t=0

x(t)x(t − τ), (9)

where N is the window size for the ACF calculation and set to 64
samples (3.2 seconds), which is long enough to capture at least
two iterations. In addition, since ACF shows a maximum at τ =
0, all the values of ACF are normalized by the following equation
so that the range is (−1,+1).

R′xx(τ) = Rxx(τ)/Rxx(0) (10)

The system has to decide whether the movement has constancy
or not. Figure 4 shows an acceleration waveform and its ACF
of walk, chop, then walk again activity. As shown in the figure,
the ACF of walking shows clear peaks, whereas the ACF of chop
does not have high peaks. Constancy is detected when the height
of the first peak R′xx(n) (n > 0) exceeds α · (1 − n/N), where α
is a coefficient set to 0.6 through our pilot study changes α from
0.5 to 1.0 at intervals of 0.1.

if R′xx(n) ≥ α · (1 − n/N) ⇒ Behavior
otherwise ⇒ Gesture

(11)

The reason n/N is used here is that the height of the first peak
linearly decreases as τ increases. Since the constancy hardly ap-
pears with large α, the ratio of behavior which is misrecognized
as gesture increases, whereas, the constancy is apt to appear with
small α. Therefore the ratio of gesture which is misrecognized as
behavior increases.

For a 3-axis accelerometer, the constancy decision is applied to
each axis of a sensor. If no axis of the sensor is judged as behav-
ior, the activity of the sensor is classified as gesture; otherwise
the activity is classified as behavior.

Intille et al. focused on acquiring in-situ training data and men-
tioned that acceleration data of walking in the laboratory displays
consistent gait cycle. On the other hand, acceleration data of the
same person outside the laboratory may display marked fluctua-
tion in gait cycle and length [24]. We think that this observation
is correct and the data obtained from the same subject on differ-
ent days are different. Although acceleration data fluctuate in the
range of day or hour, data in the range of few seconds or shorter
are significantly periodic, which could produce constancy. More-
over, since our approach is unsupervised and does not require
training, influence of differences among individuals and users’
conditions are small.

3.3 Activity Recognition
The activity recognition phase identifies activities according to

Fig. 4 Accelerations of the chop while walking (left) and autocorrelation of
walking (upper right) and chop (lower right).

the activity types. For posture data, the mean value of the data in
the window is calculated as a feature value and the posture is rec-
ognized with an SVM that has learned only postures. Since the
variance of postures is almost zero, only the mean is used for the
recognition. SVM operating on the mean and variance is used for
behavior data, whereas DTW operating on the trimmed original
wave over a window is used for recognizing gestures. SVM and
DTW has learned behaviors only and gestures only, respectively.
This section briefly explains both recognition algorithms.
3.3.1 Support Vector Machine

SVM is a classification algorithm that often provides compet-
itive or superior accuracy for a large variety of real-world clas-
sification tasks [25]. Consider the problem of separating a set of
training data (x1, y1), (x2, y2), · · · , (xJ , yJ) into two classes, where
xi ∈ RN is a feature vector and yi ∈ {−1,+1} is its class label.
Assuming that the classes can be separated by the hyperplane,
w ∗ xi + b, and no knowledge about the data distribution is given
beforehand, the optimal hyperplane is the one with the maximum
distance to the closest points in the training dataset. We can find
the optimal values for w and b by solving

min 1
2 ||w||2

subject to yi(w ∗ xi + b) ≥ 1, ∀i = 1, · · · , n. (12)

The multiplication factor 1/2 is used for mathematical conve-
nience. By using Lagrange multipliers, λi(i = 1, · · · , n), this can
be rewritten as:

max
∑N

i=1 λi −∑N
i, j=1 λiλ jyiy jxT

i x j,

subject to
∑N

i=1 yiαi = 0, λi ≥ 0,
(13)

and the results in the classification function are

f (x) = sign

⎛⎜⎜⎜⎜⎜⎝
n∑

i=1

λiyixi ∗ x + b

⎞⎟⎟⎟⎟⎟⎠ . (14)

The extension of a 2-class SVM to an N-class SVM can be
achieved by training N SVMs such that one class will be sepa-
rated from the others.
3.3.2 Dynamic Time Warping

Time-series data has been used in various fields such as sci-
ence, medicine, economics, and engineering. Calculation of sim-
ilarity between time-series data is required in order to data-mine
in these fields. Though the simple method to measure similarity
is Euclidean distance, its drawbacks include susceptibility to tem-
poral distortion and the number of samples of two data sequences
must be equal.

DTW is an algorithm for measuring similarity of two time-
series data, which redeems the drawbacks of Euclidean distance.
Advantages of DTW include the ability to calculate temporal
non-linear elastic distance, the similarity between two sequences
which may vary in time or speed, and the number of both samples
that are not equal in size. For example, DTW can find similarities
in situations where two kinds of data of draw a circle in the air

whose rotating speed are different are compared. In addition, in
case that a part of each data differs, DTW is applicable because
of its non-linear elasticity.

The detailed algorithm is as follows. When two time-series
gesture data X = (x1, · · · , xm) and Y = (y1, · · · , yn) are com-
pared, whose lengths are m and n, respectively, an m × n matrix
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d is defined by d(i, j) = |xi − y j|. Subsequently, a warping path
W = (w1, · · · , wk) is found, which is a path of pairs of indices of X

and Y . At that time, pass W meets the following three conditions.
• Boundary condition
w1 = (1, 1), wk = (m, n)

• Seriality
wk = (a, b), wk−1 = (a′, b′)⇒ a − a′ ≤ 1 ∧ b − b′ ≤ 1

• Monotony
wk = (a, b), wk−1 = (a′, b′)⇒ a − a′ ≥ 0 ∧ b − b′ ≥ 0

So as to find the path with the lowest cost that satisfies the above
conditions, the following steps are applied.
( 1 ) Initialization:

DTW(0, 0) = 0
DTW(i, 0) = ∞ for i = 1, 2, · · · ,m
DTW(0, j) = ∞ for j = 1, 2, · · · , n

( 2 ) Do for i = 1, 2, · · · ,m:
Do for j = 1, 2, · · · , n:

DTW(i, j) = d(i, j) + min

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

DTW(i − 1, j − 1)
DTW(i − 1, j)
DTW(i, j − 1)

( 3 ) Output:
Return DTW(m, n)/n

The obtained cost DTW(m, n) becomes a distance between X

and Y . The returned DTW(m, n) is divided by n since the DTW
distance increases with the length of the training data. The sys-
tem recognizes gestures on the basis of the training data. The
distances for all the training data are calculated, and the training
data with the shortest distance is identified. A gesture labelled
with the training data is then output. The DTW algorithm can be
used for multiple axes of an accelerometer. The DTW calculation
is carried out for each axis, and the sum of the distances for all
axes is used as the distance of the gesture.

3.4 Activity Integration
Since each part of the body outputs activity recognition result

individually, these have to be integrated in order to determine the
conclusive recognition result. Even if the user is just walking,
recognition results of all parts may not be walking.

In this paper, we assume that if the recognition result for a hand
is posture, hand-posture or hand-gesture, it will be a local activ-
ity, otherwise local activity will be null. Then global activity is
decided by a weighted majority vote. We used the recall of the
recognition result for training data as a weight. This is because
behavior data are partly misclassified as the gesture, which does
not affect decreases in the number of false positives within the
behavior type. Therefore, precision and F-measure are undefin-
able and inappropriate in this case, and recall reflects the results
of both activity classification and activity recognition. If each
body part has one vote, then the weighted votes are summed up
over the body except for local activity. For example, in Fig. 2,
the recognition results of the left arm, hip, right leg, and left leg
are walk, walk, run, and walk, respectively. Suppose the recall of
walk recognized with a sensor on the left arm, hip, and left leg are
0.7, 0.8, 0.4, respectively, and the recall of run recognized with
a sensor on the right leg is 0.4, the number of votes for walk is

1.9 and the number of votes for run is 0.4, resulting in walking
as the global activity. Finally, the combined activity is output by
merging the global and local activities.

Even if a part of the body is doing an activity that is not a
global activity, the user activity can still be correctly recognized.
For the holding a mobile phone while walking activity, the hand
holding a phone is classified into posture and recognized as hold-

ing a phone, whereas the remaining parts would be classified into
behavior and recognized as walking.

4. Evaluation

In this section, we evaluate our system on the basis of recall,
precision, and processing time.

4.1 Preliminary Experiment
Before evaluating activity recognition, we conducted a prelim-

inary experiment to examine the constancy decision. Data on the
jump while walking activity were taken from one subject, who
wore three accelerometers [23] on the right wrist, hip, and right
ankle. The sampling frequency was 20 Hz.

Figure 5 shows the results. The horizontal axis and vertical
axis indicates time and acceleration, respectively. The marks on
the line of 6,000 mG show the results of constancy decision; the +
mark shows “constancy” and the • mark shows “no constancy”.
For the figure, constancy appears while walking, and constancy
does not appear for all four jumps. Though several points of walk-

ing are judged as inconstant, these false positives can be omitted
with a filter so that four-consequent constancy is meant to be a
gesture. This is because the window of constancy decision is slid
by 16 samples which is 1/4 of the window. Therefore one gesture
is included in a window at least four times. Motions that do not
have iterations like gesture produce inconstancy four consequent
times, while a small decay in behavior produces inconstancy once
or twice, which can be neglected by the filter.

We examined the performance of the filter for the data of be-
havior without any gestures. Table 2 shows the ratio of the num-
ber of inconstancy for the number of trials of constancy decision
for five kinds of behavior: walking, running, cycling, descending

stairs, and ascending stairs. For “without filter”, gesture recogni-

Fig. 5 Results of constancy decision.

Table 2 False positives of gesture detection during behavioral activities.

Activity Without filter (%) With filter (%)
Walking 6.8 0.43
Running 6.9 0.32
Cycling 9.0 0.69

Ascending 36 3.3
Descending 15 0.99
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tion takes place as one inconstancy appears. For “with filter”, the
gesture recognition takes place as four consequent inconstancy
appears.

For the results of “without filter”, 6.8% to 36% of behaviors are
classified as gesture even though the user is doing behavior only.
This is because the user cannot keep a constant pace, and con-
stancy breaks when the pace changed. In particular, the user takes
the stairs two at a time or changes the pace due to fatigue while
ascending stairs and descending stairs. On the other hand, the
results dropped to 0.32% to 3.3% by applying the filter. We have
examined with different sampling frequencies and confirmed the
same tendency. With low sampling frequency (< 10 Hz), itera-
tions of movement might not be captured due to coarse sampling.
However, there is no problem since the performance of activity
recognition would drop with such a low sampling rate [26] and
activity recognition is generally carried out with higher sampling
rate than 10 Hz.

4.2 Setup
4.2.1 Data Collection

We evaluated our system for the data while standing, sitting,
walking, running, and cycling. The training and testing data were
taken from three male subjects aged 22 to 28 years, who wore five
accelerometers [23] on their right wrist, left wrist, hip, right an-
kle, and left ankle. The sampling frequency was 20 Hz. Activities
are listed in Table 3: four postures (sitting, standing, lying, and
kneeling), five behaviors (walking, running, cycling, descending

stairs, and ascending stairs), five hand gestures (chop, throw,
punch, draw a clockwise circle, and draw an counter-clockwise

circle), and two hand postures (holding a mobile phone and rais-

ing a hand). The subjects acted these hand gestures and hand
postures while sitting, standing, walking, running, and cycling.
Each gesture was recorded ten times for each global activity.
4.2.2 Preprocessing

In SVM, raw data would generally be preprocessed by ex-
tracting the feature values to enable the meaning of sensed data
to be understood. Let us assume time t = T , where SVM
uses mean μi(T ) and variance σ2

i (T ) for 64 samples (3.2 sec-
onds) of 3-dimensional sensed data xi(T ) (i = 1, 2, 3) retraced
from time t = T . The mean and variance are used for behav-
ior recognition, but only the mean is used for posture recogni-

Table 3 Single activities.

Kind Activity

Global

Posture

Sitting
Standing
Lying
Kneeling

Behavior

Walking
Running
Cycling
Descending stairs
Ascending stairs

Local
Hand gesture

Chop
Throw
Punch
Draw a clockwise circle
Draw a counter-clockwise circle

Hand posture
Hold a mobile phone
Raise a hand

tion. Feature vector Z(T ) is normalized into a 6-dimensional vec-
tor X(T ) = [μ1(T ), μ2(T ), μ3(T ), σ2

1(T ), σ2
2(T ), σ2

3(T )] by Z(T ) =
(X(T ) − M)/S, where M and S are the mean and the standard
deviation of X. The mean of Z(T ) becomes 0 and its variance
becomes 1 after this conversion.

When recognizing gestures with DTW, 64-sample time series
data is used. If the length of the gesture is less than 64 samples,
the length of the gesture is used. In this paper, 3-dimensional data
(1 sensor × 3 axes) were used for the DTW calculation and the
label of the lowest sum of distances over all the axes becomes a
result.
4.2.3 Annotation and Training Data

The logged data were manually labelled, 10% of which became
training data and the remaining 90% were used for testing. Train-
ing data for gestures are the gesture data recorded while standing.
Note that SVM and DTW are supervised, but movement detection
and constancy decision proposed in this paper are unsupervised
which does not require training data nor ground truth.
4.2.4 Comparison Methods

We measured recognition accuracies of combined activities by
using three methods, which are SVM, DTW, and our method. As
shown in Table 4, the first two methods are comparisons simply
trained with all the possible combinations. The last one selec-
tively uses SVM and DTW which learned single activities only
and integrated the results. Most of the test data consists of global
activity and gestures sporadically occur. Correct recognition re-
sults for gestures which is output in one second from the gesture
ends are accounted for true positives.

4.3 Results
Table 5 shows the recall and precision of the recognition for

hand-gestures and hand-postures. “Null” in the column of local
activity means that the subjects were performing a global activity
only.

The recall and precision of gestures recognized by SVM were
quite low. This is because the feature values have information
on the orientation and exercise intensity but do not have informa-
tion on the trajectory. Combined gestures of behavior with hand
gesture or hand posture are almost misrecognized as a single be-
havior. Because of the same reason, the results for gestures while
standing or sitting are also low. In addition, sitting is not correctly
recognized. This is because the subjects leaned back in order not
to hit the armrest when performing a gesture, resulting in the large
difference to the training data for just sitting. Also, gesture mo-
tion while sitting is slower than that while standing, resulting in
a small value of variance, and average body orientation during
the gesture is similar to just sitting. Moreover, all of hold mobile

Table 4 Proposed and comparison methods.

Method
# of

Activities trainedactivities
trained

Proposal 16

4 postures
5 behaviors
5 hand gestures while standing
2 hand postures while standing

SVM 63 Combinations of 9 global × 7 local activities
DTW 63 Combinations of 9 global × 7 local activities
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Table 5 Recall and precision of recognition.

Activity Proposed Method SVM DTW
GlobalLocal Recall Precision RecallPrecisionRecallPrecision

Stand

Chop 1.000 0.917 0.925 0.633 1.000 0.950
Throw 1.000 1.000 0.839 0.942 0.996 1.000
Punch 1.000 1.000 0.874 0.989 0.964 0.996
Clockwise 1.000 1.000 0.397 0.426 1.000 1.000
Counter-clockwise 1.000 0.882 0.938 0.661 1.000 0.920
Hold mobile 0.996 - 1.000 - 1.000 -
Raise hand 1.000 - 0.996 - 1.000 -
Null 0.999 - 0.919 - 0.993 -

Sit

Chop 1.000 1.000 0.736 0.866 0.993 0.908
Throw 0.955 1.000 0.840 0.296 0.842 0.983
Punch 1.000 1.000 0.880 0.680 0.920 0.625
Clockwise 1.000 1.000 0.831 0.503 0.805 0.914
Counter-clockwise 1.000 0.955 0.855 0.473 1.000 0.471
Hold mobile 1.000 - 1.000 - 1.000 -
Raise hand 1.000 - 1.000 - 1.000 -
Null 1.000 - 0.000 - 0.522 -

Walk

Chop 1.000 1.000 0.000 0.000 0.994 1.000
Throw 1.000 1.000 0.000 0.000 0.946 1.000
Punch 0.929 0.833 0.000 0.000 0.983 1.000
Clockwise 0.944 0.944 0.000 0.000 0.993 0.995
Counter-clockwise 1.000 0.944 0.000 0.000 0.990 0.990
Hold mobile 0.705 - 0.975 - 1.000 -
Raise hand 0.442 - 0.956 - 0.999 -
Null 0.988 - 0.956 - 0.537 -

Run

Chop 0.917 0.826 0.000 0.000 0.986 1.000
Throw 1.000 0.975 0.000 0.000 0.894 0.997
Punch 0.429 0.429 0.000 0.000 0.966 1.000
Clockwise 0.500 0.500 0.000 0.000 0.978 0.916
Counter-clockwise 0.000 0.000 0.000 0.000 0.975 0.942
Hold mobile 0.000 - 0.000 - 0.886 -
Raise hand 0.000 - 0.000 - 0.734 -
Null 0.981 - 0.875 - 0.309 -

Bike

Chop 0.900 1.000 0.000 0.000 0.729 0.956
Throw 0.913 0.917 0.500 0.500 0.872 0.843
Punch 1.000 0.742 0.000 0.000 0.930 0.711
Clockwise 0.622 1.000 0.000 0.000 0.780 0.908
Counter-clockwise 0.500 0.450 0.000 0.000 0.937 0.686
Hold mobile 1.000 - 1.000 - 1.000 -
Raise hand 0.999 - 1.000 - 1.000 -
Null 0.991 - 0.997 - 0.878 -

Average 0.843 0.857 0.510 0.279 0.908 0.908

while running and raise hand while running were misrecognized
as running since the difference in hand orientation is absorbed by
the vibration from running. From these results, it is hard for the
feature-based recognition to identify a lot of combined activities.

DTW, on the contrary, had high recall and precision for all ac-
tivities. It is remarkable that the performance of our proposal is
comparable to that of DTW which has learned all the possible
combined activities (9 global × 7 local = 63 activities), while our
proposed method has learned single activities only (9 global + 7
local = 16 activities). In addition, sitting is correctly recognized
with the proposed method even though SVM missed the recogni-
tion of sitting as stated above. This is because of the majority vote
of each body part in the activity integration phase. In this case,
the body posture as a whole was not close to the training data
of sitting, but some body parts were close to the training data of
sitting, resulting in the correct recognition with a majority vote.

However, accuracies of gestures while performing a behav-
ior action still remain lower than those while standing since the
waveform of gestures changed due to behaviors such as running.
Filtering out the background activity from the sensor stream is
one of the solutions to this problem. The detailed algorithm is
our future work.

Table 6 Processing time for comparison methods and the proposed method
(millisecond).

SVM DTW
Proposed Method

Posture Behavior Gesture
Movement detection - - 0.00141
Constancy decision - - - 0.0452

Recognition with SVM 0.0531 - 0.00203 0.0514 -
Recognition with DTW - 137 - - 34.9

Total 0.0531 137 0.00344 0.0980 34.9

The drawback of our proposed method can be seen from the
results of hold mobile and raise hand while running. These low
recall and precision were caused by the fact that the vibration
of running is stronger than we assume. Therefore the hand is not
classified into postures. The same tendency appeared as results of
hand postures while walking. Though our method set the thresh-
old according to the intensity of the leg as stated in Section 3.2.1
and it was set based on walking from our pilot study, the vibra-
tion was strong even while walking in some cases. Employing
a flexible threshold is our future work. From our additional ex-
periments, however, holding mobile phone and raising hand are
correctly recognized if the hand is classified as a posture.

Moreover, if the gestures to be recognized includes a non-
intensive gesture, α in Eq. (11) should be set to a large value.
However, there is a trade-off between gesture intensity and accu-
racy of constancy decision. To handle small gestures, filtering out
global activity from the sensor stream is needed as stated above.
Installing a new sensor or a new architecture that detects human
intention is another solution. If human intention is detected, small
gestures can correctly be recognized with the current proposed
system.

4.4 Processing Time
This section discusses the processing time of the proposed

method. Table 6 shows the processing time for the movement de-
tection, constancy decision, and recognition with SVM or DTW.
The computer used for the evaluation is a SONY VAIO VGN-
US90PS (Inter CoreSolo Processor 1.2 GHz). The simulation
program is implemented with Visual C++. The evaluation re-
sult is the time for each processing calculated based on the pro-
cessing time for 100,000 trials. The reason the processing time
for SVM and DTW differs in the proposed method and compared
methods is that the number of activities learned is different. Since
most of the recognition with SVM is occupied by feature extrac-
tion, the effect from the number of activities to be recognized
is small. The recognition with SVM for the proposed method
is smaller than that for the comparison method because the pro-
posed method extracts only the mean as a feature value, while the
comparison method extracts mean and variance. The number of
templates for DTW is one for each activity, and the recognition
with DTW takes processing time in response to the number of
templates. For the results, the processing time for the movement
detection and constancy decision is shorter than that for recogni-
tion and processing interval, therefore the proposed method can
be applied to real-time applications.

5. Consideration of Complex Activities

The number of local activities performed at a time is limited to
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one and the local activities are confined to right-handed ones in
this paper. This section shows problems and answers for extend-
ing the proposed system to handle more complex activities.

5.1 Local Activities on Every Body Part
To handle local activities of body parts other than the right

hand, such as the left hand or leg, recognition models of each
body part need to learn local activities. In addition, the activity
classification phase has to classify each body part as a gesture.
Each body part, however, is apt to be misclassified as a gesture,
resulting in misrecognition. This problem can be solved by dis-
carding recognition results whose confidence is lower than the
threshold set to the DTW calculation.

5.2 Simultaneous Local Activities
For simultaneous different local activities at a time such as

standing while holding a mobile phone while the right hand and

with holding on to a strap with the left hand, recognition results
of each body part can simply be integrated. Global activity, how-
ever, cannot be obtained when all body parts are recognized as
local activities. To contend with the problem, the latest global
activity can be used as the current global activity, or the current
global activity can be output as “null” or “unknown”. Moreover,
the activity integration phase does not simply combine activities
of each body part, but considers the relationship of activities and
deselects impossible combinations of activities. Since simultane-
ously performing different local activities is not easy and barely
occurs, confining the number of simultaneous local activities to
the most confident one would also be a realistic solution.

5.3 Local Activities Consisting of Multiple Body Parts
Local activities consisting of multiple body parts such as fold-

ing arms and pitching a ball like a baseball pitcher are also com-
plex activities. Such activities are out of our scope since these are
not “local” activity. To extend our system to handle these activ-
ities, an intelligent integration algorithm is required. For exam-
ple, for the folding arms posture, the system can simply integrate
the recognition results of both arms to the folding arms posture
when both arms are recognized as folding arms. However, rules
have to be made for the case that either arm is recognized as fold-

ing arms and the other arm is misrecognized as another activity,
which would depend on applications. One rule would be that
the system outputs folding arms posture only when both arms are
correctly recognized as folding arms.

5.4 Activities Consisting of a Sequence of Local Activities
Local activities consisting of a sequence of local activities for

each body part such as dancing also exist. Such activities need
not be handled in the activity recognition layer, and the applica-
tion layer should handle and interpret the sequence of activities.

5.5 Summary of Consideration
Summarizing this section, our system can be applied to local

activities with body parts other than the right hand. To handle
simultaneous different local activities or activities consisting of
multiple body parts, our system need not be modified but addi-

tional integration rules are required.

6. Conclusion

We constructed an activity recognition mechanism for com-
bined activities that classifies each part of the body as posture,
behavior, and gesture, then recognizes individual activities and
integrates them. Evaluation results confirmed that our proposed
method achieved 0.84 recall and 0.86 precision, which is compa-
rable to the method for learning all the combined activities: 0.91
recall and 0.91 precision. As future work, we plan to separate
and integrate activities as a more primitive level. That is to say
to delete a gesture component from the raw data of a combined
activity and to extract an entirely global activity.
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