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Abstract: An array database is effective for managing a massive amount of sensor data, and the window aggregate
is a popular operator. We propose an efficient window aggregate method over multi-dimensional array data based on
incremental computation. We improve five types of aggregates by exploiting different data structures: list for sum-
mation and average, heap for maximum and minimum, and balanced binary search tree for percentile. We design and
fully implement the proposed method in SciDB using the plugin mechanism. In addition, we evaluate the performance
through experiments using the synthetic and JRA-55 meteorological datasets. The results of our experiments on SciDB
are consistent with our analytic findings. The proposed method achieves a 17.9x, 12.5x, and 10.2x performance im-
provement for minimum, summation, and percentile operators, respectively, compared with SciDB built-in operators.
These results align with our time-complexity analysis results.
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1. Introduction

Ubiquitous computing provides a dizzying array of data on our
health movements, and changes in the environment [38]. The
number of micro-sensing devices for the Internet of Things in
daily life has been rapidly increasing [33]. The sizes of advanced
sensing devices for scientific discovery, such as telescopes [32]
and those used in experimental physics [31], are increasing. Sens-
ing systems must continually collect and analyze these devices.
These sensing data inherently include spatio-temporal attributes,
which are naturally represented as multi-dimensional arrays. For
example, meteorological data such as the JRA-55 [14] are repre-
sented as two-dimensional (2D) arrays with X and Y coordinates.

To manage such arrays, adoption of the relational data model
remains difficult. In theory, the relational database can store
multi-dimensional arrays with n-ary relations. However, it in-
curs a high cost in computation time for analytical tasks and
in data management on account of impedance mismatching [5].
To efficiently store and analyze such multi-dimensional data,
array database systems, such as SciDB [1], [2], [3], [4], [5],
SciQL [6], [7], [8], and RasDaMan [9], have been studied. These
systems adopt an array model as the basic data model to over-
come the impedance mismatch problem. Array database systems
have been adopted in some scientific applications that process
multi-dimensional arrays, such as in cosmology and experimental
physics [19], [36].

An important class of queries in the array database is the win-
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Fig. 1 Window aggregate by Query 1.

dow aggregate. It executes aggregate operators over a sliding
window. Here, a window is more like a sub-array of the origi-
nal array; its sizes in each dimension are specified by users. The
window starts at the first grid of the array and moves in stride-
major order from the lowest to highest value in each dimension.
An example of a window aggregate query is shown in Query 1.
The notation is based on SciDB [1], [2], [3], [4], [5]. This query
computes the maximum aggregate with a sliding window over a
2D array. Figure 1 depicts the way in which the query is pro-
cessed in SciDB. The window size is set as 2 × 3. In the figure,
the original array is shown on the left; the array on the right is
the result. The dotted lines in the original array illustrate how the
window moves. Each cell in the result array contains the result
of the maximum computation for its corresponding window. The
two result cells and their corresponding windows are respectively
marked with different shades of grey. When the window size is
increased, the execution time rapidly increases.

In this paper, we address the acceleration of window aggregates
on array database systems. The contributions of this paper are
twofold. First, we propose efficient algorithms for five types of
window aggregates: maximum, minimum, summation, average,
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and percentile. Second, we elucidate the scheme to effectively
design and implement the proposed algorithms on SciDB, which
is a typical array database system.

For the algorithm proposal, we exploit different data structures
according to different operators to implement the scheme. For
summation and average, we apply the list to maintain the inter-
mediate results. For the minimum and maximum, the problem
becomes more complex. We therefore apply the heap instead of
the list to maintain the intermediate results. For the most com-
plicated operator, the percentile, we apply the balanced binary
search tree [15], [25]. In addition, for each window aggregate op-
erator, we analyze the time complexities of our proposed method
and the method implemented in SciDB.

For the second contribution, we exploit the plugin mechanism
in SciDB for effective design and implementation of the pro-
posed method. We show that the implementation of our method
in SciDB demonstrates higher efficiency performance compared
with the built-in operators in SciDB. All of our code described in
this paper is available on GitHub [17], [18]; thus, all SciDB users
can employ it.

Some database studies are related to our work. Examples in-
clude temporal aggregates of interval data [10], [11], sliding win-
dow aggregates of stream data [20], [22], and efficient window
aggregate computation by reducing I/O cost [12]. The underly-
ing data structures in these studies differ from those of our work.
Moreover, some graphic processing studies relate to our work,
including those using diamond, hexagon, and polygonal shaped
window aggregates [26], [27], a convolution filter [28], and prob-
lems at programming contests [29], [30]. Such data processing
over complex shapes is not yet supported by all conventional ar-
ray databases, including SciDB. Therefore, they are beyond the
scope of this paper. Finally, this paper is the extension of our
report in a conference [21], and this paper has a substantial dif-
ference in experiments, design details, and related work from the
previous work.

The remainder of this paper is organized as follows. Section 2
describes the background. Section 3 outlines our proposed meth-
ods. Section 4 presents our time complexity analysis. Section 5
details our design and implementation. Section 6 describes our
evaluation. Section 7 discusses related work, and our conclusions
are provided in Section 8.

2. Background

2.1 Array Database System
To efficiently store and analyze multi-dimensional sensor data,

array database systems have been adopted in a variety of sens-
ing systems, including those in cosmology, geo-informatics, and
experimental physics [19], [36]. Array databases implement an
array model as their basic data model. Array data can be ex-
pressed by a relational model; however, the expression is not
intuitive. To overcome the impedance mismatch problem in-
curred by the relational model [5], array database systems, such
as SciDB [1], [2], [3], [4], [5], SciQL [6], [7], [8], and Ras-
DaMan [9], have been studied.

Among these systems, the most advanced array database sys-
tem is SciDB [1], [2], [3], [4], [5]. SciDB is open source software

Fig. 2 Comparison of adjacent windows.

and has been actively developed [36]. It provides all of the above
operators as well as a parallel query processing feature on a clus-
ter system for high performance. Array data are divided into a
small portion of a subset, referred to as a chunk, to deal with
a large size of data that do not fit in physical memory. During
query processing, only the necessary chunks are read from stor-
age, which effectively avoids memory overflow.

Similar to a relational database system, an array database sys-
tem, such as SciDB, provides built-in operators and a query pro-
cessor to enable users to intuitively issue SQL-like queries for
processing arrays. An issued query is translated into a processing
plan composed of operators. Then, through a processing plan, the
result of the query is returned to the user. The difference between
relational operators and array operators are the input and output.
Relational ones deal with relational data, whereas array ones han-
dle array data. Thus, the relational database is closed in relations,
whereas the array database is closed in arrays and is deemed array
complete.

2.2 Naive Window Aggregate Method
The window aggregate function over multi-dimensional data is

a popular operation that is often used in the field of meteorol-
ogy [16], [34], [37] and other fields. An example of a window
aggregate is shown in Query 1 and Fig. 1.

To process a window aggregate over multi-dimensional array
data, SciDB handles each window independently. SciDB scans
each window, accumulates the values of all cells in each window,
and calculates the aggregate result. We refer to this method as a
‘naive method.’ The naive method can involve a weakness in per-
formance. During computation, redundant steps may exist that
waste computational resources. If we observe the windows in a
query, it is possible to find that two neighboring windows share
a large portion of the same area. We show the scenario in Fig. 2
with a 2D array case.

2.3 Challenge
The naive method ignores this feature of adjacent windows and

separately computes each window. If one somehow reuses the
processed data in previous windows to compute the aggregate
in the current window, aggregate processing would be more ef-
ficient.

The approach to reusing intermediate data is not obvious for
two reasons. First, a variety of operators exist because the
window aggregation includes different types of specific opera-
tors: maximum, minimum, summation, average, and percentile.
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Different algorithms and data structures for different operators
should be applied; however, such algorithms and structures are
not obvious. The second reason involves the implementation to
SciDB. Although SciDB is the most advanced array database sys-
tem, the method of implementing user-defined operators is not
widely known. A straightforward method of implementing the
new operator with high efficiency is to add a new built-in oper-
ator in SciDB. This would require am immense effort for both
implementation and maintenance.

In this paper, we address the two above problems. We first de-
velop efficient algorithms for window aggregate operators. Then,
we present their effective implementation methods for SciDB.

3. Proposed Method

3.1 Incremental Computation Scheme
To exploit the feature of adjacent windows, we adopt an incre-

mental computation scheme [23]. The central idea is to maintain
the intermediate aggregate results of the current area and reuse
them when computing the next area by eliminating redundant
computations.

We improve the five types of the aggregate operators of the
window aggregate queries. They are summation, average, mini-
mum, maximum and percentile. For different operators, different
data structures are used to efficiently maintain and reuse the inter-
mediate results. Additional algorithm details about each operator
are described in Section 3.

In general, the process of incremental computation for a win-
dow aggregate is divided into two major stages. The first stage is
to move the basic window in the first N − 1 dimensions. Here,
a basic window is the starting point of the window movement
in an incremental computation round, as shown in Fig. 3. Af-
ter a new basic window is reached, the second stage begins. It
moves the window along with the last dimension and incremen-
tally computes the aggregate results for each window. After all
windows derived from the basic window are processed, the given
computation round is completed. Then, we must return to the first
stage. We transition to a new basic window. The two stages are
repeated until all the computation rounds of the basic windows
are processed. At this point, the whole window aggregate query
is completed.

We introduce step-by-step details on how the incremental com-
putation methods perform window aggregating using five aggre-
gate operators: summation, average, minimum, maximum, and
percentile. For different aggregate operators, we select appropri-

Fig. 3 Compute round in incremental computation.

ate data structures to respectively maintain intermediate results.
Accordingly, we can reuse them and efficiently compute the win-
dows. For summation and average, we exploit the buffer list; for
minimum and maximum, we exploit the heap; and for the per-
centile, we exploit the balanced binary search tree. To more ex-
plicitly yet simply describe the items in the remainder of the pa-
per, we use ‘SUM’ for summation, ‘AVG’ for average, ‘MIN’ for
minimum, ‘MAX’ for maximum, and ‘PCTL’ for percentile.

3.2 Summation and Average
The calculation details of SUM and AVG aggregate operators

are almost the same. This is because the AVG value of a window
is computed by dividing the SUM by the size of the calculating
window. Therefore, we together consider these two aggregate op-
erators.

The main goal is to reuse the SUM values already computed
in previous windows. Here, we propose adoption of a list struc-
ture to store intermediate results previously computed. We refer
to this list to as ‘SUM-list.’ This list contains the SUM values
of every window unit that belongs to the current window. When
transitioning to the next window, only one new window unit must
be computed; the other window units are already computed and
can be directly obtained from SUM-list. Following is an example
that demonstrates the operation of the proposed method with a
small 2D array. The querying window size is set to 3 × 3.

Step 1: Generate a basic window and scan each window unit of
it. Compute the SUM values of these window units and initialize
SUM-list. Figure 4 shows the details.

Step 2: Move the window along with the last dimension, which
is dimension Y in Fig. 5. Step on one window unit; then, a new
derivative window is generated. Scan the new window unit, cal-
culate its summation, and update SUM-list by replacing the value
of the oldest window unit. Figure 5 illustrates this process. After
the update, the total SUM of the values in SUM-list is exactly the
aggregate summation of the current window.

Step 3: Proceed forward, and calculate the aggregate value of
all the windows derived from the basic window in Step 1.

Step 4: Continue to move the basic window down to obtain
new basic windows. For each basic window, repeat Steps 1 to 3,
which is a compute round. After finishing the compute rounds of

Fig. 4 Initialize basic window and SUM-list.

Fig. 5 Process a new unit and update SUM-list.
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all the basic windows, the window aggregate query is completed.
For the arrays with more than two dimensions, the process of

incremental computation is the same. It uses SUM-list to main-
tain SUMs of window units in the previously calculated window.
Then, there is no need to compute most of the window units in
the current window because aggregate SUM is directly obtained
from SUM-list. Only the new window unit must be scanned.

3.3 Minimum and Maximum
For MAX and MIN, the incremental computation becomes

more complex compared with SUM/AVG. If we adopt a buffer
sequence such as SUM-list, which is used in SUM/AVG opera-
tors, we must still scan this buffer list to obtain the MIN/MAX
value of the current window. The scan execution is costly when
the queried window size is large.

To solve this problem, we propose application of the heap data
structure instead of the list to maintain the MAX/MIN values of
the current window. Adopting the heap saves time in calculating
the MIN/MAX values. In the explanation below, we describe the
MIN function as an example. The window size of the query is set
as 3 × 4.

Step 1: Generate a basic window. Scan the window units in
the basic window and compute the MIN value of each window
unit. Insert them into a heap for MIN. For example, in Fig. 6, the
MIN value of each window unit is marked in bold. They are 3, 6,
15, and 7, respectively.

Step 2: Move the window along with the last dimension (di-
mension Y). Step on one window unit and obtain a new window.
Scan the new window unit and calculate its MIN value. Then,
insert the value into the heap. Figure 7 details this step.

Step 3: Check the heap root and remove it if its corresponding
window unit is no longer present in the current window. Repeat
the procedure until a window unit corresponding to the root node
is within the current window. Then, the value of the root node is
exactly the MIN value of the current window.

Step 4: Continue to proceed forward, and calculate the MIN
of all the windows derived from the basic window in Step 1.

Step 5: Continue moving the basic window down to obtain
new basic windows. For each basic window, repeat Steps 1 to 4,

Fig. 6 Initialize the basic window and MIN-heap.

Fig. 7 Process a new unit and update MIN-heap.

which is a compute round. After finishing all compute rounds of
the basic windows, the whole window aggregate query is com-
pleted.

For the window aggregate of MIN/MAX, the core scheme of
the incremental computation remains the same as SUM/AVG.
However, the adoption of the heap data structure instead of the
list speeds up the process of reusing the buffered intermediate ag-
gregate results.

3.4 Percentile
3.4.1 Operation Overview

PCTL is an important operator for data analysis in both sci-
ence [16] and business, such as Facebook [24]. The comput-
ing method is explained in the following. For the P-th PCTL
(0 ≤ P ≤ 100) of N elements, it first computes an ordinal rank n

as:

n =
P

100
× N +

1
2

3.4.2 Incremental Computation Process
For PCTL, we propose application of the self-balancing bi-

nary search tree (SBST) [15], [25], which we hereafter express
as ‘PCTL-SBST.’ We take advantage of the close relationship be-
tween adjacent windows by reusing many processed data in the
previous window. All the redundant expensive sorting works are
eliminated, which leads to high efficiency.

The processing steps of the incremental window aggregate for
PCTL are similar to the aggregate operators presented in the
overview above. We handle the computation process in two
stages. The first stage generates basic windows from the first
n − 1 dimensions. Then, for each basic window, we process the
second stage. This moves the window forward along with the last
dimension and incrementally calculates the PCTL value for each
window.

Here, we detail the steps of the incremental computation
method with an example. The array is two dimensions and the
window size of the query is set to 2 × 3.

Step 1: Generate a basic window, initialize an SBST, and in-
sert all the values of the basic window into the SBST. Figure 8
shows this process. The result of a selection operator that com-
putes the n-th smallest key in the SBST is the PCTL value for the
basic window.

Step 2: Move the window forward along with the last dimen-
sion. Insert the newly arriving elements into SBST. Delete old
elements that are no longer present in the current window. Af-
ter all the updates, the elements inside SBST become exactly the
elements of the current window. This is shown in Fig. 9.

Step 3: Continue moving forward. Repeat Step 2 to compute
the aggregate PCTL values of all the windows derived from the

Fig. 8 Basic window and initializing PCTL-SBST.
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Fig. 9 Update of PCTL-SBST.

basic window.
Step 4: Proceed to a new basic window. Repeat the Steps 1 to

3, which is a compute round. After finishing the compute rounds
for all the basic windows, the PCTL window aggregate is com-
pleted.

4. Analysis

In this section, we analyze the time complexities for all the ag-
gregate operators thus far discussed with both the naive method
and proposed method. In addition, we theoretically verify the im-
provement enabled by the proposed method. Before the analysis,
some parameters in the window aggregate must be defined to elu-
cidate and simplify the description. In a general n-dimensional
case, we define the dimension sizes as D1×D2× . . .×Dn, and the
window sizes as w1 × w2 × . . .× wn. Here, Di represents the array
size in the i-th dimension, and wi represents the window size in
the i-th dimension, respectively.

4.1 Naive Method
4.1.1 Sum/Avg/Max/Min

We consider these four aggregate operators together in the
same context owing to the necessity of simply scanning all the
cells in a window for these operators for the naive method. First,
we consider the total number of windows. Each cell in an array
has a corresponding window. Therefore, the total number of win-
dows to be computed is the same as the total number of cells in an
array. It becomes

∏n
i=1 Di in the n-dimensional array case. Then,

we consider the scan operation for each window. In each win-
dow, there are

∏n
i=1 wi cells to be scanned. Therefore, the total

time complexity of the naive method for SUM/AVG/MIN/MAX
is as follows:

O

⎛⎜⎜⎜⎜⎜⎝
n∏

i=1

Di

n∏

i=1

wi

⎞⎟⎟⎟⎟⎟⎠ (1)

4.1.2 PCTL
The quicksort-based method for PCTL is herein handled as the

naive method for its high computational cost. It separately com-
putes each window. For each window, an execution of quicksort
is needed instead of a simple scan. As analyzed above, the to-
tal number of windows to be computed is

∏n
i=1 Di. Then, we

consider the quicksort part. For each window, an execution of
quicksort must be processed. It sorts all the elements in the win-
dow. It is known that sorting N elements with quicksort costs
O(N log N) on average. Because there are

∏n
i=1 wi cells in a win-

dow, the time complexity for computing one window becomes
O
(∏n

i=1 wi log
∏n

i=1 wi

)
. From the analysis above, the total time

complexity for the quicksort method becomes:

O

⎛⎜⎜⎜⎜⎜⎝
n∏

i=1

Di

n∏

i=1

wi log
n∏

i=1

wi

⎞⎟⎟⎟⎟⎟⎠ (2)

4.2 Proposed Method
We now analyze the time complexity of incremental computa-

tion methods. Different data structures are used to maintain the
intermediate values. Therefore, the analyses are separately de-
scribed.
4.2.1 Summation and Average

First, we consider the number of basic windows. Basic win-
dows are determined by the first n − 1 dimensions. Therefore,
the total number of basic windows is

∏n−1
i=1 Di. In each compute

round of the basic window, the windows derived by Dn are to be
computed because the moving process is along with the last di-
mension. For each derivative window, the new window unit to be
scanned has

∏n−1
i=1 wi cells. Therefore, the time complexity is:

O

⎛⎜⎜⎜⎜⎜⎜⎝
n∏

i=1

Di

n−1∏

i=1

wi

⎞⎟⎟⎟⎟⎟⎟⎠ (3)

Compared to the complexity of the naive method shown in
Eq. (1), the proposed method reduces multiply factor wn in the
time complexity. wn denotes the window size in the last dimen-
sion of an array. In theory, this means that the proposed method
obtains a speedup factor proportional to wn compared with the
naive method.

From the expression above, we additionally identify a notable
feature of the proposed method. Specifically, the time complexity
of the proposed method for window SUM/AVG aggregates has no
relationship with window size wn. This means that, no matter how
large the window is on the last dimension, it does not affect the
efficiency of the proposed method. A similar feature also exists
in MIN, MAX, and PCTL operators, as shown below.
4.2.2 Maximum and Minimum

We now analyze the MAX/MIN operators of the proposed
method. In addition to the operation of the window unit scan,
the part of the heap operators must also be considered. We an-
alyze the time complexity in two aspects. The first aspect is the
MIN/MAX calculation of the window units; the second aspect in-
volves operations in the heap. The calculation of window units is
similar to SUM/AVG. The number of cells that must be scanned
is the same. Therefore, the time complexity of this part is:

O

⎛⎜⎜⎜⎜⎜⎜⎝
n∏

i=1

Di

n−1∏

i=1

wi

⎞⎟⎟⎟⎟⎟⎟⎠ (4)

We consider the heap operations part. The heap is a well-
known data structure. To insert a new node, it costs O

(
log L

)
. To

delete the root node and maintain the remaining nodes, it costs
O(log L). L represents the number of nodes in the heap.

In terms of analysis of the window query, there are
∏n−1

i=1 Di

basic windows. For each basic window, a total Dn MIN/MAX
values of window units must be inserted into the heap. Among
these values, at most Dn−wn ones are deleted from the heap dur-
ing the incremental computation process. Therefore, we take the
size of the heap as Dn, and the number of insertions and deletion
operations can also be approximated as Dn. Therefore, the time
complexity of the heap part becomes:
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O

⎛⎜⎜⎜⎜⎜⎜⎝
n−1∏

i=1

DiDn
(
log Dn + log Dn

)
⎞⎟⎟⎟⎟⎟⎟⎠ = O

⎛⎜⎜⎜⎜⎜⎝
n∏

i=1

Di log Dn

⎞⎟⎟⎟⎟⎟⎠ (5)

Adding these two parts for the window aggregates of
MAX/MIN in Expressions (4) and (5), the time complexity of
the proposed method is:

O

⎛⎜⎜⎜⎜⎜⎜⎝
n∏

i=1

Di

⎛⎜⎜⎜⎜⎜⎜⎝
n−1∏

i=1

wi + log Dn

⎞⎟⎟⎟⎟⎟⎟⎠

⎞⎟⎟⎟⎟⎟⎟⎠ (6)

In this expression, the item log Dn is much smaller than∏n−1
i=1 wi in most cases. Therefore, the time complexity of

MAX/MIN is only slightly larger than SUM/AVG. Similar to
the SUM/AVG case, the time complexity is unrelated to the size
of the last dimension in the queried window, which is wn.
4.2.3 PCTL

We first consider a 2D array case with dimension sizes of X×Y .
The window size is set as a × b. In this case, a total of X basic
windows exist. According to the process introduced in Section
3.3, in each compute round for a basic window, we must move
on the second dimension (with size Y) to obtain new windows
and process the incremental computation. Therefore, each basic
window has Y derivative windows to be calculated.

Here we explain more details on how to compute the selec-
tion in self-balancing BST efficiently. As introduced above, in
order to obtain the percentile value, it is necessary to find the n-th
smallest key in the BST. However, standard BST only supports
searching on specified keys. Our solution is to maintain the rank
of each node. For each node, an extra value representing the size
of the subtree with the node as a root is maintained, referred to
as S. This value is maintained during any operation of BST with
only cost O(1), simply adding up the S values of left subtree, right
subtree and one as the node itself. Considering a node, its rank in
the tree is easy to compute, equals to its left child’s S value plus
1. Because the node is larger than any nodes from its left subtree
and smaller than any nodes from its right subtree, which is the
nature of BST. Therefore, with S values maintained, the rank of
each node is clear, and the selection can be achieved in a similar
way as how normal key-search operation of BST does. The only
difference is that we search for a specific rank instead of search-
ing a specific key. The complexity is also the height of the tree,
which is log N in a self-balancing BST with N nodes.

When calculating each derivative window, elements in one old
window unit must be deleted from SBST, and elements in the new

Fig. 10 Details of window in a one-step move. 2D array with size X × Y
and window size of a × b.

window unit must be inserted. In this specific 2D case, a window
unit contains a cells, as shown in Fig. 10. Then, one selection is
executed to obtain the PCTL result of the current window. Mean-
while, the SBST always maintains exactly all the elements of the
current window. The size of SBST is a × b. Therefore, every
single operation in the SBST costs log ab.

From the analysis above, for each movement step, we obtain
the time complexity by adding the costs for the insertions, dele-
tions, and selections; i.e., O(a log ab + a log ab + log ab). It can
be simplified as O(a log ab). Therefore, the total time complexity
of the 2D case is O(XYa log ab). With the same definition of di-
mension and window sizes in the 2D case, the complexity of the
quicksort method is O(XYab log ab). It is obvious that our pro-
posed method has a speedup by a factor of b compared with the
quicksort method.

For an n-dimensional array, the analysis is similar. First, we
consider the number of basic windows, which is

∏n−1
i=1 Di. This

is the same as other aggregate operators. Then, we consider each
basic window. In the compute round based on one basic win-
dow, the window moves along with the last dimension. There-
fore, Dn moving steps exist, and Dn derivative windows must be
computed.

For each derivative window, the number of new cells to be in-
serted into SBST is

∏n−1
i=1 wi. The same number of cells is to be

removed. Then, one selection is executed to obtain the PCTL re-
sult. When executing all of these SBST operations, the size of the
tree is the same as the total size of the windows, which is

∏n
i=1 wi.

Therefore, each single operation of SBST costs log (
∏n

i=1 wi).
There are

∏n−1
i=1 wi times of insertions,

∏n−1
i=1 wi times of deletions,

and one time of selection. All these operations in SBST must be
executed in each window. To summarize them, the complexity of
the proposed method for one window is:

O

⎛⎜⎜⎜⎜⎜⎜⎝

⎛⎜⎜⎜⎜⎜⎜⎝
n−1∏

i=1

wi +

n−1∏

i=1

wi + 1

⎞⎟⎟⎟⎟⎟⎟⎠ log
n∏

i=1

wi

⎞⎟⎟⎟⎟⎟⎟⎠ (7)

It can be simplified as:

O

⎛⎜⎜⎜⎜⎜⎜⎝
n−1∏

i=1

wi log
n∏

i=1

wi

⎞⎟⎟⎟⎟⎟⎟⎠ (8)

As analyzed above,
∏n−1

i=1 Di basic windows exist. For each ba-
sic window, Dn windows are to be computed. In total, the time
complexity for our proposed method becomes:

O

⎛⎜⎜⎜⎜⎜⎜⎝
n∏

i=1

Di

n−1∏

i=1

wi log
n∏

i=1

wi

⎞⎟⎟⎟⎟⎟⎟⎠ (9)

Comparing Eqs. (9) and (2), the latter of which expresses the
complexity of the quicksort method, the proposed method obtains
a speedup by a factor of wn in time complexity. This means that,
in theory, the proposed method obtains a speedup factor propor-
tional to wn compared with the quicksort method.

5. Design and Implementation

5.1 Plugin Mechanism
To evaluate the performances of the proposed method and

naive method, we implement the proposed method on SciDB. A
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straightforward method to implement the new operator with high
efficiency is to add a new built-in operator into SciDB. This re-
quires an immense effort for both the implementation and main-
tenance.

To avoid the overhead, we employ the plugin mechanism sup-
ported by SciDB. It supports implementation of a user-defined
operator (UDO). Users can implement their own operators that
realize any data processing using the C++ language through
the plugin mechanisms. The implemented plug-in operators are
stored in the SciDB library system. Then, the implemented plu-
gin operators can be loaded in the SciDB library system. Interest-
ingly, following this mechanism, once the plugin library is loaded
into the system, the operator can perform in the similar way to the
built-in operators in SciDB for data accessing, processing, and
operator-result fetching. Therefore, the use of the plugin does not
sacrifice performance and provides excellent maintainability.

For implementing a UDO with the plugin mechanism, two
types of program files are necessary. They can be denoted as
‘Logical MyOperator.cpp’ and ‘Physical MyOperator.cpp.’ In
the file name, ‘MyOperator’ stands for the name of the new oper-
ator. The ‘Logical’ file is a sort of metadata that merely describes
the input and output of array schemas of the new operator. The
‘Physical’ file is the body, which describes data processing de-
tails that generate the result of the operator. Moreover, ‘plugin.h’
should be included when building the UDO to notify SciDB that
the code is UDO.

A large array in SciDB at times does not fit into physical mem-
ory. In SciDB, such a large array is divided into small chunks and
distributed within a cluster. A chunk is a sub-array whose data
can fit in memory. Operators can be efficiently executed chunk
by chunk without extra disk I/O. Computing the result while it-
erating the chunks in the resulting array is the most important
part of the implementation. The function is referred to as ‘calcu-
lateNextValue().’ When the resulting array of the window aggre-
gate iterates into a new cell, SciDB calculates the value for the
cell using this function. We show the implementation in the form
of pseudo-code in Section 5.2.

5.2 Pseudocode
To clarify the details of our implementation, we show pseu-

docode of ‘calculateNextValue()’ for both the naive and proposed
methods. All of the actual code is available in GitHub [17], [18].

Pseudocode 1 describes the UDO implementation of the naive
method. Each time the resulting array iterates to a new cell, the
function ‘calculateNextValue()’ shown in psudocode 1 is invoked
to compute the aggregate value of the window corresponding to
the cell (lines 5–6). The ‘aggregator’ is a class that computes
the aggregate value of a set of data. It supports ‘insert,’ which
can feed one new element into the set, and ‘accumulate,’ which
can return the aggregate result of the current dataset, including all
elements inserted so far.

In addition, ‘ inputChunk’ is a built-in class provided by
SciDB. It manages the chunks that are processed by an opera-
tor. The chunk data required for data processing are automati-
cally fetched into the memory if they are in storage. Therefore,
users are not required to explicitly focus on storage access with

the class. It supports the ‘accessData’ method to obtain the data
of one cell based on its multi-dimensional coordinates. When the
resulting array iterates into a new cell, the scope of the window
area centered on this cell is computed first. Then, all of the cells
inside this window scope are scanned and inserted into an aggre-
gator. They are finally accumulated into the aggregate result of
the current window.

Pseudocode 2 describes the UDO for proposed method. In the
code, ‘bufTool’ is our own class. The bufTool provides a simple
abstraction for different aggregate operators. Different data struc-
tures are selected to efficiently reuse the intermediate results of
previous windows. To simplify the code, the data manipulation
methods are unified through bufTool. The bufTool class supports
the ‘insert’ method, which inserts the aggregate result of the new
window unit, and the ‘remove’ method, which removes the ag-
gregate result of the oldest window unit that logically no longer
exists in the current window. In the proposed method, when the
resulting array iterates into a new cell, only one window unit is
needed to be scanned, whereas the whole window scan is needed
for the naive method. A window unit is one slice of the window
when the position of the last dimension fixed. The first n − 1
dimension positions vary in the scope of the window, which is
shown as ‘firstWinPos, lastWinPos’ in the pseudocode.

Pseudocode 3 describes ‘calcWindowUnit,’ which is invoked
from ‘bulTool.insert.’

6. Experiment

6.1 Environment
To evaluate the performances of the proposed method and

naive method, we implemented all five aggregate operators herein
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Fig. 11 Query execution time for array ‘arr1D’ (incremental computation =
IC).

Fig. 12 Query execution time for array ‘arr2D’ (incremental computation =
IC stands).

introduced into SciDB. In addition, we implemented the quick-
sort method for PCTL because the window aggregate of PCTL
is not supported by SciDB. For the implementation, we em-
ployed the C++ language; approximately 2,300 lines; and SciDB
version 13.12. All source code of our implementation is avail-
able on GitHub [17], [18]. From the code, only plugin files were
built. SciDB supports a plugin mechanism that allows users to
implement their own operators. The operator must be loaded
into SciDB as a plugin. Regarding the machine environment, we
set the configuration parameters as follows: CentOS 6.5 operat-
ing system; Intel(R) Xeon(R) E5620 2.40-GHz CPU; and a main
memory size of 24 GB.

6.2 Max/Min and Sum/Avg
6.2.1 Micro benchmark with Synthetic Workload

For MAX, MIN, SUM and AVG, three series of experiments
were conducted with different dimensional settings. We synthet-
ically generated three arrays—‘arr1D,’ ‘arr2D,’ and ‘arr3D’—
with different dimensional numbers, as named. They each con-
tained one attribute named ‘val.’ The value was randomly gener-
ated with a range of [0, 1,000,000]. For each array, we designed
the query parameters with window sizes in each dimension lin-
early increasing to investigate how window size affects the query
execution time.

The results are shown in Figs. 11, 12, 13. In the figures,
‘opt naive’ represents the naive implementation of operators in
SciDB, which can be SUM/AVG/MIN/MAX. ‘opt IC’ stands for
our proposed method.

Fig. 13 Query execution time for array ‘arr3D’ (incremental computation =
IC).

Figure 11 shows the results of a one-dimensional (1D) case.
The array ‘arr1D’ has a size of 1,000,000, and the window size of
the query increases from 100 to 2,500. The result shows improve-
ment in execution time of the proposed method, especially when
the window size is large. The highest two lines are naive MIN
and naive MAX, followed by the SUM and naive AVG. The low-
est four lines represent the proposed methods for these operators.
Because the execution times of proposed methods are almost the
same, and they are much smaller than that of the naive ones, these
four lines almost overlap into a single one. The maximum perfor-
mance improvement is by a factor of 17.9 with a window size of
2,500 for the MIN operator and 12.5 for the SUM operator.

Figure 12 shows the result of the 2D case. The array ‘arr2D’
has a size of 500 × 500, and the window size of the query is in-
creased in both dimensions. Similar to the 1D case, the highest
two lines are naive MIN and naive MAX, followed by naive SUM
and naive AVG. The lowest four lines represent the proposed
methods for these operators. Again, the results clearly show the
improvement of the proposed methods.

Figure 13 shows the results of the experiment for the 3D case.
The ‘arr3D’ has a size of 60 × 60 × 60, and the window sizes
in each dimension linearly increase. The top four lines repre-
sent naive methods; the bottom four lines represent the proposed
method. When the processing window aggregated the query with
the proposed method, the workload was almost the same and the
execution costs had similar running times regardless of the de-
tailed operator. Therefore, the four lines of the proposed methods
almost overlap into a single line in the figures.

From the result, another feature of the proposed method is evi-
dent. Specifically, the execution time of the method is not related
with the window size in the last dimension. This result is consis-
tent with the time complexity analysis presented in Section 4.2.
In the time complexity expression of the incremental computation
method, wn does not exist, as shown in Eqs. (3) and (6). There-
fore, wn would not affect the execution time. In Fig. 11, regardless
of the extent to which w1 increases, the execution time of the pro-
posed method remains almost the same. In Fig. 12, the execution
time of the proposed method shows linear growth according to w1

instead of quadratic growth as w1×w2. The same feature is found
in Fig. 13, which shows the 3D case. From the results, it is again
evident that our time complexity analysis is consistent with the
experimental results.
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6.3 PCTL
6.3.1 Benchmark with JRA-55 dataset

To compare the efficiency of the naive method and our pro-
posed method for the PCTL operator, we designed two series
of experiment cases with different parameter settings. One was
aligned to a real analysis situation; the other one was a synthetic
situation. In both cases, we used a real dataset, JRA-55.
6.3.1.1 JRA-55 Dataset

The JRA-55 [14] dataset (named for the Japanese 55-Year Re-
analysis) dates from January 1, 1958 to December 31, 2012. This
55-year range coincides with the establishment of the global Ra-
diosonde Observing System. It covers a global area and supports
a regular latitude–longitude Gaussian grid (145 latitude by 288
longitude, nominally 1.25 degrees), and daily six-hour data [13].
The data have three dimensions—longitude, latitude, and time—
and are managed by array databases, which makes them an ap-
propriate choice for evaluating the performance of our proposed
method.

In the experiment, the selected data attributes and query pa-
rameter settings were applied to real meteorological applications
that require computing PCTL followed by meteorological re-
search [16]. For the experiment, we loaded surface temperature
data of JRA-55 for 20 years into SciDB. The size of the sur-
face temperature data for one year was approximately 4 GB; for
20 years, it was a total of 80 GB. When loading the data, we
converted the JRA-55 files from GRIB2 format to CSV format
because SciDB-13.12 does not provide a mechanism to load the
former format, whereas CSV is provided.
6.3.1.2 Evaluation with a Real Workload

The first evaluation series was over an array containing surface
temperature data from 2012 in the JRA-55 dataset. The evalu-
ated queries are required by meteorologists in real analyses [16].
The array was 3D with a size of 288 × 145 × 366 respectively
corresponding with longitude, latitude, and time. The first two
dimensions specified the location of the area on the earth, while
the last dimension specified the temporal nature. In each cell, the
main attribute was the surface temperature at 12:00 on the given
day in the JST timezone.

The window aggregate query herein evaluated was required by
our cooperating meteorologists [16]. They had to calculate the
PCTL values over sliding temporal windows. More specifically,
the request needed to calculate PCTL of temperature data in 30-
day increments. Meanwhile, on the spatial aspect, they did not
require any overlapping windows, and computation was required
only over single spatial cells. The situation is shown in Fig. 14.

When designing the window parameters of this application, we
set the window size of the first two dimensions as 1 × 1, and
we increased only the window size in the temporal dimension.
The used attribute was the surface temperature at noon and three
PCTL percentages were evaluated. They were 25%, 50%, and
75%.

The results are shown in Fig. 15. As explained above, for both
methods, different lines with different percentage settings almost
overlap in a single line. For both the naive sorting method and
the proposed method, different values of percentages would not
change the workload of the algorithm; moreover, the execution

Fig. 14 Window query in a real meteorological application computing
PCTL in a 30-day window.

Fig. 15 Query execution time with window size (incremental
computation = IC).

times were the same when only changing the PCTL percentage
maintained the other parameters as fixed.

The results show improvements in the running time of the pro-
posed method against the naive sorting method. As the win-
dow size increased, the effect of improvement likewise increased.
The last case with a window size of 1 × 1 × 30 was exactly the
query needed in the meteorological analysis required by meteo-
rologists [16]. In this case, we observed the maximum improve-
ment, which occurred by a factor of 10.2.

From the result, the interesting performance feature of the in-
cremental computation method was again identified. With all the
other parameters fixed, regardless of the extent to which wn (the
window size in the last dimension) varied, the processing time of
the query almost remained the same. This feature is consistent
with our time complexity analysis described in Eq. (9).
6.3.1.3 Evaluation with a Synthetic Workload

We used the second series of the experimental dataset. In
this case, we only changed the window sizes in the first two di-
mensions (longitude and latitude) and retained the same time di-
mension. When the window size increased, the naive quicksort
method incurred a longer time. Therefore, we selected a smaller
array than the one used in the previous experiment. It included
data of only one month, the JRA-55 data of January 2012. This
array contained temperature at 00:00, 6:00, 12:00, and 18:00 in
one day instead of only the data at 12:00. Therefore, the number
of data items for the third dimension of this array was 124 (31×4)
instead of 31.

The results of the experiment are shown in Fig. 16. Compared
with the quicksort method, the proposed method has a speedup
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Fig. 16 Query execution time with window size (incremental
computation = IC).

by a factor of wn. The experimental result is consistent with our
analysis in Section 4. In the second experiment series, as the w3

remained the same, the speedup value of the proposed method
against the quicksort method remained almost the same. Mean-
while, in the first experiment series, as w3 linearly increased, so
did the speedup value. To more clearly show this, we divided
the speedup values with w3 in each evaluation case of both series.
The results are both very close to the same constant. This demon-
strates that our analysis of the speedup factor as w3 is appropriate.

7. Related Work

The window aggregate is an important class of operators whose
acceleration has been well studied. SAGA [12] presents efficient
approaches for structural aggregates of array data. SAGA deals
with multi-dimensional data and the window aggregate, while fo-
cusing on reducing disk I/O cost. Unlike our work, reuse of in-
termediate results or incremental computation is out of scope in
SAGA. Incremental computation has been studied in the con-
text of stream data processing [20], [22], [35]. While their perfor-
mance improvement is quite meaningful, their focus on 1D data
and multi-dimensional problems are out of scope.

For temporal aggregates of interval data, important works ex-
ist, such as balanced-tree [10] and SB-tree [11], to incrementally
compute the query. The difference between these works and ours
is that the underlying data structures used are different. The works
introduced above are designed to deal with particular types of
data, specifically interval data and stream data. They are not suit-
able for multi-dimensional array data, which is the target data
type on which we herein focus.

A set of graphic processing studies are related to our work. Di-
amond, hexagon, and polygonal shaped window aggregates are
discussed in Refs. [26], [27]; however, such shapes are not sup-
ported by any array database systems, including SciDB. The
convolution filter exploits incremental computation and is im-
plemented in OpenCV [28]. Nevertheless, it does not address
large arrays, which do not fit into memory; moreover, it too is
not supported by SciDB. Some contest problems [29], [30] at
ACM ICPC are more complicated than our problem, although
they completely differ from ours. Furthermore, all the above
works focus only on algorithms and lack a system design per-
spective. In this paper, on the other hand, we provide design and

implementation on SciDB.

8. Conclusions

In this paper, we proposed efficient algorithms for window
aggregate operators in array databases based on an incremental
computation scheme. We developed acceleration techniques for
five types of operators that exploit different types of data struc-
tures to achieve efficiencies: list for summation and average, heap
for maximum and minimum, and balanced binary search tree for
percentile.

To evaluate the proposed method, we presented time complex-
ity analyses for the proposed method and naive method. We im-
plemented the proposed method for five operators in a real array
database, SciDB. The results of experiments on SciDB showed
that improvement by the proposed method for minimum, summa-
tion, and percentile operators were by a factor of 17.9, 12.5, and
10.2, respectively. Our proposed method therefore accelerates
window aggregates on the SciDB real array database system.
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