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Abstract: In modern cryptography, the secret sharing scheme is an important cryptographic primitive, and it is used in
various situations. In this paper, timed-release secret sharing (TR-SS) schemes with information-theoretic security is
first studied. TR-SS is a secret sharing scheme with the property that more than a threshold number of participants can
reconstruct a secret by using their shares only when the time specified by a dealer has come. Specifically, in this paper
we first introduce models and formalization of security for two kinds of TR-SS based on the traditional secret sharing
scheme and information-theoretic timed-release security. We also derive tight lower bounds on the sizes of shares,
time-signals, and entities’ secret-keys required for each TR-SS scheme. In addition, we propose direct constructions
for the TR-SS schemes. Each direct construction is optimal in the sense that the construction meets equality in each
of our bounds, respectively. As a result, it is shown that timed-release security can be realized without any additional
redundancy on the share size.
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1. Introduction

Secret sharing schemes were proposed independently by
Shamir [29] and Blakley [4]. In a (k, n)-threshold secret sharing
((k, n)-SS for short) scheme (e.g., see Ref. [29]), a dealer shares a
secret among all participants, and then, k participants can recon-
struct the secret while any k−1 participants obtain no information
on the secret. Since Shamir and Blakley proposed secret sharing
schemes, various research on them have been reported.

On the other hand, “time” is intimately related to our lives. We
get up, eat something, do a job, and get sleep at a time of our (or
someone’s) choice. For the above reason, it appears that cryp-
tographic protocols associated with “time” are useful and mean-
ingful. Actually, as those protocols, timed-release cryptographic

protocols introduced in Ref. [25] are well-known.
From the above discussion, it is worth considering a secret

sharing scheme with timed-release security. Therefore, we study
such a scheme, which we call a timed-release secret sharing (TR-
SS) scheme, in this paper.
Timed-Release Security. Informally, the goal of timed-release
cryptography is to securely send certain information into the fu-

ture. In timed-release cryptography, the following situation is
considered *1: A sender can designate the time when receiver’s
functionality (e.g., decryption) is activated; there exists a time-
server whose role is to generate and distribute some information
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associated with time (called time-signals in this paper) periodi-
cally; the sender and the time-server (resp., the receiver and the
time-server) never communicate with each other. Therefore, the
time-server does not need to know when the specified time is. For
instance, in timed-release encryption (TRE), a sender transmits a
ciphertext so that a receiver can decrypt it when the time specified
by the sender has come, and the receiver cannot decrypt it before
the time. At the specified time, the receiver can get the plaintext
by using the time-signal, which is broadcasted by a time-server,
at the specified time.

Timed-release cryptography was first proposed by May [25] in
1993, and after that, Rivest et al. [28] developed it in a system-
atic and formal way. Since Rivest et al. gave a formal definition
of TRE in Ref. [28], various research on timed-release cryptog-
raphy including timed-release signatures (e.g., Refs. [16], [17])
and timed-release encryption have been done based on compu-
tational security. In particular, TRE in the public-key setting
has been recently researched on intensively (e.g., Refs. [10], [12],
[13]), and Watanabe and Shikata [34] proposed computational se-
cret sharing schemes with timed-release functionality. On the
other hand, information-theoretically (or unconditionally) secure
timed-release cryptography was proposed by Watanabe et al. [33].
In addition, they investigated not only encryption but also key-
agreement and authentication codes with information-theoretic

This paper was presented in part at the 1st International Conference
on Cryptography and Information Security in Balkans (BalkanCryptSec
2014), Turkey, October 2014 [35].

*1 As another approach to timed-release functionality, time-lock puz-
zles [2], [22], [25], [28] are known. However, it is impossible to real-
ize them in information-theoretic security settings since they guarantee
timed-release functionality by requiring a receiver to run large computa-
tion. Note that in this setting, it is assumed that every entity (in particular,
an adversary) has infinite computational power.
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timed-release security. To the best of our knowledge, however,
there is no paper which reports on the study of secret sharing
schemes with information-theoretic timed-release security.
Our Contribution. In adding timed-release functionality to se-
cret sharing schemes, we conceive the following two types of
schemes.

One is a secret sharing scheme such that a time-signal at the
specified time is required whenever a secret is reconstructed,
which means a secret sharing scheme with a simple combina-
tion of traditional secret sharing functionality and timed-release
functionality. For realizing it, we propose (k, n)-TR-SS in this
paper. In (k, n)-TR-SS, a dealer can specify positive integers k,
n with k ≤ n, where n is the number of participants and k is a
threshold value, and future time t ∈ T := {1, 2, . . . , τ} when a
secret can be recovered; and the secret can be reconstructed from
at least k shares and a time-signal at the specified time t. On the
other hand, participants cannot reconstruct the secret without the
time-signal even if they can obtain all shares. Specifically, we de-
fine a model and security notions of (k, n)-TR-SS, and we derive
lower bounds on the sizes of shares, time-signals, and entities’
secret keys required for (k, n)-TR-SS. Moreover, we provide a di-
rect construction of (k, n)-TR-SS, which is constructed by using
polynomials over finite fields and provably secure in our security
definition. In addition, we show that the direct construction meets
the lower bounds on the sizes of shares, time-signals, and entities’
secret keys with equalities. Therefore, it turns out that our lower
bounds are tight, and that the direct construction is optimal.

Another one is a hybrid TR-SS, which means a secret shar-
ing scheme in which traditional secret sharing functionality and
timed-release functionality are simultaneously realized. In our
hybrid TR-SS, a secret can be reconstructed, if one of the fol-
lowing condition is satisfied: a secret can be reconstructed from
k1 shares and a time-signal at a specified time as in the (k1, n)-
TR-SS; or a secret can be reconstructed from k2 shares as in the
traditional (k2, n)-SS. Hence, we consider two threshold values
k1, k2 to define a model of the hybrid TR-SS, and we propose
(k1, k2, n)-TR-SS as such a model, where k1 ≤ k2 ≤ n. Specifi-
cally, in (k1, k2, n)-TR-SS, a dealer can specify future time, and ar-
bitrarily chooses k1, k2 and n. At least k1 (and less than k2) partic-
ipants can reconstruct a secret with a time-signal at the specified
time, and at least k2 participants can reconstruct a secret without

any time-signal (i.e., they can reconstruct from only their shares).
Specifically, we define a model and security notions of (k1, k2, n)-
TR-SS, and we derive tight lower bounds on the sizes of shares,
time-signals, and entities’ secret keys required for (k1, k2, n)-TR-
SS. Moreover, we provide a direct constructions of (k1, k2, n)-
TR-SS, which is an optimal construction, which meets the above
lower bounds with equalities. To achieve its optimality, we use a
public parameter, which is needed to reconstruct a secret and to
reduce share sizes, in our construction. This technique is reason-
able since public parameters are sometimes used in the context of
secret sharing schemes such as Ref. [20].

In particular, a theoretically-interesting point in our results in-
cludes that the timed-release security can be realized without any
additional redundancy on the share size in both schemes.
Related Work. There are many related works, e.g., fully dynamic

secret sharing schemes [5], on-line secret sharing schemes [9],
and secret sharing schemes with disenrollment capability [3]. In
a nutshell, in such schemes, a dealer generates and distributes
shares securely, and later on, the dealer can generate and publicly
broadcast information for changing the shared secret or qualified
sets. Our scheme differs from such schemes in that broadcasted
information is generated independently of a shared secret (i.e.,
the broadcasted information can be generated by a third party).

The other type of related works dealing with the concept of
time is a proactive secret sharing scheme [18]. In this scheme,
broadcast channels among all participants are assumed. Each par-
ticipant generates and broadcasts updating information to other
participants, and then, they refresh their shares by using the up-
dating information. Hence, shares leaked before that time be-
come irrelevant. Namely, proactive secret sharing schemes re-
alize share-updating functionality. In our scheme, such broad-
cast channels are not assumed and the concept of both schemes is
completely different, though both schemes deal with the concept
of time.

Further, our scheme is closely related to a compartmented se-
cret sharing scheme [7], [31]. By considering a time-signal at
the specified time as one of shares, we can regard a (k, n)-TR-SS
scheme as a secret sharing scheme with a specific general access
structure, which is any set of k+1 shares including a time-signal at
the specified time. Therefore, we can transform the (k, n)-TR-SS
with τ = 1 to the compartmented (k+1, k, 1, n)-threshold scheme,
and vice versa. Generally, in the compartmented (k, k1, . . . , ku, n)-
threshold scheme, there are disjoint user sets P1, . . . , Pu, and the
access structure consists of sets of at least k shares which each in-
cludes at least ki shares from participants of Pi. Now, in a (k, n)-
TR-SS scheme, we assume two disjoint sets P1, P2, where P1

is a set of all users and P2 is a time-server, and let k1 := k and
k2 := 1. Then, the scheme can be regarded as an compartmented
(k + 1, k, 1, n)-threshold scheme. If the (k, n)-TR-SS scheme is
optimal (the optimality will be defined in Section 2.2), then the
resulting compartmented (k + 1, k, 1, n)-threshold scheme is also
optimal (or also called ideal).
Applications of TR-SS. Our TR-SS is a secret sharing scheme
with timed-release property, hence we can add timed-release
functionality to applications of secret sharing schemes. Here, we
consider information-theoretically secure key escrow with lim-
ited time span (see Ref. [8] for computationally secure one) as one
of applications of TR-SS. In a key escrow scheme, a user sends
shares of his secret key using encryption (or other cryptographic
protocols) to trusted escrow agents in advance. Even if the user
loses his ablity to access encrypted data (e.g., by accidental loss
of the secret key), he can get the secret key reconstructed from
agents’ shares. However, considering the corruption of agents in
practice, it is desirable to restrict the agents’ power since they
can access all encrypted data corresponding to the secret key. To
achieve this, a key escrow scheme with limited time span (a.k.a.
a time-controlled key escrow scheme) was proposed [8]. In the
time-controlled key escrow scheme, a user and escrow agents can
update a secret key and its shares at each time-period without any
interaction. Therefore, at each time-period t, agents only have the
power to access data encrypted at t (i.e., if some agents are cor-
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rupted, they cannot access data encrypted before t). By using TR-
SS to generate shares of a secret key, we can realize information-
theoretically secure time-controlled key escrow schemes.

Furthermore, TR-SS can also provide other cryptographic pro-
tocols with timed-release functionality. For example, we can con-
struct information-theoretically secure TRE in the two-user set-
ting from (1, 1)-TR-SS and the one-time pad as follows. For a
plaintext M and a shared key K, a sender chooses a random num-
ber r whose length is equal to the plaintext-length, and computes
a ciphertext C := M ⊕ r ⊕ K. Then, the sender specifies future
time, and he generates one share from the secret r by (1, 1)-TR-
SS. A receiver can compute C ⊕ K = M ⊕ r by using the shared
key K in advance, however, he cannot obtain M until the speci-
fied time comes since he can get r only after the specified time.
In a similar way, it is expected that TR-SS is useful for building
other timed-release cryptographic protocols such as timed-release
authentication code [33] in the two-user setting, and that TR-SS
might be able to provide some new timed-release cryptographic
protocols, e.g., timed-release threshold encryption.
Organization of This Paper. The rest of this paper is organized
as follows. In Sections 2 and 3, we describe (k, n)-TR-SS and
(k1, k2, n)-TR-SS, respectively, which are based on the ideas ac-
cording to Refs. [21], [29], [33]. Specifically, in each section, we
define a model and security of each scheme, and derive lower
bounds on the sizes of shares, time-signals and secret keys re-
quired for each scheme, respectively. Furthermore, we propose
a direct construction of each scheme, and show it is provably se-
cure and optimal. In Section 4, we discuss some extensions such
as TR-SS schemes with general access structures and robust TR-
SS schemes. In Section 5, we conclude this paper.
Notation. Throughout this paper, we use the following notation.
Generally speaking, X indicates a random variable which takes
values in X (e.g., A, B, and C are random variables which take
values in A,B, and C, respectively). For any finite set Z and ar-
bitrary non-negative integers z1, z2, let PS(Z, z1, z2) := {X ⊂ Z |
z1 ≤ |X| ≤ z2} be the family of all subsets ofZ whose cardinality
is at least z1 but no more than z2.

2. (k, n)-timed-release Secret Sharing Scheme

In this section, we propose a model and a security definition
of (k, n)-TR-SS. In (k, n)-TR-SS, a time-signal at the specified
time is always required when a secret is reconstructed. In other
words, a secret cannot be reconstructed without a time-signal at
the specified time even if there are all shares.

2.1 The Model and Security Definition
First, we introduce the model of (k, n)-TR-SS. Unlike tradi-

tional secret sharing schemes [4], [29], we assume that there is
a trusted authority (also called a trusted initializer) T A whose
role is to generate and to distribute secret keys of entities. We
call this model the trusted initializer model as in Ref. [27]. In
(k, n)-TR-SS, there are n + 3 entities, a dealer D, n participants
P1, P2, . . . , Pn, a time-server TS for broadcasting time-signals
at most τ times and a trusted initializer T A, where k, n and τ are
positive integers. In this paper, we assume that the identity of
each user Pi is also denoted by Pi.

Informally, (k, n)-TR-SS is executed as follows. First, T A gen-
erates secret keys on behalf of D and TS . After distributing
these keys via secure channels, T A deletes them in his memory *2.
Next, D specifies future time, as D wants, when a secret is re-
constructed by participants, and he generates n shares from the
secret by using his secret key. And, D sends each share and the
specified time to each participant, respectively, via secure chan-
nels. The time-server TS periodically broadcasts a time-signal
which is generated by using his secret key. Note that there is no
interaction between TS and D, hence TS may not know when
the specified time is. Hence, D has to tell the specified time t to
participants when sending shares, and TS has to broadcast time-
signals at every time. When the specified time has come, at least
k participants can compute the secret by using their shares and
the time-signal of the specified time.

Formally, we give the definition of (k, n)-TR-SS as follows.
In this model, let P := {P1, P2, . . . , Pn} be a set of all partic-
ipants. And also, S is a set of possible secrets with a proba-
bility distribution PS , and SK is a set of possible secret keys.
T := {1, 2, . . . , τ} is a set of time. Let U(t)

i be the set of pos-
sible Pi’s shares at the time t ∈ T . Also, Ui :=

⋃τ
l=1U

(l)
i is

a set of possible Pi’s shares for every i ∈ {1, 2, . . . , n}, and let
U :=

⋃n
l=1Ul. In addition, TI(t) is a set of time-signals at time

t, and let TI :=
⋃τ

l=1 TI
(l). Furthermore, for any subset of par-

ticipants J = {Pi1 , . . . , Pij } ⊂ P,U(t)
J := U(t)

i1
× · · · ×U(t)

i j
denotes

the set of possible shares held by J .
Definition 1 ((k, n)-TR-SS). A (k, n)-timed-release secret sharing

((k, n)-TR-SS) scheme Π involves n + 3 entities, T A, D, P1, . . . ,

Pn, and TS , and consists of four phases, Initialize, Extract, Share

and Reconstruct, and five finite spaces, S, SK , U, T , and TI.

Π is executed based on the above phases as follows.

a) Initialize. T A generates a secret key sk ∈ SK for TS and D.

This key is distributed to TS and D via secure channels. Af-

ter distributing the secret key, T A deletes it from his memory.

And, D and TS keep their keys secret, respectively *3.

b) Share. A dealer D randomly selects a secret s ∈ S accord-

ing to PS , and chooses k and n. If D wants the secret s to be

reconstructed by participants at future time t ∈ T , on input

the secret s ∈ S, specified time t ∈ T and a secret key sk,

D computes a share u(t)
i ∈ U

(t)
i for every Pi (i = 1, 2, . . . , n).

And then, D sends a pair of the share and specified time,

(u(t)
i , t), to Pi (i = 1, 2, . . . , n) via a secure channel *4.

c) Extract. For broadcasting a time-signal at each time t, TS

generates a time-signal ts(t) ∈ TI(t) by using his secret key

sk and time t ∈ T , where for simplicity we assume that ts(t)

is deterministically computed by t and sk.

*2 Note that we do not consider a situation where T A determines t in dis-
tribution phase since the role of T A is only to generate and distribute
secret keys and such a scheme cannot be said to have the timed-release
property.

*3 If we consider a situation in which TS is trusted and has functionality
of generating keys and distributing them to participants by secure private
channels, we can identify T A with TS in the situation. However, there
may be a situation in which the roles of T A and TS are quite different
(e.g., T A is a provider of secure data storage service and TS is a time-
signal broadcasting server). Therefore, we assume two entities T A and
TS in our model to capture various situations.

*4 More precisely, there is no need to keep the specified time confidential
(D only has to send shares via secure channels).
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d) Reconstruct. At the specified time t, any set of at least k par-

ticipants A = {Pi1 , . . . , Pij } ∈ PS(P, k, n) can reconstruct

the secret s by using their shares u(t)
i1
, . . . , u(t)

i j
(k ≤ j ≤ n)

and a time-signal ts(t) at the specified time.

In the above model, we assume that Πmeets the following cor-

rectness property: If D correctly completes the phase Share and
TS correctly completes the phase Extract, then, for all possible
i ∈ {1, 2, . . . , n}, t ∈ T , s ∈ S, u(t)

i ∈ Ui, and ts(t) ∈ TI(t), it holds
that anyA ∈ PS(P, k, n) will correctly reconstruct the secret s at
the end of phase Reconstruct, namely, H(S | U(t)

A , T I(t)) = 0.
Next, we formalize a security definition of (k, n)-TR-SS based

on the idea of the information-theoretic timed-release secu-
rity [33] and secret sharing schemes (e.g., see Ref. [21]). In (k, n)-
TR-SS, we consider the following two kinds of security. The first
kind of security which we consider is basically the same as that of
the traditional (k, n)-SS: less than k participants cannot obtain any
information on a secret. In addition to this, as the second kind of
security we want to require that even at least k participants can-
not obtain any information on a secret before the specified time
comes (i.e., before a time-signal at the specified time is received),
since we consider timed-release security in this paper. There-
fore, we formally define secure (k, n)-TR-SS by Shannon entropy
as follows (if readers are not familiar to Shannon entropy, see
Ref. [14] for the excellent instruction).
Definition 2 (Security of (k, n)-TR-SS). Let Π be a (k, n)-TR-SS

scheme. Π is said to be secure if the following conditions are

satisfied:

(i) For any F ∈ PS(P, 1, k − 1) and any t ∈ T , it holds that

H(S | U(t)
F , T I(1), . . . , T I(τ)) = H(S ).

(ii) For any A ∈ PS(P, k, n) and any t ∈ T , it holds that

H(S | U(t)
A ,T I(1), . . . , T I(t−1),T I(t+1), . . . ,T I(τ)) = H(S ).

Intuitively, the meaning of two conditions (i) and (ii) in Def-
inition 2 is explained as follows. (i) No information on a secret
is obtained by any set of less than k participants, even if they ob-
tain time-signals at all the time; (ii) No information on a secret is
obtained by any set of more than k − 1 participants, even if they
obtain time-signals at all the time except the specified time *5.
Remark 1. We can also consider the following security defini-

tion (the condition (iii)) instead of (i): No information on a secret

is obtained by collusion of TS and any set of less than k partici-

pants, namely, this is defined as follows.

(iii) For any F ∈ PS(P, 1, k − 1) and for any t ∈ T , it holds that

H(S | U(t)
F , S K) = H(S ).

Note that the condition (iii) is stronger than (i). The reason

for this is as follows. All time-signals ts(1), . . . , ts(τ) can be de-

terministically generated from sk. Namely, it holds H(S K) ≥
H(T I(1), . . . , T I(τ)), and hence H(S | U(t)

F , S K) ≤ H(S |
U(t)
F ,T I(1), . . . ,T I(τ)) ≤ H(S ). Therefore, (iii) implies (i), and

in this sense, we said that (iii) is stronger than (i). However, we

do not consider (iii) in this paper because of the following two

reasons: first, the condition (i) is more natural than (iii), since it

*5 In this sense, we have formalized the security notion stronger than the
security that any set of more than k− 1 participants cannot obtain any in-
formation on a secret before the specified time, as is the same approach
considered in Ref. [33]. Actually, if we remove T I(t+1), . . . , T I(τ) from
(ii) in Definition 2, we obtain the same lower bounds on sizes of shares,
time-signals and secret keys as those in Theorem 1.

does not seem natural to consider the situation that any set of less

than k participants colludes with TS in the real world; and sec-

ondly, our lower bounds in Theorem 1 are still valid even under

the conditions (ii) and (iii), in other words, even if we consider

the conditions (ii) and (iii), we can derive the same lower bounds

in Theorem 1 since Definition 2 is weaker. Interestingly, our di-

rect construction in Section 2.3 also satisfies (iii), and tightness

of our lower bounds and optimality of our direct construction will

be valid not depending on the choice of the condition (i) or (iii).

Furthermore, we do not have to consider an attack by dishonest

TS only, since TS ’s master-key is generated independently of a

secret.

2.2 Lower Bounds
In this section, we show lower bounds on sizes of shares, time-

signals, and secret keys required for secure (k, n)-TR-SS as fol-
lows.
Theorem 1. Let Π be any secure (k, n)-TR-SS. Then, for any

i ∈ {1, 2, . . . , n} and for any t ∈ T , we have

(I) H(U(t)
i ) ≥ H(S ), (II) H(T I(t)) ≥ H(S ),

(III) H(S K) ≥ τH(S ).

Proof. The proof of Theorem 1 follows from the following lem-
mas.
Lemma 1. H(U(t)

i ) ≥ H(S ) for any i ∈ {1, 2, . . . , n} and any

t ∈ T .

Proof. The proof can be proved in a way similar to the proof in
Ref. [21], Theorem 1. For arbitrary i ∈ {1, 2, . . . , n}, we take a
subset Bi ∈ PS(P \ {Pi}, k − 1, k − 1) of participants. Then, for
any t ∈ T , we have

H(U(t)
i ) ≥ H(U(t)

i | U
(t)
Bi
,T I(t)) ≥ I(S ; U(t)

i | U
(t)
Bi
, T I(t))

= H(S | U(t)
Bi
, T I(t)) (1)

= H(S ), (2)

where Eq. (1) follows from the correctness of (k, n)-TR-SS and
Eq. (2) follows from the condition (i) in Definition 2. �
Lemma 2. H(T I(t) | T I(1), . . . , T I(t−1)) ≥ H(S ) for any t ∈ T . In

particular, H(T I(t)) ≥ H(S ) for any t ∈ T .

Proof. For anyA ∈ PS(P, k, n) and any t ∈ T , we have

H(T I(t)) ≥ H(T I(t) | T I(1), . . . , T I(t−1))

≥ H(T I(t) | U(t)
A ,T I(1), . . . ,T I(t−1))

≥ I(S ; T I(t) | U(t)
A , T I(1), . . . ,T I(t−1))

= H(S | U(t)
A , T I(1), . . . ,T I(t−1)) (3)

= H(S ), (4)

where Eq. (3) follows from the correctness of (k, n)-TR-SS and
Eq. (4) follows from the condition (ii) in Definition 2. �
Lemma 3. H(S K) ≥ τH(S ).
Proof. We have

H(S K) ≥ I(T I(1), . . . ,T I(τ); S K)

= H(T I(1), . . . ,T I(τ)) − H(T I(1), . . . ,T I(τ) | S K)

= H(T I(1), . . . ,T I(τ))
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=

τ∑

t=1

H(T I(t) | T I(1), . . . ,T I(t−1)) ≥ τH(S ),

where the last inequality follows from Lemma 2. �
Proof of Theorem 1: From Lemmas 1–3, the proof of Theorem 1
is completed. �

As we will see in Section 2.3, the above lower bounds are tight
since our construction will meet all the above lower bounds with
equalities.

We then define optimality of constructions of (k, n)-TR-SS as
follows.
Definition 3. A construction of secure (k, n)-TR-SS is said to be

optimal if it meets equality in every bound of (i)–(iii) in Theo-

rem 1.

Remark 2. The secret sharing scheme such that the size of each

participant’s share is equal to that of the secret is often called an

ideal secret sharing scheme. The construction of (k, n)-TR-SS in

Section 2.3 is optimal, hence, in this sense we achieve ideal (k, n)-
TR-SS. In terms of the share size, an interesting point is that the

timed-release property can be realized without any additional re-

dundancy on the share size. Therefore in the sense of the bound

on the share size, our results are also regarded as the extension

of traditional secret sharing schemes.

2.3 Direct Construction
We propose a direct construction of (k, n)-TR-SS. In addition,

it is shown that our construction is optimal. The detail of our
construction of (k, n)-TR-SS Π is given as follows.
a) Initialize. Let q be a prime power, where q > max{n, τ}, and

let Fq be the finite field with q elements. We assume that
the identity of each participant Pi is encoded as Pi ∈ Fq\{0}.
Also, we assume T = {1, 2, . . . , τ} ⊂ Fq\{0} by using appro-
priate encoding *6. First, T A chooses uniformly at random
τ numbers r( j)( j = 1, . . . , τ) from Fq. T A sends a secret key
sk := (r(1), . . . , r(τ)) to TS and D via secure channels, respec-
tively.

b) Share. First, D randomly chooses a secret s ∈ Fq according
to a distribution PS over Fq. Also, D specifies the time t at
which participants can reconstruct the secret. Next, D ran-
domly chooses a polynomial f (x) := c(t) +

∑k−1
i=1 aixi over Fq,

where c(t) is computed by c(t) := s + r(t) and each coefficient
ai is randomly and uniformly chosen from Fq. Finally, D

computes u(t)
i := f (Pi) (i = 1, 2, . . . , n) and sends (u(t)

i , t) to
Pi (i = 1, 2, . . . , n) via a secure channel.

c) Extract. For sk and time t ∈ T , TS broadcasts t-th key r(t) as
a time-signal at time t to all participants via a (authenticated)
broadcast channel.

d) Reconstruct. First, a set of at least k participants
A = {Pi1 , Pi2 , . . . , Pik } ∈ PS(P, k, k) computes c(t)

by Lagrange interpolation from their k shares: c(t) =∑k
j=1(
∏

l� j
Pi j

Pi j−Pil
) f (Pij ). After receiving ts(t) = r(t), they can

compute and get s = c(t) − r(t).
The security and optimality of the above construction is stated

as follows.

*6 It is enough to just consider an injective mapping P → Fq \ {0} as such a
coding.

Theorem 2. The resulting (k, n)-TR-SS Π by the above construc-

tion is secure and optimal.

Proof. First, we show the proof of (i) in Definition 2. Assume
that any k−1 participants F = {Pi1 , . . . , Pik−1 } ∈ PS(P, k−1, k−1)
try to guess c(t) by using their shares. Note that they know
r(t) = c(t) − s and

f (Pij ) = (1, Pij , . . . , P
k−1
i j

)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

c(t)

a1

...

ak−1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

for j = 1, . . . , k − 1. Thus, they can know the following:

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 Pi1 · · · Pk−1
i1

1 Pi2 · · · Pk−1
i2

...
...

. . .
...

1 Pik−1 · · · Pk−1
ik−1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

c(t)

a1

...

ak−1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (5)

However, from Eq. (5), they cannot guess at least one ele-
ment of (c(t), a1, . . . , ak−1) with probability larger than 1/q as
in Shamir’s secret sharing scheme [29]. Therefore, H(S |
U(t)
F , T I(1), . . . ,T I(τ)) = H(S ) for any F ∈ PS(P, 1, k − 1) and

any t ∈ T .
Next, we show the proof of (ii) in Definition 2. Suppose that all

participants try to guess r(t) by using c(t) and time-signals at all the
time except the time t, since they obtain c(t) = s + r(t) from their
shares. They get τ − 1 time-signals r(1), . . . , r(t−1), r(t+1), . . . , r(τ).
However, since each time-signal is chosen uniformly at random
from Fq, they can guess r(t) only with probability 1/q. By the se-
curity of one-time pad, for anyA ∈ PS(P, k, n) and for any t ∈ T ,
we have H(S | U(t)

A , T I(1), . . . , T I(t−1), T I(t+1), . . . , T I(τ)) = H(S ).
Finally, it is straightforward to see that the construction satis-

fies all the equalities of lower bounds in Theorem 1. Therefore,
the above construction is optimal. �

3. (k1, k2, n)-timed-release Secret Sharing
Scheme

In this section, we consider the following problem, “Can we
realize traditional secret sharing functionality and timed-release
secret sharing functionality simultaneously?”. Therefore, we pro-
pose (k1, k2, n)-TR-SS, where k1 and k2 are threshold values with
1 ≤ k1 ≤ k2 ≤ n. (k1, k2, n)-TR-SS can realize timed-release
functionality —a secret can be reconstructed from at least k1

shares and a time-signal at the specified time— and traditional
secret sharing functionality —a secret can be also reconstructed
from only at least k2 shares— simultaneously. In the case that
k = k1 = k2, (k, k, n)-TR-SS can be considered as the traditional
(k, n)-SS (for details, see Remark 3).

3.1 Model and Security Definition
In this section, we propose a model and a security definition of

(k1, k2, n)-TR-SS. First, we introduce a model of (k1, k2, n)-TR-
SS. In (k1, k2, n)-TR-SS, there are the same entities and sets as
those of (k, n)-TR-SS. The main difference from (k, n)-TR-SS is
that a dealer D can specify two kinds of threshold values, k1 and
k2 with k1 ≤ k2 ≤ n: k1 indicates the number of participants who
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can reconstruct a secret s with the time-signal at the time speci-
fied by the dealer; and k2 indicates the number of participants who
can reconstruct s without any time-signals. We give the definition
of (k1, k2, n)-TR-SS as follows.
Definition 4 ((k1, k2, n)-TR-SS). A (k1, k2, n)-timed-release se-

cret sharing ((k1, k2, n)-TR-SS) scheme Θ involves n + 3 entities,

T A, D, P1, . . . , Pn, and TS , and consists of five phases, Ini-

tialize, Extract, Share, Reconstruct with time-signals and Recon-

struct without time-signals, and five finite spaces, S, SK , U, T ,

and TI. Θ is executed based on the following phases as follows.

a) Initialize. This phase follows the same procedure as that of

(k, n)-TR-SS (see Definition 1).

b) Share. A dealer D randomly selects a secret s ∈ S accord-

ing to PS . Then, D chooses k1, k2 and n, and specifies future

time t ∈ T when at least k1 participants can reconstruct s.

Then, on input the secret s, the specified time t and a secret

key sk ∈ SK , D computes a share u(t)
i ∈ U

(t)
i for every Pi

(i = 1, 2, . . . , n) and a public parameter pp ∈ PP *7. And

then, D discloses pp and sends a pair of the share and spec-

ified time, (u(t)
i , t), to Pi (i = 1, 2, . . . , n) via a secure channel,

respectively.

c) Extract. This phase follows the same procedure as that of

(k, n)-TR-SS (see Definition 1).

d) Reconstruct with time-signals. At the specified time t, any

set of participantsA = {Pi1 , . . . , Pij } ∈ PS(P, k1, k2 −1) can

reconstruct the secret s by using their shares (u(t)
i1
, . . . , u(t)

i j
)

(k1 ≤ j < k2) and a time-signal of the specified time ts(t).

e) Reconstruct without time-signals. At any time (even be-

fore the specified time), any set of participants Â =

{Pi1 , . . . , Pij } ∈ PS(P, k2, n) can reconstruct the secret s by

using only their shares (u(t)
i1
, . . . , u(t)

i j
) (k2 ≤ j ≤ n).

In the above model, we assume that Θmeets the following cor-

rectness properties:
( 1 ) If D correctly completes the phase Share and TS cor-

rectly completes the phase Extract, then, for all possible
i ∈ {1, 2, . . . , n}, t ∈ T , s ∈ S, u(t)

i ∈ U
(t)
i , and ts(t) ∈ TI(t),

it holds that any A ∈ PS(P, k1, k2 − 1) will correctly re-
construct the secret s at the end of phase Reconstruct with

time-signals, namely, H(S | U(t)
A , T I(t)) = 0.

( 2 ) If D correctly completes the phase Share, then, for all pos-
sible i ∈ {1, 2, . . . , n}, t ∈ T , s ∈ S, and u(t)

i ∈ U
(t)
i , it holds

that any Â ∈ PS(P, k2, n) will correctly reconstruct the se-
cret s at the end of phase Reconstruct without time-signals,
namely, H(S | U(t)

Â
) = 0.

Next, we formalize a security definition of (k1, k2, n)-TR-SS in
a similar way to that of (k, n)-TR-SS as follows. Note that the
description of (the random variable of) the public parameters is
omitted below since existing works using public parameters such
as Ref. [20] do not explicitly describe the public parameter in the
security definition.
Definition 5 (Security of (k1, k2, n)-TR-SS). Let Θ be a

(k1, k2, n)-TR-SS scheme. Θ is said to be secure if the following

conditions are satisfied:

(i) For any F ∈ PS(P, 1, k1 − 1) and any t ∈ T , it holds that

*7 Although not used in the previous scheme, we here introduce a public
parameter pp since we will need it in our construction in Section 3.3.

H(S | U(t)
F , T I(1), . . . , T I(τ)) = H(S ).

(ii) For any F̂ ∈ PS(P, k1, k2 − 1) and any t ∈ T , it holds that

H(S | U(t)

F̂
, T I(1), . . . , T I(t−1), T I(t+1), . . . , T I(τ)) = H(S ).

In Definition 5, intuitively, the meaning of (i) is the same as
that of (k, n)-TR-SS (Definition 2), and the meaning of the con-
dition (ii) implies that no information on a secret is obtained by
any set of at least k1 but no more than k2 participants, even if they
obtain time-signals at all the time except the specified time. We
can also consider a more strong security notion as discussed in
(k, n)-TR-SS, however, we do not consider such a strong notion
by the same reason as in the case of (k, n)-TR-SS.
Remark 3. In the case of k = k1 = k2, the model and secu-

rity definition of secure (k, k, n)-TR-SS (Definitions 1 and 2) are

the same as those of traditional (k, n)-SS. Therefore, the model

and security definition of (k1, k2, n)-TR-SS can be regarded as the

natural extension of those of traditional secret sharing schemes.

3.2 Lower Bounds
In this section, we show lower bounds on sizes of shares, time-

signals, and secret keys required for secure (k1, k2, n)-TR-SS as
follows. Note that in the proof, there are several technical points
which are more complicated than that of Theorem 1.
Theorem 3. Let Θ be any secure (k1, k2, n)-TR-SS. Then, for any

i ∈ {1, 2, . . . , n} and for any t ∈ T , we have

(I) H(U(t)
i ) ≥ H(S ).

Moreover, if the above lower bound holds with equality (i.e.,

H(U(t)
i ) = H(S ) for any i and t), we have

(II) H(T I(t)) ≥ (k2−k1)H(S ), (III) H(S K) ≥ τ(k2−k1)H(S ).

Proof. The proof of Theorem 3 follows from the following lem-
mas.
Lemma 4. H(U(t)

i ) ≥ H(S ) for any i ∈ {1, 2, . . . , n} and any

t ∈ T .

Proof. The proof of this lemma can be proved in a way similar
to the proof of Lemma 1. For arbitrary i ∈ {1, 2, . . . , n}, we take a
subset Bi ∈ PS(P \ {Pi}, k2 − 1, k2 − 1) of participants. Then, for
any t ∈ T , we have

H(U(t)
i ) ≥ H(U(t)

i | U
(t)
Bi
,T I(1), . . . ,T I(t−1)) (6)

≥ I(S ; U(t)
i | U

(t)
Bi
, T I(1), . . . ,T I(t−1))

= H(S | U(t)
Bi
, T I(1), . . . ,T I(t−1)) (7)

= H(S ), (8)

where Eq. (7) follows from the correctness of (k1, k2, n)-TR-SS
and Eq. (8) follows from the condition (ii) in Definition 5. �
Lemma 5. If H(U(t)

i ) = H(S ) for any i ∈ {1, 2, . . . , n} and t ∈ T ,

H(T I(t)) ≥ H(T I(t) | T I(1), . . . , T I(t−1)) ≥ (k2 − k1)H(S ) for any

t ∈ T .

Proof. The statement is true in the case that k1 = k2, since
Shannon entropy is non-negative. Therefore, in the following,
we assume k1 < k2. For arbitrary i ∈ {1, 2, . . . , n}, we take a sub-
set Bi ∈ PS(P\{Pi}, k2−1, k2−1) of participants. For any t ∈ T ,
we have
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H(T I(t)) (9)

≥ H(T I(t) | T I(1), . . . ,T I(t−1))

≥ I(T I(t); U(t)
1 ,U

(t)
2 , . . . ,U

(t)
n | T I(1), . . . , T I(t−1))

= H(U(t)
1 ,U

(t)
2 , . . . ,U

(t)
n | T I(1), . . . , T I(t−1))

− H(U(t)
1 ,U

(t)
2 , . . . ,U

(t)
n | T I(1), . . . , T I(t))

= H(U(t)
1 , . . . ,U

(t)
k1
| T I(1), . . . ,T I(t−1))

+ H(U(t)
k1+1, . . . ,U

(t)
k2
| T I(1), . . . , T I(t−1),U(t)

1 , . . . ,U
(t)
k1

)

+ H(U(t)
k2+1, . . . ,U

(t)
n | T I(1), . . . , T I(t−1),U(t)

1 , . . . ,U
(t)
k2

)

− H(U(t)
1 , . . . ,U

(t)
k1
| T I(1), . . . , T I(t))

− H(U(t)
k1+1, . . . ,U

(t)
k2
| T I(1), . . . , T I(t),U(t)

1 , . . . ,U
(t)
k1

)

− H(U(t)
k2+1, . . . ,U

(t)
n | T I(1), . . . , T I(t),U(t)

1 , . . . ,U
(t)
k2

)

≥ H(U(t)
1 , . . . ,U

(t)
k1
| T I(1), . . . ,T I(t))

+ H(U(t)
k1+1, . . . ,U

(t)
k2
| T I(1), . . . , T I(t−1),U(t)

1 , . . . ,U
(t)
k1

)

+ H(U(t)
k2+1, . . . ,U

(t)
n | T I(1), . . . , T I(t),U(t)

1 , . . . ,U
(t)
k2

)

− H(U(t)
1 , . . . ,U

(t)
k1
| T I(1), . . . , T I(t))

− H(U(t)
k1+1, . . . ,U

(t)
k2
| T I(1), . . . , T I(t),U(t)

1 , . . . ,U
(t)
k1

)

− H(U(t)
k2+1, . . . ,U

(t)
n | T I(1), . . . , T I(t),U(t)

1 , . . . ,U
(t)
k2

)

= H(U(t)
k1+1, . . . ,U

(t)
k2
| T I(1), . . . , T I(t−1),U(t)

1 , . . . ,U
(t)
k1

)

− H(U(t)
k1+1, . . . ,U

(t)
k2
| T I(1), . . . , T I(t),U(t)

1 , . . . ,U
(t)
k1

)

≥
k2∑

i=k1+1

H(U(t)
i | T I(1), . . . , T I(t−1),U(t)

Bi
)

−
k2∑

i=k1+1

H(U(t)
i | T I(1), . . . , T I(t),U(t)

1 , . . . ,U
(t)
i−1)

= (k2 − k1)H(S ), (10)

where Eq. (10) follows from Eq. (6) in the proof of Lemma 4, the
assumption of H(U(t)

i ) = H(S ), and the following claim. �
Claim 1. If k1 < k2 and H(U(t)

i ) = H(S ) for any i ∈ {1, 2, . . . , n}
and t ∈ T , H(U(t)

i | UAi , T I(t)) = 0 for any i ∈ {1, 2, . . . , n}, any

Ai ∈ PS(P \ {Pi}, k1, k2 − 1), and any t ∈ T .

Proof. First, for arbitrary i ∈ {1, 2, . . . , n}, we take subsets
Bi := PS(P\{Pi}, k1−1, k1−1) andAi := PS(P\{Pi}, k1, k2−1)
of participants such that Bi ⊂ Ai. Then, for any t ∈ T , we have

H(U(t)
i ) ≥ H(U(t)

i | U
(t)
Bi
,T I(t)) (11)

≥ H(U(t)
i | U

(t)
Bi
,T I(t)) − H(U(t)

i | U
(t)
Bi
, T I(t), S ) (12)

= I(U(t)
i ; S | U(t)

Bi
,T I(t))

= H(S | U(t)
Bi
,T I(t)) − H(S | U(t)

Bi
,U(t)

i ,T I(t))

= H(S | U(t)
Bi
,T I(t)) (13)

= H(S ), (14)

where Eq. (13) follows form the correctness of (k1, k2, n)-TR-SS
and Eq. (14) follows from the condition (i) in Definition 5.

From the above inequalities and the assumption H(U(t)
i ) =

H(S ), it follows that all quantities between H(U(t)
i ) and H(S ) are

equal. Therefore, from Eq. (11) and Eq. (12), we have

H(U(t)
i | U

(t)
Bi
, T I(t), S ) = 0.

Hence, we have

H(U(t)
i | U

(t)
Ai
, T I(t)) = H(U(t)

i | U
(t)
Ai
,T I(t), S )

≤ H(U(t)
i | U

(t)
Bi
, T I(t), S ) = 0.

Since H(U(t)
i |U

(t)
Ai
, T I(t))≥0, we have H(U(t)

i |U
(t)
Ai
,T I(t))=0. �

Lemma 6. If H(U(t)
i ) = H(S ) for any i ∈ {1, 2, . . . , n} and t ∈ T ,

H(S K) ≥ τ(k2 − k1)H(S ).
Proof. We have

H(S K) ≥ I(T I(1), . . . ,T I(τ); S K)

= H(T I(1), . . . ,T I(τ)) − H(T I(1), . . . ,T I(τ) | S K)

= H(T I(1), . . . ,T I(τ))

=

τ∑

t=1

H(T I(t) | T I(1), . . . , T I(t−1))

≥ τ(k2 − k1)H(S ),

where the last inequality follows from Lemma 5. �
Proof of Theorem 3: From Lemmas 4–6, the proof of Theorem 3
is completed. �

As we will see in Section 3.3, the lower bounds in Theorem 3
are tight since our construction will meet all the above lower
bounds with equalities.

We then define optimality of constructions of (k1, k2, n)-TR-SS
as follows.
Definition 6. A construction of secure (k1, k2, n)-TR-SS is said to

be optimal if it meets equality in every bound of (i)–(iii) in Theo-

rem 3.

3.3 Optimal (but Restricted *8) Construction
We can consider a naive construction based on (k1, n)-TR-SS

and (k2, n)-SS, however, this naive construction is not optimal
since the share size is twice as large as the underlying secret size
(see Appendix A.1 for details). To achieve an optimal construc-
tion, we use the technique in Ref. [20]: In the phase Share, the
dealer computes public parameters, and the public parameters are
broadcasted to participants or else stored on a publicly accessible
authenticated bulletin board. Although we have to disclose k2−k1

elements in a finite field as a public parameter, each share can
consist of only one element. In Ref. [20], Jhanwar and Safavi-
Naini used this technique for reducing share sizes, and conse-
quently they succeeded in constructing optimal share sizes. We
note that although similar techniques that the dealer broadcasts
several coefficients of the polynomial such as Refs. [5], [6], [23],
[24] are known, the aim of their techniques differs from our aim.
Specifically, it is to realize the functionality, whereas our aim is
to reduce the share sizes, and consequently, to achieve an optimal
construction. The detail of our construction is given as follows.
a) Initialize. Let q be a prime power, where q > max{n, τ},

and let Fq be the finite field with q elements. We as-
sume that the identity of each participant Pi is encoded as
Pi ∈ Fq\{0}. Also, we assume T = {1, 2, . . . , τ} ⊂ Fq\{0}
by using appropriate encoding. First, T A chooses �, which

*8 In this optimal construction, a dealer is only allowed to choose k1 and
k2 such that k2 − k1 ≤ �, where � is determined by T A in the phase
Initialize. In this sense, this construction is restricted.
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is the maximum difference between k2 and k1. Note that
k1 and k2 will be determined by a dealer D in the phase
Share. Then, T A chooses τ� numbers r(t)

i (1 ≤ i ≤ �, and
1 ≤ t ≤ τ) from Fq uniformly at random. T A sends a secret
key sk := {(r(t)

1 , r
(t)
2 , . . . , r

(t)
�

)}1≤t≤τ to TS and D via secure
channels, respectively.

b) Share. First, D randomly selects a secret s ∈ Fq according
to a distribution PS over Fq, and chooses k1, k2 and n such
that k2 − k1 ≤ �. Also, D specifies the time t when at least
k1 participants can reconstruct the secret. Next, D randomly
chooses a polynomial f (x) := s +

∑k2−1
i=1 aixi over Fq, where

each coefficient ai is randomly and uniformly chosen from
Fq. Then, D computes a share u(t)

i := f (Pi) and a public pa-
rameter p(t)

i := ak1−1+i + r(t)
i (i = 1, 2, . . . , k2 − k1). Finally, D

sends (u(t)
i , t) to Pi (i = 1, 2, . . . , n) via a secure channel and

discloses pp := (p(t)
1 , . . . , p

(t)
k2−k1

).
c) Extract. For sk and time t ∈ T , TS broadcasts a time-signal

at time t, ts(t) := (r(t)
1 , r

(t)
2 , . . . , r

(t)
�

) to all participants via a
(authenticated) broadcast channel.

d) Reconstruct with time-signals. Suppose that all par-
ticipants receive ts(t) = (r(t)

1 , r
(t)
2 , . . . , r

(t)
�

). Let A =

{Pi1 , Pi2 , . . . , Pik1
} ∈ PS(P, k1, k1) be a set of any k1 partici-

pants. First, each Pij ∈ A computes ak1−1+i = p(t)
i − r(t)

i (i =
1, 2, . . . , k2 − k1) and constructs g(x) :=

∑k2−1
k1

aixi. Then,
each Pij computes h(Pij ) := f (Pij ) − g(Pij ) ( j = 1, . . . , k1)
such that h(x) := s +

∑k1−1
i=1 aixi. Then, they compute

s =
k1∑

j=1

⎛⎜⎜⎜⎜⎜⎜⎝
∏

l� j

Pi j

Pi j − Pil

⎞⎟⎟⎟⎟⎟⎟⎠ h(Pij ),

by Lagrange interpolation from (h(Pi1 ), . . . , h(Pik1
)).

e) Reconstruct without time-signals. Any Â = {Pi1 , Pi2 , . . . ,

Pik2
} ∈ PS(P, k2, k2) computes

s =
k2∑

j=1

⎛⎜⎜⎜⎜⎜⎜⎝
∏

l� j

Pi j

Pi j − Pil

⎞⎟⎟⎟⎟⎟⎟⎠ f (Pij ),

by Lagrange interpolation from their k2 shares.
The security and optimality of the above construction is stated

as follows.
Theorem 4. The resulting (k1, k2, n)-TR-SS Θ by the above con-

struction is secure. Moreover, it is optimal if k2 − k1 = �.

Proof. First, we show the proof of (i) in Definition 5. We can
prove this as in Shamir’s secret sharing scheme [29]. Assume that
k1 − 1 participants F = {Pi1 , . . . , Pik1−1 } ∈ PS(P, k1 − 1, k1 − 1)
try to guess s by using their shares, public parameters, and all
time-signals. F can compute g(x) from public parameters and
the time-signal at the specified time, hence they can get h(Pil ) =
f (Pil ) − g(Pil ) (l = 1, . . . , k1 − 1). Thus, they can know the fol-
lowing:
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 Pi1 · · · Pk1−1
i1

1 Pi2 · · · Pk1−1
i2

...
...

. . .
...

1 Pik1−1 · · · Pk1−1
ik1−1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

s

a1

...

ak1−1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (15)

However, from Eq. (15), they cannot guess at least one ele-

ment of (a1, . . . , ak1−1) with probability larger than 1/q. There-
fore, from the property of the one-time pad, we have H(S |
U(t)
F , T I(1), . . . ,T I(τ)) = H(S ) for any F ∈ PS(P, 1, k1 − 1) and

any t ∈ T .
Next, we show the proof of (ii) in Definition 5. Without loss

of generality, we suppose that k2 − k1 = �, and that k2 − 1 par-
ticipants try to guess s by using their shares, public parameters,
and time-signals at all the time except the time t. First, they can-
not guess at least one coefficient of f (x) with probability larger
than 1/q since the degree of f (x) is at most k2 − 1 as in Shamir’s
secret sharing scheme [29]. Therefore, they attempt to guess one
of ak1 , . . . , ak2−1 by using their k2 − 1 shares, public parameters
and τ − 1 time-signals, since if they obtain any one of these co-
efficient, they can get f ∗(Pil ) (l = 1, . . . , k2 − 1) such that the
degree of f ∗(x) is k2 − 2 and reconstruct s by Lagrange interpola-
tion. They know τ − 1 time-signals, however, these time-signals
{(r( j)

1 , . . . , r
( j)
�

)} j=1,...,t−1,t+1,...,τ are independent of the time-signal
(r(t)

1 , . . . , r
(t)
�

) at τ. Hence, by the security of one-time pad, they
cannot guess each ak1−1+i (= p(t)

i −r(t)
i ) (1 ≤ i ≤ k2−k1) with prob-

ability larger than 1/q since each r(t)
i is chosen from Fq uniformly

at random. Therefore, for any A ∈ PS(P, k1, k2 − 1) and any
t ∈ T , we have H(S | U(t)

A , T I(1), . . . , T I(t−1),T I(t+1), . . . , T I(τ)) =
H(S ).

Finally, if k2 − k1 = �, it is straightforward to see that the con-
struction satisfies all the equalities of lower bounds in Theorem 3.
Therefore, the above construction is optimal if k2 − k1 = �. �

4. Extensions

In this section, we discuss the following extensions of our re-
sults in the previous sections.
Timed-release Secret Sharing with General Access Struc-
tures. In Ref. [19], a generic construction of secret sharing
schemes for any general access structure by using threshold secret
sharing schemes was proposed, and later such a technique was
improved in terms of efficiency on share sizes in Refs. [1], [32].
We can realize a timed-release secret sharing scheme for any gen-
eral access structures from (k, n)-TR-SS schemes based on the
techniques [1], [32].
Robust Timed-release Secret Sharing Schemes. Robust secret
sharing schemes [11], [15], [20], [26] are secret sharing schemes
secure against malicious modification of shares. Technically, sup-
pose that at most ω (< n/2) participants are allowed to mod-
ify their own shares so that a reconstructor recovers a secret s′,
which is different from the original secret s, from all n shares.
Then, the secret sharing scheme is said to be (ω, δ)-robust if the
success probability of the attack is at most δ. We can construct a
(ω, δ)-robust TR-SS scheme by using (ω + 1, n)-TR-SS schemes
via two existing approaches: (1) the Rabin–Ben-Or (RB) ap-
proach [11], [26]; and (2) the Cramer–Damgård–Fehr (CDF) ap-
proach [15], [20]. Since each scheme can be easily constructed
and security of each scheme can be proved by a slight modifi-
cation to the original proof, we here briefly explain the two ap-
proaches below.
(1) The RB approach: We can construct a (ω, δ)-robust TR-SS
scheme from a (ω + 1, n)-TR-SS scheme and an information-
theoretically secure authentication code (A-code for short) [30].
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First, a dealer specifies time t, and generates n shares u(t)
1 , . . . ,

u(t)
n of a secret s by using the (ω + 1, n)-TR-SS scheme. Next,

he generates n2 keys of the A-code, k( j)
i (1 ≤ i, j ≤ n), and

generates tags tag( j)
i by using u(t)

j and k( j)
i . Then, Pi’s share is

(u(t)
i , k

(1)
i , . . . , k

(n)
i , tag

(i)
1 , . . . , tag

(i)
n ). In the reconstruction phase, a

reconstructor checks the validity of u(t)
i by using k(i)

j and tag(i)
j . If

the validity of u(t)
i is guaranteed by at least ω + 1 pairs of k(i)

j and

tag(i)
j , then the share is considered as the valid share. After re-

ceiving a time-signal at t, then the secret s can be recovered from
at least ω + 1 valid shares and the time-signal.
(2) The CDF approach: We can also construct a (ω, δ)-robust TR-
SS scheme from a (ω + 1, n)-TR-SS scheme and a traditional
(ω + 1, n)-SS scheme. For simplicity, let S := Fq. First, as in
the RB approach, a dealer specifies time t, and generates n shares
u(t)

1 , . . . , u
(t)
n of a secret s by using the (ω + 1, n)-TR-SS scheme.

Then, he chooses r ∈ Fq uniformly at random, and computes
tag := s · r. He generates n shares of r and tag by using the
(ω + 1, n)-SS scheme, respectively. Let ũ(t)

1 , . . . , ũ(t)
n be shares

of r, and û(t)
1 , . . . , û(t)

n be shares of tag, respectively. Then, Pi’s
share is (u(t)

i , ũ
(t)
i , û

(t)
i ). In the reconstruction phase, a reconstruc-

tor chooses a subset of ω + 1 participants, and reconstructs s′, r′,
and tag′ from their shares and a time-signal at t. Then, he checks
whether it holds s′ · r′ = tag′ or not. If so, he accepts s′ as the
original secret. Otherwise, he chooses different ω+1 participants
and performs the above operation again.

5. Conclusion

In this paper, we showed how we realized information-
theoretically secure secret sharing schemes with timed-release se-
curity. Specifically, we considered two schemes, a (k, n)-TR-SS
scheme and a (k1, k2, n)-TR-SS scheme. In the former, at least k

participants can reconstruct a secret only with a time-signal at the
specified time. In the latter, at least k2 participants can reconstruct
a secret from only their shares as in the traditional secret sharing
scheme, whereas at least k1 (but less than k2) participants can re-
construct a secret only with a time-signal at the specified time.
We gave mathematical models and security definitions of both
schemes, derived lower bounds on sizes of shares, time-signals,
and secret keys required for both schemes. Moreover, we pro-
posed optimal constructions of both schemes, and discussed the
extensions of TR-SS schemes.
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Appendix

A.1 Naive Construction of (k1, k2, n)-TR-SS

Our idea of a naive construction is a combination of (k1, n)-TR-
SS (Section 2.3) and Shamir’s (k2, n)-SS [29].
a) Initialize. Let q be a prime power, where q > max{n, τ}, and

let Fq be the finite field with q elements. We assume that
the identity of each participant Pi is encoded as Pi ∈ Fq\{0}.
Also, we assume T = {1, 2, . . . , τ} ⊂ Fq\{0} by using ap-
propriate encoding. First, T A chooses uniformly at random
τ numbers r( j) (1 ≤ j ≤ τ) from Fq. T A sends a secret key
sk := (r(1), . . . , r(τ)) to TS and D via secure channels, respec-
tively.

b) Share. First, D randomly chooses a secret s ∈ Fq accord-
ing to a distribution PS over Fq. Also, D specifies the time
t when at least k1 participants can reconstruct the secret and
chooses t-th key r(t). Next, D randomly chooses two polyno-
mials f1(x) := s+r(t)+

∑k1−1
i=1 a1i xi and f2(x) := s+

∑k2−1
i=1 a2i xi

over Fq, where each coefficient is randomly and uniformly
chosen from Fq. Then, D computes u(t)

i := ( f1(Pi), f2(Pi)).
Finally, D sends (u(t)

i , t) to Pi (i = 1, 2, . . . , n) via a secure
channel.

c) Extract. For sk and time t ∈ T , TS broadcasts t-th key r(t) as
a time-signal at time t to all participants via a (authenticated)
broadcast channel.

d) Reconstruct with time-signals. First, A = {Pi1 , Pi2 , . . . ,

Pik1
} ∈ PS(P, k1, k1) computes s + r(t) by Lagrange inter-

polation:

s + r(t) =

k1∑

j=1

⎛⎜⎜⎜⎜⎜⎜⎝
∏

l� j

Pi j

Pi j − Pil

⎞⎟⎟⎟⎟⎟⎟⎠ f1(Pij ),

from ( f1(Pi1 ), . . . , f1(Pik1
)). After receiving ts(t) = r(t), they

can compute s from s + r(t) and ts(t) by (s + r(t)) − ts(t).

e) Reconstruct without time-signals. Any Â = {Pi1 , Pi2 , . . . ,

Pik2
} ∈ PS(P, k2, k2) computes

s =
k2∑

j=1

⎛⎜⎜⎜⎜⎜⎜⎝
∏

l� j

Pi j

Pi j − Pil

⎞⎟⎟⎟⎟⎟⎟⎠ f2(Pij ),

by Lagrange interpolation from ( f2(Pi1 ), . . . , f2(Pik2
)).

It is easy to see that the above construction is secure, since
this construction is a simple combination of (k1, n)-TR-SS and
Shamir’s (k2, n)-SS. Also, the above construction is simple, how-
ever not optimal since the resulting share size is twice as large as
that of secrets.
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