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Abstract: We propose a new secret sharing scheme realizing general access structures, which is based on unautho-
rized subsets. In the proposed scheme, we can select a subset of participants without restrictions and reduce the number
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1. Introduction

In 1979, Blakley and Shamir independently introduced the
concept of secret sharing [1], [2]. In Shamir’s (k, n)-threshold
scheme [1], every group of k participants can recover the secret
K, but no group of less than k participants can get any information
about the secret from their shares. The collection of all authorized
subsets of participants is called the access structure. A (k, n)-
threshold scheme can only realize particular access structures
that contain all subsets of k or more participants. Secret shar-
ing schemes realizing more general access structures than that of
a threshold scheme were studied by numerous authors. Koyama
proposed secret sharing schemes for multi-groups [3]. Simmons
studied secret sharing schemes realizing multilevel access struc-
tures [4], [5]. Subsequently, Tassa proposed a hierarchical thresh-
old scheme [6]. Dijk generalized the vector space construction
by Brickell [7] and proposed the linear construction [8]. Stinson
proposed the decomposition construction [9]. These schemes ob-
tain the optimal information rates for some access structures, but
these schemes cannot be applied to many access structures or do
not have explicit share assignment algorithms for many access
structures.

On the other hand, Ito, Saito and Nishizeki proposed a se-
cret sharing scheme for general access structures and showed
an explicit share assignment algorithm for any access struc-
ture [10]. Secret sharing schemes which have an explicit as-
signment algorithm for any access structure are categorized by
three types. One type is schemes based on unauthorized sub-
sets [10], [11], [12]. Another type is schemes based on authorized
subsets [13], [14], [15]. Yet another type is a scheme based on
both unauthorized subsets and authorized subsets (IYO07) [16].

In the implementation of secret sharing schemes for general
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access structures, an important issue is the number of shares dis-
tributed to each participant. Obviously, a scheme constructed of
small shares is desirable. However, in general, the proposed se-
cret sharing schemes for general access structures are impractical
in this respect when the size of the access structure is very large.

Suppose that we want to apply secret sharing schemes to a
company. Here, we consider a section which consists of two
managers and 20 staff members. A secret can be recovered by
a group of two managers or groups of one manager and two staff
members. In this case, every manager belongs to 191 minimal
authorized subsets and every staff member belongs to 38 mini-
mal authorized subsets. We shall realize this access structure by
applying Benaloh and Leichter’s scheme [13]. Then, each man-
ager has to hold 191 shares and each staff member has to hold
38 shares. In 2015, a new secret sharing scheme realizing gen-
eral access structures was proposed (T15) [17]. This scheme is
based on authorized subsets and the first scheme that can reduce
the number of shares distributed to specified participants. In the
scheme A of T15, we can select a subset of participants without
restrictions and reduce the number of shares distributed to any
participant who belongs to the selected subset. In the above case,
by selecting two managers as a subset of participants we can re-
duce the number of shares distributed to each manager to 2 if
we employ the scheme A of T15. Therefore, in secret sharing
schemes reducing the numbers of shares distributed to specified
participants is quite useful.

In this paper, we modify the scheme A of T08 [12] and the
scheme A of T15 [17] and propose a new secret sharing scheme
realizing general access structures, which is based on the unau-
thorized subsets and can reduce the number of shares distributed
to specified participants. Thus, we can select a subset of partic-
ipants without restrictions and reduce the number of shares dis-
tributed to any participant who belongs to the selected subset as
well as the scheme A of T15. In the above case, by selecting two
managers as a subset of participants we can also reduce the num-
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ber of shares distributed to each manager to 2, if we employ our
proposed scheme.

2. Preliminaries

2.1 Secret Sharing Scheme
Let P = {P1, P2, · · · , Pn} be a set of n participants. LetD(� P)

denote a dealer who selects a secret and distribute a share to each
participant. Let K and S denote a secret set and a share set, re-
spectively. S(A) denotes the shares assigned to a subset A ⊂ P.
The access structure Γ(⊂ 2P) is the family of subsets of P which
contains the sets of participants qualified to recover the secret.
For any authorized subset A ∈ Γ, any superset of A is also an
authorized subset. Hence, the access structure should satisfy the
monotone property:

A ∈ Γ, A ⊂ A′ ⊂ P ⇒ A′ ∈ Γ.
Let Γ0 be a family of the minimal sets in Γ, called the minimal
access structure. Γ0 is denoted by

Γ0 = {A ∈ Γ : A′ � A for all A′ ∈ Γ − {A}}.
For any access structure Γ, there is a family of sets Γ̄ = 2P − Γ.
Here, Γ̄ contains the sets of participants unqualified to recover the
secret. The family of maximal sets in Γ̄ is denoted by Γ̄1. That is,

Γ̄1 = {B ∈ Γ̄ : B � B′ for all B′ ∈ Γ̄ − {B}}.
Let pK be a probability distribution onK . Let pS(A) be a proba-

bility distribution on the sharesS(A). Usually a secret K is chosen
fromK with the uniform distribution. A secret sharing scheme is
perfect if

H(K|A) =

⎧⎪⎪⎨⎪⎪⎩
0 (if A ∈ Γ)
H(K) (if A � Γ),

where H(K) and H(K|A) denote the entropy of pK and the
conditional entropy defined by the joint probability distribution
pK×S(A), respectively.

In general, the efficiency of a perfect secret sharing scheme is
measured by the information rate ρ [18] defined as

ρ = min{ρi : 1 ≤ i ≤ n}, ρi = log |K|/ log |S(Pi)|
where S(Pi) denotes the set of possible shares that Pi might re-
ceive. ρi is the information rate for Pi. Obviously, a high infor-
mation rate is desirable. A perfect secret sharing scheme is ideal
if ρ = 1.

2.2 Shamir’s (k, n)-threshold Scheme
Throughout the paper, p is a large prime, and let Zp be a fi-

nite field with p elements. Shamir’s (k, n)-threshold scheme is
described as follows [1]:
( 1 ) A dealer D chooses n distinct nonzero elements of Zp, de-

noted by x1, x2, · · · , xn. The values xi are public.
( 2 ) Suppose D wants to share a secret K ∈ Zp, D chooses k − 1

elements a1, a2, · · · ak−1 from Zp independently with a uni-
form distribution.

( 3 ) D distributes the share si = f (xi) to Pi (1 ≤ i ≤ n), where

f (x) = K + a1x + a2x2 + · · · + ak−1xk−1

is a polynomial over Zp.
It is known that Shamir’s (k, n)-threshold scheme is perfect and

ideal [18], [19]. This implies that every group of k participants
can recover the secret K, but no group of less than k participants
can get any information about the secret.

The access structure of (k, n)-threshold scheme is described as
follows:

Γ = {A ∈ 2P : |A| ≥ k}.
In this paper, every share is computed by using Shamir’s (k, n)-

threshold scheme though any ideal threshold scheme can be used
instead of Shamir’s (k, n)-threshold scheme for k � n, and more
simple schemes can be used instead of Shamir’s (n, n)-threshold
scheme. Therefore, we assume K = S = Zp.

2.3 Secret Sharing Schemes Based on Authorized Subsets
ForP = {P1, P2, · · · , Pn}, K ∈ K and Γ, Benaloh and Leichter’s

scheme [13] is described as follows.
Benaloh and Leichter’s scheme (BL88):
( 1 ) Let Γ0 = {A1, A2, · · · , Am}. For Ai ∈ Γ0, compute |Ai| shares

si,1, si,2, · · · , si,|Ai |

by using an (|Ai|, |Ai|)-threshold scheme with K as a secret
independently for 1 ≤ i ≤ m.

( 2 ) One distinct share from

si,1, si,2, · · · , si,|Ai |

is assigned to each P ∈ Ai (1 ≤ i ≤ m).
Example 1: For P = {P1, P2, P3, P4, P5, P6}, consider the follow-
ing access structure

Γ0 = {A1, A2, · · · , A6}
where

A1 = {P1, P2, P5, P6},
A2 = {P2, P3, P5, P6},
A3 = {P2, P4, P5, P6},
A4 = {P3, P4, P5, P6},
A5 = {P1, P2, P3, P4, P5},
A6 = {P1, P2, P3, P4, P6}.

We shall realize this access structure by Benaloh and Leichter’s
scheme. In this case, shares are distributed as follows:

P1 : s1,1, s5,1, s6,1

P2 : s1,2, s2,1, s3,1, s5,2, s6,2

P3 : s2,2, s4,1, s5,3, s6,3

P4 : s3,2, s4,2, s5,4, s6,4

P5 : s1,3, s2,3, s3,3, s4,3, s5,5

P6 : s1,4, s2,4, s3,4, s4,4, s6,5

where si, j is computed by using Shamir’s (|Ai|, |Ai|)-threshold
scheme with K as a secret (1 ≤ i ≤ 6, 1 ≤ j ≤ |Ai|).

For P = {P1, P2, · · · , Pn},Q(⊂ P), K ∈ K and Γ, the scheme A
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of T15 [17] is described as follows.
Scheme A of T15:
( 1 ) Let A′ = {C ⊂ Q : Q ∩ A = C for some A ∈ Γ0} and

represent it as

A′ = {C′1,C′2, · · · ,C′m}.
( 2 ) For C′i ∈ A′, let

Ai = {B ⊂ P − Q : B ∩C′i = φ

and B ∪C′i = A for some A ∈ Γ0}
and represent it as

Ai = {Ci1,Ci2, · · · ,Ci|Ai |}.
( 3 ) For C′i ∈ A′,

(i) if C′i = φ then

S i = {wi} and wi = K,

(ii) if C′i � φ andAi = {φ} then

S i = {w′i } and w′i = K,

(iii) if C′i � φ andAi � {φ} then compute 2 shares

S i = {wi, w
′
i }

by using Shamir’s (2, 2)-threshold scheme with K as a
secret independently for 1 ≤ i ≤ m.

( 4 ) For C′i ∈ A′, if C′i = φ then

S 1,i = φ,

else compute |C′i | shares

S 1,i = {s′i,1, s′i,2, · · · , s′i,|C′i |}
by using Shamir’s (|C′i |, |C′i |)-threshold scheme with w′i as a
secret independently for 1 ≤ i ≤ m. One distinct share in S 1,i

is assigned to each P ∈ C′i (1 ≤ i ≤ m).

( 5 ) For Ci j ∈ Ai, if Ci j = φ then

S 2,i, j = φ,

else compute |Ci j| shares

S 2,i, j = {si, j,1, si, j,2, · · · , si, j,|Ci j |}
by using Shamir’s (|Ci j|, |Ci j|)-threshold scheme with wi as
a secret independently for 1 ≤ i ≤ m, 1 ≤ j ≤ |Ai|. One
distinct share in S 2,i, j is assigned to each P ∈ Ci j (1 ≤ i ≤
m, 1 ≤ j ≤ |Ai|).

Example 2: Let Q = {P1, P2}. We shall realize the access struc-
ture of Example 1 by the proposed scheme A of T15.
• Since Q = {P1, P2},A′ is defined by

A′ = {C′1,C′2,C′3}
where

C′1 = {P1, P2},
C′2 = {P2},

C′3 = φ.

• A1,A2 andA3 are defined by

A1 = {{P5, P6}, {P3, P4, P5}, {P3, P4, P6}},
A2 = {{P3, P5, P6}, {P4, P5, P6}},
A3 = {{P3, P4, P5, P6}}.

• For C′1,C
′
2 ∈ A′, compute 2 shares

S 1 = {w1, w
′
1},

S 2 = {w2, w
′
2}

by using Shamir’s (2, 2)-threshold scheme with K as a secret
independently. Since C′3 = φ, we set

S 3 = {w3} and w3 = K.

• For C′1,C
′
2 ∈ A′, compute |C′i | shares

S 1,1 = {s′1,1, s′1,2},
S 1,2 = {s′2,1}

by using (|C′i |, |C′i |)-threshold scheme with w′i as a secret in-
dependently for 1 ≤ i ≤ 2. Since C′3 = φ, we set

S 1,3 = φ.

• For Ci j ∈ Ai, compute |Ci j| shares

S 2,1,1 = {s1,1,1, s1,1,2},
S 2,1,2 = {s1,2,1, s1,2,2, s1,2,3},
S 2,1,3 = {s1,3,1, s1,3,2, s1,3,3},
S 2,2,1 = {s2,1,1, s2,1,2, s2,1,3},
S 2,2,2 = {s2,2,1, s2,2,2, s2,2,3},
S 2,3,1 = {s3,1,1, s3,1,2, s3,1,3, s3,1,4}

by using Shamir’s (|Ci j|, |Ci j|)-threshold scheme with wi as a
secret independently for 1 ≤ i ≤ 3, 1 ≤ j ≤ |Ai|.

• In this case, shares are distributed as follows:

P1 : s′1,1
P2 : s′1,2, s

′
2,1

P3 : s1,2,1, s1,3,1, s2,1,1, s3,1,1

P4 : s1,2,2, s1,3,2, s2,2,1, s3,1,2

P5 : s1,1,1, s1,2,3, s2,1,2, s2,2,2, s3,1,3

P6 : s1,1,2, s1,3,3, s2,1,3, s2,2,3, s3,1,4.

We can select a subset of participants Q(⊂ P) without restric-
tions. This scheme can reduce the number of shares distributed
to each participant P ∈ Q. On the other hand, for any P ∈ P − Q,
the number of shares distributed to P is equal to that of Benaloh
and Leichter’s scheme.

2.4 Secret Sharing Schemes Based on Unauthorized Subsets
For P = {P1, P2, · · · , Pn}, K ∈ K and Γ, Ito, Saito and

Nishizeki’s scheme [10] is described as follows.
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Ito, Saito and Nishizeki’s Scheme (ISN87):
( 1 ) Let Γ̄1 = {B1, B2, · · · , Bt}. Compute t(= |Γ̄1|) shares

S = {w1, w2, · · · , wt}
for the secret K by using a (t, t)-threshold scheme.

( 2 ) Distribute shares to Pi ∈ P (1 ≤ i ≤ n) according to the
function g : P → 2S defined as

g(Pi) = {w j : Pi � Bj ∈ Γ̄1, 1 ≤ j ≤ t}
=
⋃
1≤ j≤t
Pi�B j

{w j}.

Example 3: We shall realize the access structure of Example 1
by Ito, Saito and Nishizeki’s scheme. For this access structure, Γ̄1

is given by

Γ̄1 = {{P2, P5, P6}, {P1, P2, P3, P4}, {P1, P2, P3, P5},
{P1, P2, P4, P5}, {P1, P3, P4, P5}, {P2, P3, P4, P5},
{P1, P2, P3, P6}, {P1, P2, P4, P6}, {P1, P3, P4, P6},
{P2, P3, P4, P6}, {P1, P3, P5, P6}, {P1, P4, P5, P6}}.

( 1 ) Since |Γ̄1| = 12, compute 12 shares

w1, w2, · · · , w12

by using a (12, 12)-threshold scheme for the secret K.

( 2 ) According to the function g, distribute shares as follows:

g(P1) = {w1, w6, w10},
g(P2) = {w5, w9, w11, w12},
g(P3) = {w1, w4, w8, w12},
g(P4) = {w1, w3, w7, w11},
g(P5) = {w2, w7, w8, w9, w10},
g(P6) = {w2, w3, w4, w5, w6}.

For P = {P1, P2, · · · , Pn}, K ∈ K and Γ, the scheme A of
T08 [12] is described as follows.
Scheme A of T08:
( 1 ) Divide Γ̄1 into disjoint subsets

Γ̄
(0)
1 , Γ̄

(1)
1 , · · · , Γ̄(r)

1

such that Γ̄(i)
1 (1 ≤ i ≤ r) satisfies

Γ̄
(i)
1 = {Zi ∪ {P} : P ∈ Yi}

or

Γ̄
(i)
1 = {Zi ∪ Yi − {P} : P ∈ Yi}

for some Yi ⊂ P and Zi ⊂ P(Yi ∩ Zi = φ) and

Γ̄
(0)
1 = Γ̄1 −

⎧⎪⎪⎨⎪⎪⎩
⋃

1≤i≤r

Γ̄
(i)
1

⎫⎪⎪⎬⎪⎪⎭ .

Let d =
∣∣∣Γ̄(0)

1

∣∣∣ and represent Γ̄(0)
1 , ei(1 ≤ i ≤ r) and Yi(1 ≤ i ≤

r) as

Γ̄
(0)
1 = {B1, B2, · · · , Bd},

ei = |X| (X ∈ Γ̄(i)
1 )

and

Yi = {Pi1 , Pi2 , · · · , Pi|Yi | },
respectively.

( 2 ) Compute d + r shares

S = {s1, s2, · · · , sd+r}
for the secret K by using Shamir’s (d + r, d + r)-threshold
scheme.

( 3 ) If r > 0, for 1 ≤ i ≤ r, by using Shamir’s (ei − |Zi| + 1, |Yi|)-
threshold scheme with sd+i as a secret, compute |Yi| shares

S d+i = {sd+i,i1 , sd+i,i2 , · · · , sd+i,i|Yi | },
independently for 1 ≤ i ≤ r.

( 4 ) Distribute shares to Pi ∈ P (1 ≤ i ≤ n) according to the
function defined as

g′(Pi) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⋃
1≤ j≤d
Pi�B j

{s j}

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

∪

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⋃
1≤ j≤r

Pi�Y j∪Z j

{sd+ j}

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

∪

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⋃
1≤ j≤r
Pi∈Y j

{sd+ j,i}

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ .

Example 4: We shall realize the access structure of Example 1
by the scheme A of T08.
• Divide Γ̄1 into disjoint subsets

Γ̄
(0)
1 , Γ̄

(1)
1 , Γ̄

(2)
1 , Γ̄

(3)
1 , Γ̄

(4)
1

where

Γ̄
(0)
1 = {{P2, P5, P6}},
Γ̄

(1)
1 = {{P1, P2, P3, P4}, {P1, P2, P3, P5}, {P1, P2, P3, P6}},
Γ̄

(2)
1 = {{P1, P2, P4, P5}, {P1, P3, P4, P5}, {P2, P3, P4, P5}},
Γ̄

(3)
1 = {{P1, P2, P4, P6}, {P1, P3, P4, P6}, {P2, P3, P4, P6}},
Γ̄

(4)
1 = {{P1, P3, P5, P6}, {P1, P4, P5, P6}},

and

Y1 = {P4, P5, P6},
Z1 = {P1, P2, P3},
e1 = 4,

Y2 = {P1, P2, P3},
Z2 = {P4, P5},
e2 = 4,

Y3 = {P1, P2, P3},
Z3 = {P4, P6},
e3 = 4,
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Y4 = {P3, P4},
Z4 = {P1, P5, P6},
e4 = 4.

• Since d = 1 and r = 4, compute 5 shares

S = {s1, s2, · · · , s5}
for the secret K by using Shamir’s (5, 5)-threshold scheme.

• Since r > 0, by using Shamir’s (ei − |Zi| + 1, |Yi|)-threshold
scheme with s1+i as a secret, compute S 1+i(1 ≤ i ≤ 4) as
follows:

S 2 = {s2,4, s2,5, s2,6},
S 3 = {s3,1, s3,2, s3,3},
S 4 = {s4,1, s4,2, s4,3},
S 5 = {s5,3, s5,4}.

• According to the function g′, distribute shares as follows:

g′(P1) = {s1, s3,1, s4,1},
g′(P2) = {s3,2, s4,2, s5},
g′(P3) = {s1, s3,3, s4,3, s5,3},
g′(P4) = {s1, s2,4, s5,4},
g′(P5) = {s2,5, s4},
g′(P6) = {s2,6, s3}.

This scheme can reduce the number of shares distributed to
P � Zi (1 ≤ i ≤ r). Thus, for any access structure, this scheme
is more efficient than the scheme proposed by Ito, Saito and
Nishizeki [10] from the viewpoint of the number of shares dis-
tributed to each participant.

Remarks In the scheme A of T08, Γ̄(1)
1 , · · · , Γ̄(r)

1 cannot be
determined uniquely. When we select a large r, we can reduce
the number of shares distributed to each participant though it is
hard to find r. Of course, if we can choose r = 0, then this scheme
is equivalent to Ito, Saito and Nishizeki’s scheme and shares are
distributed to each participant uniquely.

3. Proposed Scheme

Here, we modify the scheme A of T08 [12] and the scheme
A of T15 [17] and propose a new secret sharing scheme realiz-
ing general access structures. The proposed scheme can reduce
the number of shares distributed to P ∈ Q(⊂ P) by dividing Γ0

according to the subsets of Q in the same way as the scheme A
of T15 (Γ0 dividing phase). Furthermore, in order to reduce the
number of shares distributed to each participant P ∈ P − Q the
scheme A of T08 is applied to each divided access structure in the
proposed scheme (secret sharing phase for divided access struc-
tures). For P = {P1, P2, · · · , Pn},Q(⊂ P), K ∈ K and Γ, the
proposed scheme is described as follows.
Proposed Scheme:
(Γ0 dividing phase)
( 1 ) Let A′ = {C ⊂ Q : Q ∩ A = C for some A ∈ Γ0} and

represent it as

A′ = {C′1,C′2, · · · ,C′m}

and

C′j = {P′j1 , P′j2 , · · · , P′j|C′j |} (1 ≤ j ≤ m).

( 2 ) For C′j ∈ A′, let

A j = {B ⊂ P − Q : B ∩C′j = φ

and B ∪C′j = A for some A ∈ Γ0}
and represent it as

A j = {C j1,C j2, · · · ,C j|A j |}.
( 3 ) For C′j ∈ A′,

(i) if C′j = φ then

S ′j = {w j} and w j = K,

(ii) if C′j � φ andA j = {φ} then

S ′j = {w′j} and w′j = K,

(iii) if C′j � φ andA j � {φ} then compute 2 shares

S ′j = {w j, w
′
j}

by using Shamir’s (2, 2)-threshold scheme with K as a
secret independently for 1 ≤ j ≤ m.

( 4 ) For C′j ∈ A′, if C′j � φ then compute |C′j| shares

S ′1, j = {s′j, j1 , s′j, j2 , · · · , s′j, j|C′j |}
by using Shamir’s (|C′j|, |C′j|)-threshold scheme with w′j as a
secret independently for 1 ≤ j ≤ m.

(Secret sharing phase for divided access structures)
(5) Let Γ̄1, j be the family of maximal unauthorized subsets for
P − Q and the minimal access structureA j (1 ≤ j ≤ m).
(i) Divide Γ̄1, j into disjoint subsets

Γ̄
(1)
1, j, · · · , Γ̄(r j)

1, j

such that Γ̄(i)
1, j(1 ≤ i ≤ r j) satisfies

Γ̄
(i)
1, j = {Zj,i ∪ {P} : P ∈ Yj,i} (1)

or

Γ̄
(i)
1, j = {Zj,i ∪ Yj,i − {P} : P ∈ Yj,i} (2)

for some Yj,i ⊂ P − Q and Zj,i ⊂ P − Q(Yj,i ∩ Zj,i = φ)
and

Γ̄
(0)
1, j = Γ̄1, j −

⎧⎪⎪⎪⎨⎪⎪⎪⎩
⋃

1≤i≤r j

Γ̄
(i)
1, j

⎫⎪⎪⎪⎬⎪⎪⎪⎭ .

Let d j =
∣∣∣∣Γ̄(0)

1, j

∣∣∣∣ and represent Γ̄(0)
1, j, e j,i(1 ≤ i ≤ r j) and

Yj,i(1 ≤ i ≤ r j) as

Γ̄
(0)
1, j = {Bj,1, Bj,2, · · · , Bj,d j },

e j,i = |X| (X ∈ Γ̄(i)
1, j) (3)

and

Yj,i = {Pj,i1 , Pj,i2 , · · · , Pj,i|Y j,i | },
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respectively.

(ii) Compute d j + r j shares

S j = {s j,1, s j,2, · · · , s j,d j+r j }

for the secret w j by using Shamir’s (d j + r j, d j + r j)-
threshold scheme.

(iii) If r j > 0, for 1 ≤ i ≤ r j, by using Shamir’s (e j,i −
|Zj,i| + 1, |Yj,i|)-threshold scheme with s j,d j+i as a secret,
compute |Yj,i| shares

S j,d j+i = {s j,d j+i,i1 , s j,d j+i,i2 , · · · , s j,d j+i,i|Y j,i | },

independently for 1 ≤ i ≤ r j.
(6) Distribute shares to Pi ∈ P (1 ≤ i ≤ n) according to the

function defined as

g′′(Pi) =

⎛⎜⎜⎜⎜⎜⎜⎝
⋃
1≤ j≤m
Pi∈C′j

{s′j,i}
⎞⎟⎟⎟⎟⎟⎟⎠ ∪
⋃

1≤ j≤m

⎧⎪⎪⎪⎨⎪⎪⎪⎩

⎛⎜⎜⎜⎜⎜⎜⎝
⋃

1≤k≤d j
Pi�B j,k∪Q

{s j,k}
⎞⎟⎟⎟⎟⎟⎟⎠ (4)

∪
⎛⎜⎜⎜⎜⎜⎜⎝
⋃

1≤k≤r j
Pi�Y j,k∪Z j,k∪Q

{s j,d j+k}
⎞⎟⎟⎟⎟⎟⎟⎠ (5)

∪
⎛⎜⎜⎜⎜⎜⎜⎝
⋃

1≤k≤r j
Pi∈Y j,k

{s j,d j+k,i}
⎞⎟⎟⎟⎟⎟⎟⎠
⎫⎪⎪⎪⎬⎪⎪⎪⎭. (6)

Example 5: Let Q = {P1, P2}. We shall realize the access struc-
ture of Example 1 by the proposed scheme.
(Γ0 dividing phase)
• Since Q = {P1, P2},A′ is defined by

A′ = {C′1,C′2,C′3}

where

C′1 = {P1, P2},
C′2 = {P2},
C′3 = φ.

• A1,A2 andA3 are defined by

A1 = {{P5, P6}, {P3, P4, P5}, {P3, P4, P6}},
A2 = {{P3, P5, P6}, {P4, P5, P6}},
A3 = {{P3, P4, P5, P6}}.

• For C′1,C
′
2 ∈ A′, compute 2 shares

S ′1 = {w1, w
′
1},

S ′2 = {w2, w
′
2}

by using Shamir’s (2, 2)-threshold scheme with K as a secret
independently. Since C′3 = φ, we set

S ′3 = {w3} and w3 = K.

• For C′1,C
′
2 ∈ A′, compute |C′j| shares

S ′1,1 = {s′1,1, s′1,2},
S ′1,2 = {s′2,2}

by using (|C′j|, |C′j|)-threshold scheme with w′j as a secret in-
dependently for 1 ≤ j ≤ 2.

(Secret sharing phase forA1)
• For {P3, P4, P5, P6}(= P − Q) andA1, Γ̄1,1 is given by

Γ̄1,1 = {{P3, P4}, {P3, P5}, {P4, P5}, {P3, P6}, {P4, P6}}.
• Divide Γ̄1,1 into disjoint subsets

Γ̄
(0)
1,1 = φ,

Γ̄
(1)
1,1 = {{P3, P4}, {P3, P5}, {P3, P6}},
Γ̄

(2)
1,1 = {{P4, P5}, {P4, P6}},

and

Y1,1 = {P4, P5, P6},
Z1,1 = {P3},
e1,1 = 2,

Y1,2 = {P5, P6},
Z1,2 = {P4},
e1,2 = 2.

• Since d1 = 0 and r1 = 2, compute 2 shares

S 1 = {s1,1, s1,2}
for the secret w1 by using Shamir’s (2, 2)-threshold scheme.

• Since r1 > 0, by using Shamir’s (e1,i − |Z1,i| + 1, |Y1,i|)-
threshold scheme with s1,i as a secret, compute S 1,i(1 ≤ i ≤
2) as follows:

S 1,1 = {s1,1,4, s1,1,5, s1,1,6},
S 1,2 = {s1,2,5, s1,2,6}.

(Secret sharing phase forA2)
• Similarly, for {P3, P4, P5, P6} andA2, Γ̄1,2 is given by

Γ̄1,2 = {{P3, P4, P5}, {P3, P4, P6}, {P5, P6}}.
• Divide Γ̄1,2 into disjoint subsets

Γ̄
(0)
1,2 = {{P5, P6}},
Γ̄

(1)
1,2 = {{P3, P4, P5}, {P3, P4, P6}},

and

Y2,1 = {P5, P6},
Z2,1 = {P3, P4},
e2,1 = 3.

• Since d2 = 1 and r2 = 1, compute 2 shares

S 2 = {s2,1, s2,2}
for the secret w2 by using Shamir’s (2, 2)-threshold scheme.

• Since r2 > 0, by using Shamir’s (e2,1 − |Z2,1| + 1, |Y2,1|)-
threshold scheme with s2,2 as a secret, compute S 2,2 as fol-
lows:

S 2,2 = {s2,2,5, s2,2,6}.
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(Secret sharing phase forA3)
• Similarly, for {P3, P4, P5, P6} andA3, Γ̄1,3 is given by

Γ̄1,3= {{P3, P4, P5}, {P3, P4, P6}, {P3, P5, P6}, {P4, P5, P6}}.
• In this case, we set r3 = 0 and Γ̄(0)

1,3 = {B3,1, B3,2, B3,3, B3,4}
where

B3,1 = {{P3, P4, P5}},
B3,2 = {{P3, P4, P6}},
B3,3 = {{P3, P5, P6}},
B3,4 = {{P4, P5, P6}}.

• Since d3 = 4 and r2 = 0, compute 4 shares

S 3 = {s3,1, · · · , s3,4}
for the secret w3 by using Shamir’s (4, 4)-threshold scheme.

• According to the function g′′, distribute shares as follows:

g′′(P1) = {s′1,1},
g′′(P2) = {s′1,2, s′2,2},
g′′(P3) = {s1,2, s2,1, s3,4},
g′′(P4) = {s1,1,4, s2,1, s3,3},
g′′(P5) = {s1,1,5, s1,2,5, s2,2,5, s3,2},
g′′(P6) = {s1,1,6, s1,2,6, s2,2,6, s3,1}.

We can select a subset of participants Q(⊂ P) without restric-
tion. In this example, we select a subset of participants Q =

{P1, P2}. The proposed scheme can reduce the number of shares
distributed to P ∈ Q by dividing Γ0 intoA1,A2,A3 according to
the subsets of Q. Furthermore, in order to reduce the number of
shares distributed to each participant P ∈ P − Q the scheme A of
T08 is applied to divided access structuresA1,A2,A3. Here, we
show some properties of the proposed scheme.

Theorem 1 Let P = {P1, P2, · · · , Pn} be a set of n partici-
pants. For any Q(⊂ P) and any access structure Γ(⊂ 2P), dis-
tribute shares for a secret K by using the proposed scheme. Then,
for any subset X ⊂ P,
(a) X ∈ Γ⇒ H(K|X) = 0,
(b) X � Γ⇒ H(K|X) = H(K).
Proof: Let XS ′1, j denote the shares in S ′1, j assigned to X (1 ≤ j ≤
m). Let XS j be a set of shares in S j which are assigned to X or
can be recovered by X (1 ≤ j ≤ m). At first, we show H(K|X) = 0
for any X ∈ Γ. From the property of the access structure and the
definition ofA1, · · · ,Am andA′, there exists A ∈ Γ0 such that

C′j ∪C ji = A ⊂ X.

Since C ji is an authorized subset forA j, we have

|XS j | = d j + r j

from the definition of S j, S j,d j+1, · · · , S j,d j+r j and Theorem 1 of
T08 [12]. Thus, X can recover w j since s j,1, s j,2, · · · , s j,d j+r j are
shares computed by Shamir’s (d j + r j, d j + r j)-threshold scheme
with w j as a secret. On the other hand, we have

|XS ′1, j | = |C′j|.

If C′j � φ, then X can recover w′j since s′j, j1 , s
′
j, j2
, · · · , s′j, j|C′j | are

shares computed by Shamir’s (|C′j|, |C′j|)-threshold scheme with
w′j as a secret. From the definition of S ′j, we immediately obtain

H(K|X)

= H(K|XS ′1,1 , · · · , XS ′1,m , XS 1 , · · · , XS m )

≤ H(K|XS ′1, j , XS j )

= 0.

Since H(K|X) ≥ 0 is obvious, we have H(K|X) = 0 for any X ∈ Γ.
Next we show H(K|X) = H(K) for any X � Γ. From the prop-

erty of the access structure and the definition of A1, · · · ,Am and
A′, for any A ∈ Γ0, we have

C′j � X or C ji � X (1 ≤ j ≤ m, 1 ≤ i ≤ |A j|).
Thus, from the definition of S j, S j,d j+1, · · · , S j,d j+r j and Theorem
1 of T08, we have

|XS j | < d j + r j or |XS ′1, j | < |C′j|
for 1 ≤ j ≤ m, 1 ≤ i ≤ |A j|. Thus, we have

H(K|XS ′1, j , XS j ) = H(K)

for 1 ≤ j ≤ m, 1 ≤ i ≤ |A j|. This implies

H(XS ′1, j , XS j |K) = H(XS ′1, j , XS j ). (7)

In order to show H(K|X) = H(K), we expand H(K|X) as follows:

H(K|X) = H(K|XS ′1,1 , · · · , XS ′1,m , XS 1 , · · · , XS m )

= H(K) + H(XS ′1,1 , · · · , XS ′1,m , XS 1 , · · · , XS m |K)

−H(XS ′1,1 , · · · , XS ′1,m , XS 1 , · · · , XS m ). (8)

From the chain rule for entropy, we have

H(XS ′1,1 , · · · , XS ′1,m , XS 1 , · · · , XS m |K)

=

m∑
t=1

H(XS ′1,t , XS t |K, XS ′1,1 , · · ·

· · · , XS ′1,t−1
, XS 1 , · · · , XS t−1 )

(∗)
=

m∑
t=1

H(XS ′1,t , XS t |K)

=

m∑
t=1

H(XS ′1,t , XS t ). (9)

Here, (∗) comes from the fact that XS ′1,1 , · · · , XS ′1,m and XS 1 , · · · ,
XS m are mutually independent and the last equality comes from
Eq. (7). On the other hand, we have

H(XS ′1,1 , · · · , XS ′1,m , XS 1 , · · · , XS m )

=

m∑
t=1

H(XS ′1,t , XS t |XS ′1,1 , · · ·

· · · , XS ′1,t−1
, XS 1 , · · · , XS t−1 )

≤
m∑

t=1

H(XS ′1,t , XS t ). (10)

Substituting Eqs. (9) and (10) into Eq. (8), we obtain H(K|X) ≥
H(K). Since H(K|X) ≤ H(K) is obvious, we have H(K|X) =
H(K). �
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4. Evaluation of the Efficiency

The information rates for Pi ∈ P for the access structure of
Example 1 are described in Table 1.

This result shows that the scheme A of T15 and the proposed
scheme can reduce the number of shares distributed to P ∈ Q.
In general, we can improve the information rate when we select
participants who are assigned the most shares. It is noted that we
can select a subset of participants Q without restrictions in the
proposed scheme.

From Eq. (6) and the fact that s j,d j+k or s j,d j+k,i are assigned to
Pi if Pi � Zj,i(1 ≤ j ≤ m, 1 ≤ i ≤ r j), |g′′(P)| is evaluated as
follows:

|g′′(P)| =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑
1≤ j≤m

|{P} ∩C′j| ( P ∈ Q)

∑
1≤ j≤m

{∣∣∣{X ∈ Γ̄(0)
1, j : P � X

}∣∣∣

+
∑

1≤i≤r j

∣∣∣{P} ∩ (P − Zj,i)
∣∣∣
}

( P ∈ P − Q).

(11)

On the other hand, let NT15A (P) be the number of shares dis-
tributed to P ∈ P by using the scheme A of T15. Then, we have

NT15A (P) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∑
1≤ j≤m

|{P} ∩C′j| ( P ∈ Q)

∣∣∣{X ∈ Γ0 : P ∈ X}∣∣∣ ( P ∈ P − Q).
(12)

Equations (11) and (12) show that the efficiencies of the scheme
A of T15 and the proposed scheme are equal for P ∈ Q and the
efficiencies depend on the access structure for P ∈ P − Q.

Here, we show two examples in order to evaluate the efficiency
of the proposed scheme.
Example 6: For P = {P1, P2, P3, P4, P5, P6}, consider the follow-
ing access structure

Γ′0 = {{P1, P3, P4, P5}, {P1, P3, P5, P6}, {P1, P4, P5, P6},
{P3, P4, P5, P6}, {P1, P2, P3}, {P2, P3, P4}, {P1, P2, P5},
{P2, P3, P5}, {P2, P4, P5}, {P1, P2, P6}, {P2, P3, P6},
{P2, P4, P6}, {P2, P5, P6}}.

For this access structure, Γ̄′1 is given by

Γ̄′1 = {{P1, P3, P4, P6}, {P1, P2, P4}, {P1, P3, P5}, {P1, P4, P5},
{P3, P4, P5}, {P1, P5, P6}, {P3, P5, P6}, {P4, P5, P6},
{P2, P3}, {P2, P5}, {P2, P6}}.

We shall realize the access structure Γ′0 by schemes which have
an explicit assignment algorithm for any access structure. The
information rates for Pi ∈ P are described in Table 2.

Table 2 shows that IYO07 and the proposed scheme obtain the
best information rate in this example. It is noted that the proposed
scheme obtains the best information rate even if the efficiency
with respect to Q is discussed. The scheme A of T15 and the
proposed scheme can reduce the number of shares distributed to
P ∈ Q. Of course, the efficiencies depend on the access structure
for P ∈ P − Q.
Example 7: For P = {P1, P2, P3, P4, P5, P6}, consider the follow-
ing access structure

Table 1 Comparison of the information rates for the access structure of Ex-
ample 1.

P1 P2 P3 P4 P5 P6

ISN87 [10] 1/3 1/4 1/4 1/4 1/5 1/5
Scheme A of T08 [12] 1/3 1/3 1/4 1/3 1/2 1/2
BL88 [13] 1/3 1/5 1/4 1/4 1/5 1/5
Scheme A of T15 [17] *1 1 1/2 1/4 1/4 1/5 1/5
Scheme A of T15 [17] *2 1/3 1/5 1/4 1/4 1/2 1/2
Proposed scheme *1 1 1/2 1/3 1/3 1/4 1/4
Proposed scheme *2 1/3 1/3 1/4 1/4 1/2 1/2

Table 2 Comparison of the information rates for the access structure of Ex-
ample 6.

P1 P2 P3 P4 P5 P6

ISN87 [10] 1/6 1/7 1/6 1/6 1/4 1/6
Scheme I of T04 [11] 1/4 1/9 1/5 1/4 1/4 1/5
Scheme A of T08 [12] 1/3 1/3 1/4 1/3 1/3 1/3
BL88 [13] 1/6 1/9 1/7 1/6 1/8 1/7
Scheme I of TUM05 [14] 1/6 1/9 1/7 1/6 1/8 1/7
Method A of T13 [15] 1/6 1/6 1/4 1/4 1/4 1/3
IYO07 [16] 1/2 1/4 1 1/2 1/2 1
Scheme A of T15 [17] *3 1/6 1 1/7 1/6 1/8 1/7
Scheme A of T15 [17] *4 1/2 1/2 1/7 1/6 1/8 1/7
Proposed scheme *3 1/2 1 1/4 1/3 1/3 1/4
Proposed scheme *4 1/2 1/2 1/4 1/3 1/4 1/4

Table 3 Comparison of the information rates for the access structure of Ex-
ample 7.

P1 P2 P3 P4 P5 P6

Linear construction [8] 2/3 2/3 2/3 2/3 2/3 1
Proposed scheme *5 1 1/3 1/2 1/2 1 1

Γ′′0 = {{P1, P2}, {P1, P3}, {P2, P4}, {P3, P4}, {P2, P5}, {P4, P5},
{P5, P6}}.

It is known that the optimal information rate for Γ′′0 is 2/3, which
is obtained when we employ the linear construction. As men-
tioned above, the linear construction obtains the optimal infor-
mation rates for some access structures, but this scheme does not
have explicit share assignment algorithms for many access struc-
tures. The information rates for Pi ∈ P are described in Table 3.

Table 3 shows that the proposed scheme can reduce the num-
ber of shares distributed to P ∈ Q = {P1, P5} though the proposed
scheme cannot obtain the optimal information rate.

5. Conclusion

We have proposed a new secret sharing scheme realizing gen-
eral access structures. Our proposed scheme is perfect and can
reduce the number of shares distributed to specified participants.
Thus, we can select a subset of participants without restrictions
and reduce the number of shares distributed to any participant
who belongs to the selected subset as well as the scheme A of
T15. The scheme A of T15 is based on authorized subsets. On
the other hand, our proposed scheme is based on unauthorized
subsets.
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