
Journal of Information Processing Vol.24 No.1 99–108 (Jan. 2016)

[DOI: 10.2197/ipsjjip.24.99]

Regular Paper

Performance Management of Cloud Populations
via Cloud Probing

Marat Zhanikeev1,a)

Received: January 1, 2015, Accepted: September 2, 2015

Abstract: Cloud population is a term that describes a cloud application distributed over many virtual machines or
container-based boxes. Cloud platforms today offer simple tools for performance management (common example is
load balancing) which are not sufficient for managing the performance of cloud populations. This paper proposes a new
concept called cloud probing which is where applications themselves probe their host cloud platforms and optimize
their own populations at runtime based on measurement data. This paper shows that even a simple optimization algo-
rithm can lead to improved performance for the entire population. Since the only prerequisite function is the ability to
migrate, the proposed method is also feasible in federated clouds where apps are fully in charge of managing their own
populations spread across multiple cloud providers. This paper showcases the design of the TopoAPI that implements
cloud probing, runs independently from physical platforms, and can therefore be used in federated environments.

Keywords: cloud probing, cloud populations, cloud performance management, active probing, live migration, topol-
ogy optimization, migration cost, federated clouds

1. Introduction

Cloud Population is a recent concept hat describes distributed
populations of resources in clouds implementing a single ser-
vice [1]. Resources can be based on Virtual Machines (VMs) or
containers – Heroku [25] or Docker [24] are the currently pop-
ular examples of the latter kind. Cloud populations are part of
cloud economy where most interactions are based on 3-party con-
tracts [2]. There are several existing examples of cloud popula-
tions. For example, a cloud-based video streaming service (CDN:
content delivery service) needs a population of video sources and
3-party contracts for effective management of Quality of Service
(QoS) [1].

Note that while the notion of cloud populations is discussed in
literature, this paper is the first known attempt to define the tech-
nology for managing performance in such populations. To opti-
mize performance, the proposal in this paper relies on the concept
of migration ubiquitous in clouds today. The novelty of the pro-
posal is in the part of stress-based optimization which uses prob-
ing data to model stress and migrations as unit actions for stress
minimization. The two methods for stress visualization are also
original in this paper, while, as the discussion further in this paper
shows, traditional methods commonly rely on graph-based struc-
tures. The package containing all the novel concepts, optimiza-
tion formulations, models and visualizations, and practical algo-
rithms presented in this paper are referred to as cloud probing.

In terms of existing practice, clouds nowadays do not imple-
ment the notion of cloud populations. Instead, most clouds today

1 Department of Artificial Intelligence, Computer Science and Systems
Engineering, Kyushu Institute of Technology, Iizuka, Fukuoka 820–
8502, Japan

a) maratishe@gmail.com

offer a limited toolkit for performance management of a relatively
small number of items, with a small range of practical usecases.
For example, the popular Amazon cloud (AWS: Amazon Web
Services) offers only basic tools like load balancing [23].

Figure 1 showcases the notion of cloud populations via the
real measurement trace used throughout this paper. The measure-
ment was implemented in the following settings. 15 VMs were
created and spread randomly across 8 AWS regions – the num-
ber of VMs did not change during the entire experiment but VMs
were constantly migrating between regions. Every 30 minutes,
5 VMs would migrate, each to the least populated area at the
time, which created a roughly equal distribution of VMs across
areas, with a constant rotation of the few areas with only one VM.
During each 30 minute session, VMs would repeatedly send ac-
tive probes to each other. The size of each probe was selected
randomly from a set of values between 1 kbytes to 5 Mbytes. Di-
rection of the probe was also selected randomly between GET
(download) or POST (upload) requests – emulating web traffic

Fig. 1 Actual measurement data from a randomly migrating population of
15 VMs in the Amazon cloud.

c© 2016 Information Processing Society of Japan 99



Journal of Information Processing Vol.24 No.1 99–108 (Jan. 2016)

between VMs. The experiment ran for several weeks until having
collected more than 100 samples for each combination of regions
per each hour of the day.

This collection of measurement data is referred to as the trace

throughout this paper. Figure 1 also reveals the practical prob-
lems which can be resolved by the proposed method of cloud

probing. Based on the setting, the following classification of mea-
surement results is obvious. There is intra- and inter-DC through-

put, which can be calculated from large bulks (3–5 Mbytes).
When the bulk size is small (1-10 kbytes), we get intra- and inter-
DC delay. These are rough definitions, but they fit into the overall
theory of active probing [3].

Figure 1 does not make (for now) the distinction between spe-
cific areas or pairs of areas, and aggregates all the relevant results
into intra-DC and inter-DC plots, showing average throughput
plus absolute min, max and ±3σ. Average delay (calculated from
throughput for small bulk size) is not drastically different between
inter- and intra-DC and is relatively small for both. Throughput
is better for intra-DC (local networking), but upper margins (ab-
solute max and 3σ) are roughly the same for both.

The practical lessons learnt from Fig. 1 are as follows. Intra-
DC is optimal in terms of performance but unfeasible in practice
because a cloud-based CDN needs a geographically rich popula-
tion [1], which means using multiple DCs is a practical necessity.
In terms of delay, there is not much difference between the two
cases, so, apps in both intra- and inter-DC settings will interact
(delay is important for interactive apps) roughly at the same level
of efficiency. In terms of throughput, the wide spread of inter-DC
performance points to the obvious fact that different combinations
of DCs that are selected to host parts of a given population should
result in very different performance.

The above practical observations – especially the one about
throughput on various combinations of DCs – can be used to for-
mulate the following core problem resolved by cloud probing.
The rest of this section formulates the problem, names the main
players and presents the original solutions offered in this paper.

Since the Service Provider (SP) is in charge of its own pop-
ulation while Cloud Provider (CP) only supplies regionally di-
verse DCs and ability to migrate between them, SP can optimize
the performance of its own population by measuring the current
performance and triggering migrations in order to improve it.
For a more detailed description of these players as part of the
cloud resource economy refer to Ref. [1]. This paper refers to
this technology as cloud probing. The ultimate runtime objec-
tive of cloud probing is to achieve an optimal distribution of VMs
(AWS) or containers (Heroku, Docker) across the available space.
The concept of performance is defined in specific metrics later in
this paper.

The specific contributions of this paper are as follows:
• cloud population, cloud probing and the related notions are

properly formulated expanding on the existing literature on
cloud economy [1], [2], while the cloud probing technology
is the original contribution in this paper;

• the generic model for performance management of cloud
populations is formulated using state modeling and relation
between performance improvement and migration cost – this

contribution is not original but is required as the background
for the optimization problem which is original;

• an original optimization framework for cloud probing is pro-
posed along with the concepts of stress optimization and
stress-centric visualization methodology;

• analysis is performed in form of a trace-based emulation us-
ing two example application scenarios and the proposed per-
formance optimization;

• finally, the TopoAPI is proposed as an example implementa-
tion of cloud probing in practice – the API is also an original
contribution of this paper.

2. The Concept of Cloud Populations

This section establishes the necessary background for the tech-
nology of performance optimization in cloud populations pre-
sented further in this paper.

Today, there are three main types of environments that can sup-
port cloud populations. Note that the naming in the classification
below is arbitrary. However, the traditional *aaS formulations
fail to describe some of these types which is why a new naming
is offered.

Cloud Platforms describe environments like AWS [23].
Clients get raw access – they can create VMs, freely migrate
them across the available regional coverage, etc. On the other
hand, only basic performance management tools are offer, where
load-balancing is the most common tool. Given the raw level of
access, populations are not directly supported.

App Platforms describe environments like Heroku [25]. The
notion of population is intrinsic to such environments, where
Heroku specifically is built around the concept of scale which
means that all the apps (short for applications) are multi-item pop-
ulations by design. Clearly, such environments implement pop-
ulation management. However, it is important to remember that
such environments do not manage your population. The manage-
ment is performed on the entire set of resources in a given envi-
ronment, without making a distinction of a sub-population for a
given particular cloud service. For, example, Heroku runs 100%
on top of AWS and one of its management objectives is to mini-
mize the number of VMs by destroying unused web processes –
the metric for unused is normally implemented as a timeout. This
overall objective often conflicts with performance objectives of
individual services, where the letter prefer to maintain a steady
number of web processes and to not have to wait for them to start
on demand. App Platforms do not offer tools for managing per-
formance of populations at the grain of a specific (your own) app.
To be specific, changing the scale of your applications (an op-
tion in Heroku) does not fall under the definition of performance

management, as is shown further in this paper.
DIY Platforms (DIY: Do It Yourself) describe environments

like Docker [24]. The notion of populations is again intrinsic but
you the client have to do everything by yourself. Docker helps
with automation of installation, cross-platform compatibility, etc.
Docker also helps with the bulk size of migrations. In literature
this is referred to as the greybox problem – to minimize the vol-
ume of bulk transfer during migration [16], [17]. Docker achieves
this by minimizing the bulk size of containers. Yet, the process

c© 2016 Information Processing Society of Japan 100



Journal of Information Processing Vol.24 No.1 99–108 (Jan. 2016)

Fig. 2 Generic model of a cloud population.

of management is mostly manual, where one has to install and
run Docker tools on each new VM prior to being able to run the
docker command or write automation on top of it.

In practice, the cloud probing technology proposed in this pa-
per can be implemented as a DIY population on top on one or
more cloud environments. However, with some effort it can work
on App Platforms. This topic is revisited in Section 9 when a
practical implementation of the proposal is presented.

As a separate taxonomy from the platforms above, Fig. 2
describes a federated cloud environment [1], [2] with multiple
Cloud Providers (CPs) each operating multiple Data Centers
(DCs). The main player – the Service Provider (SP) – runs a ser-
vice on top of CP/DC infrastructure which consists of multiple
apps, where one app can be one VM (in AWS [23]) or one con-
tainer (in Heroku [25] or Docker ([24]). In case of container-
based apps, unit of virtualization of cloud resources goes one
level deeper as it is common to have one VM host multiple apps
running in containers. The connection between Fig. 2 and the ear-
lier taxonomy of platforms is that Fig. 2 shows that cloud feder-
ation is a natural environment for large-scale cloud populations,
while each cloud in the federation can implement one or more
platforms. The SP will have to approach each distinct platform
differently but there are no practical limitations for SPs running
on multi-platform cloud federations.

Figure 2 shows a non-trivial graph with both intra- and inter-
DC links connecting individual apps. Finally, there is a geo-
graphically spread community of end users (EUs), end-to-end
(e2e) QoS to which can be measured and considered as part of
the overall performance of SP’s population [8]. Management of
EU community is also possible in practice via request forwarding
(commonly used in CDNs [1]) where one can control distribution
of EUs per app (per DC, per CP, and so on). For simplicity, this
paper will not incorporate EU community in performance opti-
mization, instead performing the analysis within the trace that
contains real measurements across Amazon DCs.

3. Related Work

The notion of conducting active measurements for perfor-
mance management is not new – the active probing technol-
ogy has existed for several years [3] with a range of applications
starting from primitive metrics like e2e delay, throughput, and
available bandwidth, to such advanced uses as tomography and
network coordination [3], [4]. Active probing is distinct from

passive monitoring which is mostly conducted via packet traf-
fic analysis. Passive monitoring also has a range of practical
uses, from packet and flow classification [3], to e2e QoS classifi-
cation for user communities (o2m and m2m patterns) [8], to the
advanced high-performance methods that apply multicore hard-
ware to online analysis of high-rate packet traffic [7]. Specifically
in clouds, passive monitoring is part of the topic of VM workload

classification [5] and a more generic methodology for inferring
VM performance from traffic and other workloads [6].

Note that VM workload specifically and passive monitoring in
general are not directly related to the topic of cloud population
management. The reason is the same as was mentioned above
while describing Heroku – passive monitoring can be used for
managing the aggregate bulk of CP’s resources but not at the grain
of a subset of resources allocated for individual SPs. The dif-
ference here is crucial, the problem is fundamental and rooted in
complexity of the respective optimization problems [9]. From this
point on, this paper assumes that population management refers
to different technologies in CP and SP forms, where cloud prob-

ing is part of the SP’s population management technology.
CP population management is described by several methods in

literature. The traditional methods is referred to as VM place-

ment [10], [11], where the optimization problem is known as bin

packing [21]. Since VM placement causes too many migrations
when run in online/continuous form, energy efficient migration

method can be used to maximize migration efficiency by account-
ing for migration cost [9]. Some methods focus on specific costs,
for example proposing network-aware migration efficiency [12].

A large subset of this literature focuses on the migration cost it-
self, by measuring the actual cost [15], of minimizing the cost via
so-called greyboxes (lighter bulk) [16], [17]. BigData networking
– faster bulk transfer for BigData (VM images, containers, etc.)
can also help lower the cost of migration, where one practical
technology discussed in literature is e2e circuit emulation [20].
Note that Docker [24] can be viewed as a practical implemen-
tation of a greybox – the containers in Docker are optimized for
size and are known to be much smaller than their traditional (non-
optimized) versions.

Restating the distinction, CP population management is dis-

tinct from SP population management. CPs trying to optimize
individual SP populations is unfeasible in practice [9] due to the
complexity problem. Optimization of heterogeneous CP popu-
lations is already known to be an NP-hard problem [9]. Further
splitting such populations into individual per-SP subsets would
further increase the complexity. The take-home lesson here is that
SP-side cloud population management is a practical necessity.

Cloud population management (in its intended SP form) is
also distinct from network coordination where the technology
is known under the names of tomography or delay space clus-

tering [3], [4] in literature. Network coordination is suitable for
highly distributed networks of nodes which is common in, for
example, P2P streaming [1]. By contrast, in clouds SP normally
knows the locations of its CPs/DCs/VMs/etc. Moreover, com-
plex graphs connecting apps are rare in practice, which is why
tomography in such environments would be an unnecessary ex-
cess. This paper shows further on that a simpler ring model is

c© 2016 Information Processing Society of Japan 101



Journal of Information Processing Vol.24 No.1 99–108 (Jan. 2016)

more feasible in practice, compared to a complex graph.
In terms of similarities, cloud probing can be viewed as the re-

versed VNE (Virtual Network Embedding) problem [18], [19]. In
VNE, one performs the mapping of multiple virtual graphs onto
a (single) shared physical graph. The target usecase in VNE liter-
ature overlaps with cloud probing – it is commonly presented as
a technology that CPs use to optimize topologies of multiple SPs.
VNE today are not found in practice in its full intended form, but
partially supported primitive VNEs exist, for example, as private
virtual networking in existing clouds AWS [23].

There is a subtle but obvious difference between cloud prob-

ing and VNE. While VNE is a technology for mapping, cloud
probing assumes that the initial mapping (apps to VMs, etc.) has
already been completed, after which cloud probing assumes that
SP continuously measures the performance of its population and
uses the results to optimize the initial mapping. In other words,
VNE is a one-time static method with full knowledge of under-
lying and overlaying topologies, while cloud probing is a run-
time dynamic optimization method. Repeating the earlier state-
ment, VNE for a multi-SP mapping has higher complexity than
the known NP-hard formulations [9].

Cloud probing relates to active probing and network edge in
one package. Active probing is a practical technology for net-
work edge – for example, the homebox project installs an active
probe at users’ homes for e2e active probing [13]. Network edge
is also the ultimate target for clouds – this new kind of cloud is
referred to as fog computing [14]. A new kind of platform – the
Visitation Platform – is necessary to allow for VMs/containers
to visit with a small cloud platform installed at end users’ loca-
tions [14]. When SPs have populations based on heterogeneous
hybrids of DC and fog infrastructures, cloud probing becomes a
requirement for performance management of such populations.

4. The Basic Proposal

This section presents the proposal in general terms. The two
main concepts presented in this section are state model and incre-

mental improvement diagram. Both are conventional notions but
are used in this paper in a non-conventional way. Specifically, the
state model is based on individual migrations, but the state itself
represents the performance of the entire population. The concept
of incremental improvement of performance is based on the con-
ventional low-start improvement notion but this paper is the first
known attempt to incrementally improve performance of cloud
populations via sequences of migrations with performance moni-
toring running in parallel. Section 3 had a detailed discussion of
the difference between cloud populations and traditional resource
management in clouds. For example, triggering multiple migra-
tions for energy efficiency [9] uses a completely different toolkit
and achieves a completely different optimizational objective.

4.1 State Model
Figure 3 depicts the generic concept of population manage-

ment via probing (the word cloud is omitted for convenience).
The state model describes the groping by probing process where
each migration, generically speaking, has no guarantee that it will
result in a better overall performance. In clouds today, there is no

Fig. 3 State model for a cloud population that uses cloud probing to im-
prove its performance.

Fig. 4 The low-start nature of performance management based on cloud
probing.

practical way to predict the outcome prior to migration. This rule
will be upgraded further in this paper in a history-aware subset of
methods.

The state model in Fig. 3 can be enhanced. While the model
shows that we can always revert to the previous state by undoing
the last migration, in practice this might not always restore the
earlier state of performance – new VMs will be mapped to differ-
ent racks, buildings, DCs in seemingly the same region. More-
over, there are time (daily, weekly, etc.) fluctuations in perfor-
mance. To include this factor, the state model can be enhanced
by defining, in addition to the revert transition, another migrate

transition to yet a new state. Such a chain can continue infinitely
in each direction. The model can also take into consideration the
history of past migrations by assigning probabilities to transitions
– such a model becomes a standard Markov chain. History-aware
methods are placed out of scope of this paper but will be explored
in the advanced cloud probing methods in future publications.

4.2 Low-Start Incremental Improvement
Partly taking into consideration the infinite chains, Fig. 4

serves as a visual guide for the cost-vs-performance tradeoff. Mi-
gration always incurs cost divided into tangible values like billing
for bulk transfer over the network, VM-shutdown/VM-start cy-
cles in AWS [23] and less tangible estimates like the time required
for bulk transfer (several minutes for AWS) and repeated migrate-
revert or migrate-migrate cycles. Many specific definitions of mi-
gration cost can be found in literature [15].

Figure 4 shows that, regardless of the specific definition of cost,
performance optimization will always follow the so-called low-

start trend, which means that early improvements (from a ran-
dom state) are easy and bring large performance improvements at
a relatively small cost, while each further improvement comes at
a higher cost and brings a smaller improvement margin. The trend
is resolved by stopping the optimization process. The trend can

c© 2016 Information Processing Society of Japan 102



Journal of Information Processing Vol.24 No.1 99–108 (Jan. 2016)

also resolve naturally if the overall conditions in the population
change drastically.

As a side note, it can be stated that, in practice, the latter (nat-
ural) way of resolving performance deadlocks is more common.
Emulations further in this paper will also show that major changes
in state are naturally common, which means that the new state op-
erator in Fig. 4 is rarely needed in practice. With this experience
added, conditions met in practice can be more accurately repre-
sented in Fig. 4 as infinite chains of transitions with stationary
average cost and performance increment metrics. However, the
discussion of the general notion in Fig. 4 remains useful.

5. Proposed Optimization

This section presents the proposed optimization problem. The
ring-based visualizations provide the visual form for optimiza-
tional objectives and are also part of this section.

5.1 Optimization Problem
Let us put v (will call it key later) an arbitrary performance

metric. It is always pairwise between nodes (CPs, DCs, etc.) a

and b, i.e., vab. Same-node (intra-DC) vaa (always a) and direc-
tional vab � vba values are possible. Generically we have a graph
G(N,M) of n nodes and m links. With cloud probing, when SP
attempts to implement active probing for all-to-all (a2a) combi-
nations, m approaches n2. The graph is always virtual, same as in
VNE [18], because it is based on logical connections across apps.

For stress optimization, we collect a set of values {vab} for pair-
wise links between nodes a, b ∈ G but define stress S for each
node as an aggregate of its link values

Sa = f (vaa, vab, vac, . . . , vax), where{a, b, c, . . . x} ∈ G, (1)

where f () is an arbitrary aggregator function (sum, average, etc.).
The stress optimization is then defined as minimization of the

overall stress:

minimize
∑

Sx, x ∈ G, (2)

which is a generic formulation, while specific formulations
should include practical constraints.

5.2 Stress in Cloud Populations
Stress optimization is a known problem in graph drawing [22]

where the practical objective is to draw a graph in the most es-
thetically pleasing way. However, the same approach is fully ap-
plicable to performance optimization simply by using vab values
for stress.

Yet, the stress optimization in this paper is distinct from graph
drawing. While graph drawing deals with arbitrarily large graphs,
cloud populations are normally relatively simple. In fact, it is
common to use completely flat populations where each app per-
forms exactly the same job. Heroku here is a vivid example,
where large-but-flat topologies are referred to as scaling-out –
increasing the scale without increasing the complexity. Another
example is a cloud-based CDN where all apps use the same back-
end storage while the streaming function is implemented via a flat
layer of streaming sources [1].

The subject of reversed VNE can be revisited here as well.

VNE operates with complex topologies like backbone, hub and

spokes [19]. In cloud probing, we start with a flat population,
perform measurements for a subset of vab combinations (see re-
duction methods in Ref. [4]), and, if necessary, we can then im-
pose a complex connectivity structure on top of the flat topology
based on the measurement data. It is entirely possible for a cloud
probing technology to create hub-and-spokes topologies as final
product.

5.3 Cloud Populations as Stress Rings
Given that the initial populations are flat, this paper proposes

to use stress rings as a visualization tool. Note that the rings
are both visualization structures and visual optimization tools as
is shown further in this paper. Strictly speaking, rings are graphs
(one-level all-to-all meshes). Moreover, ring-based visualizations
reflect the reality formed by all-to-all probing and can facilitate
quick decision-making in respect to which apps to migrate. This
paper defines two kinds of rings.

Simple Ring define stress for each a based on many aa or ab

measurements but the outcome is handled for each a indepen-
dently from b. For example, if one transfers the same VM image
from one b to several a regions (cache replication in CDN [1]),
then b is irrelevant, while difference in performance across sev-
eral as is key to performance management.

Complex Ring defines stress for each a based on many ab

measurements, where a � b. Each individual vab can then be
decomposed so that performance for each b can be revealed and
used for future optimization. To showcase the practical necessity,
the above example can be slightly altered by specifying that VM
images can migrate from multiple bs (it was one b before). In this
case, some ab links can have higher stress then others.

5.4 Example Stress Rings from the Trace
Figure 5 shows several example visualizations based on the

trace (data from the experiment at the beginning of this paper).
The 3-tuple notation in plots is as follows. Key denotes a spe-
cific parameter selected to represent v. Sizes denotes the subset of
bulk sizes selected for the visualization, in kbps. Parties specifies
a filter (aa or ab) for measurement data, where aa means only

intra-DC results. Visualizations use the actual symbolic names
AWS uses to specify its 8 regions.

Rings themselves visualize stress, modeling it as an outside
pressure on the surface of a balloon (ring). The higher the stress
(pressure), the more a point on the ring sinks closer to the center
of the ring. Note that absolute values are not important for ring vi-
sualizations while relative values have the obvious practical value
– one can quickly identify the most stressed point on the ring and
trigger migrations to rectify the respective performance problem.
All values in Fig. 5 are averages of all values for all VMs for the
respective region. Bullet size corresponds to variance across each
set of values – in practical terms it represents volatility of stress.

The top-down reading of Fig. 5 is as follows.
The 1st (topmost) ring visualizes stress for bulk transfer of

VM images (copy AMI in AWS terminology [23]). One re-
gion (Saopaulo) is drastically different, another (Virginia) is the
next worse but not as drastic. Performance of this ring can be

c© 2016 Information Processing Society of Japan 103



Journal of Information Processing Vol.24 No.1 99–108 (Jan. 2016)

Fig. 5 Several example stress ring visualizations generated from the trace.

improved by removing Saopaulo from the population.
The 2nd ring visualizes stress for intra-DC interactive (small-

bulk) populations. Note that the entire population can be spread
across multiple regions, but performance management in this case
focuses on the parts which have to interact in intra-DC groups.
Tokyo is the least busy while California and Sydney are the busi-
est regions. Note that this ring is a Complex Ring but there are no
pulleys in this specific ring because all ab parties are filtered out.
This population can be improved by migrating interactive groups
to less busy areas such as Tokyo, Ireland, Singapore, etc.

The 3rd ring is similar to the 2nd ring in that it visualizes
intra-DC performance but this time the key is bulk transfer (large
size). Ireland, Tokyo and Virginia are the worst and California

and Oregon are the best environments for such groups. The per-
formance improvement in this case is the same – app groups can
migrate to better regions.

The 4th (bottom-most) ring is a showcase for the Complex
Ring and visualizes inter-DC (ab) bulk transfer. The ring shows
one pulley for each location on the outer ring in form of a link
between a location on the outer ring with a location on the inner
ring. This link is the visual representation of the inner A pulls on

outer B relation between the locations. For example, Ireland is the
most stressed region with Virginia contributing a bigger share of
the stress. Another example is California whose overall stress is
not drastically bad but its spread is large with Oregon contribut-
ing the most of it. To improve performance of this population,
removing Oregon form California’s remote parties would both
improve the overall stress and lower variance for California’s app
group. Note that this ring shows the entire trace which has the
smoothening effect on the data. Randomly selected subsets of the
trace reveal more relative difference in emulations further in this
paper. Also note that the concept of Complex Ring is not limited
to the above practical formulations and can be based on any prac-
tical metric, depending on what a given SP considers important
for the performance of its population.

The definition of stress in this section is used as is throughout
the rest of this paper. All the practical optimization models and
application scenarios in this paper assume that SP optimizes the
performance of its population based on stress rings.

6. Evaluation Models and Scenarios

This section describes separately two models and two practical
application scenarios (models) used later in this paper for analy-
sis. Analysis always assumes a single SP that needs to manage
performance of its own cloud population.

6.1 Application Scenarios
The two obvious scenarios are Do Nothing versus Optimize.

The former refers to the existing state of affairs (traditional)
where the concept of population performance management does
not exist while the later (proposed) refers to performance op-
timization based on the stress rings and optimization problem
described in the previous section. Optimization is always per-
formed by triggering migrations on individual apps and monitor-
ing changes in performance for yet further migrations.

6.2 Application Models
Each above scenario is applied to each of the following two

example application models.
The Pooler model is about pooling large bulks of data via a

distributed network of aggregators. One app (of many) is se-
lected to be the final storage destination for the aggregated bulk
and all other apps send their bulks to the selected destination. The
following optimization logic is used (for the Optimize method).
SP starts collecting data from ab probes that measure throughput
(bulk transfer). Collection can be done at early station of bulk
aggregation while migration of individual apps can be performed
at a relatively low cost. Based on measurement data, the destina-
tion is selected as the app with the highest average throughput on

c© 2016 Information Processing Society of Japan 104



Journal of Information Processing Vol.24 No.1 99–108 (Jan. 2016)

connections to all other apps. All apps then send their bulks to
the destination. The Simple Ring is sufficient to visualize stress
for this model.

The Syncer model is the showcase for the Complex Ring (the
bottom-most ring in Fig. 5 in the previous section) and imple-
ments a cloud-based CDN service [1]. The outer ring optimizes
the ab stress for bulk transfer across data sources (see definition
of sources in streaming in [1]) – which represents migration of
sources across regions. The inner ring optimizes ab delay be-
tween sources a and end users b.

The role of pulleys is played by the following connection be-
tween the two rings implemented in the algorithm. In each opti-
mization round in this model, SP first optimizes the router ring for
bulk throughput and then the inner ring for delay. More specifi-
cally, this means that two migrations per cycle are triggered, the
first migration optimizing the population for bulk throughput and
the other attempting to improve the delay across members of the
population by migrating the member with the largest average de-
lay to all other members.

More details on how the models are emulated can be found in
the next section.

6.3 Other Assumptions
Several assumptions are made. First, migration cost is con-

sidered to be negligible – the cost tradeoff explained earlier in
this paper will be revisited in future publications. For example,
in AWS, each shutdown/migrate/start cycle for VMs is charged
1 hour of VM’s running time [23], which is a minor cost com-
pared to the total running time of the entire application.

Secondly, while this paper discusses a simple version of cloud
probing, a smarter version is not difficult to implement in prac-
tice. For example, it is easy for SP to keep a history of past mea-
surements, which can be used to assign probabilities to the state
model in Section 4.

The history can also be used directly for stress optimizations.
For example, the immediately recent history of measurements can
be used to decide which app to migrate. Stress optimization in
this case can run continuously. Moreover, active probing itself
does not need to be synthetic (dummy packets) but can be in-
ferred from real application traffic. Future publications stemming
from the core work in this paper will study the various cloud ser-
vices for which cloud probing data can occur naturally as part of
normal operation.

7. Evaluation Setup

As was mentioned above, the real measurement data used in
this paper becomes the trace in trace-based emulation. This sec-
tion provides more details on the trace and explains how emula-
tions are conducted.

7.1 The Trace
There is always at least 100 values for each aa and ab combina-

tions of regions for each hour of the day. Weekends are excluded
from the trace to avoid the bias and retain focus on working days.
All the days are merged into one working day. Multi-day emula-
tions warp within this one day of the trace.

End user community is implemented as follows. The stan-
dard 2-peak distribution – peaking in mornings and evenings –
of Internet use is used for all regions [9]. Note that the shape of
the distribution is not important because the same shape is applied
to all regions and therefore the main effect comes from the trace.

A community of 100 k users is emulated. E2e delay for each
user is defined by selecting a random value from the trace values
for 1 kbyte and 10 kbyte bulks. The assumption here is that users
from a given region (close to the DC from that region) use an app
running in another region (some are intra-region). 100 k users are
allocated to regions based on the daily curve (Internet use), with
the proper offset for each region from the GMT timezone. Emula-
tion maintains a single value for time, but its value in each region
is different depending on the offset from GMT.

7.2 One Emulation Run
One emulation run is executed as follows. A random time of

day is selected as a starting point. 3 apps (VMs) are assigned to
3 distinct randomly selected regions. Emulation is then executed
four times, once for each application model and each method,
each time starting from the same initial conditions.

When emulation executes a bulk transfer (large size) or an in-
teraction (small bulk) between apps or users and apps, a random
value is selected from the set of values in the trace for that ab

combination for that hour of the day. This way the emulation
recreates statistically similar conditions to those which occurred
during the probing experiment. Emulation time advances based
on these values. However, some logical epochs are maintained.
For example, one all-to-all probing session completes when the
slowest bulk transfer ends.

7.3 Other Setup
The following application setup is applied. For the Pooler

model, cloud probing session is executed in 50 all-to-all probing
sessions using 5 Mbyte bulk probes. The application itself then
executes two 100 Mbyte bulk transfers from two aggregator apps
to the destination app. The Syncer model also executes 50 a2a
probing sessions using Mbyte probes, but additionally, each end
user sends 10 short (delay) probes to all three apps. Then, each
user picks the closest of the three apps – representing perfect co-
ordination and request forwarding during the main operation.

Note that while the above setting parameters were selected ar-
bitrarily, they roughly represent the average app of each kind in
practice. Specifically, description of the Syncer app is modeled
after a cloud-based CDN [1].

A simple rule is applied to migrations. The same app can mi-
grate at most 3 times but is not allowed to migrate for the next
3 rounds after each migration. This rule is a kind of volatil-
ity control which avoids the cases when only one app migrates
throughout the entire emulation. More advanced logics will be
considered in future publications.

8. Evaluation Results

This section presents evaluation results first by discussing ran-
domly selection emulations in details and then discussing the
overall results.

c© 2016 Information Processing Society of Japan 105



Journal of Information Processing Vol.24 No.1 99–108 (Jan. 2016)

Fig. 6 Migration sequence for 3 VMs across 8 Amazon regions under
Pooler (top) and Syncer (bottom) application models. XY scales
have no values: X is the sequence of configurations and Y is the
list of regions.

8.1 Analysis of Migration Schedules
Figure 6 shows example visualizations of migration schedules

for both Pooler (top) and Syncer (bottom) models. The Pooler
schedule is obviously more stable which is because it uses Simple
Ring and therefore only one stress optimization per round. The
Syncer schedule (Complex Ring) has two migrations per round
and is more volatile. Regardless of the difference in volatility,
both schedules show that some regions are preferred (1st, 6th, and
8th from the top) and occur more often than others. This means
that some regions in the trace offer better performance on average
than others. Note that the patterns are slightly different depending
on whether the trace is mined for bulk (Pooler) or delay (Syncer)
values.

8.2 Analysis of Overall Performance
Figure 7 shows the overall performance. All emulation results

for each model are aggregated into one plot in form of distribu-
tions, thus allowing for visual comparison between Do Nothing

and Optimize methods of dealing with population performance.
For the Pooler model (top), the completion time (of each appli-

cation session in each emulation round) is the obvious practical
metric. The chart shows that in more than 80% of cases, opti-
mization results in better performance for the entire population.
Note that the bulk for the application session is set to 100 Mbytes
which is why the improvement is at the scale of several seconds.
Larger bulks should result in bigger effect.

For the Syncer model (bottom), the practical performance

Fig. 7 Overall performance of Optimize (proposed) versus Do Nothing
methods for the two example application models.

metric is the average e2e delay between users and their apps.
Similarly, about 80% of cases result in a more optimal perfor-
mance (vertical scale is in log). Note that the success of the
Syncer model means that even 2-ring optimizations with differ-
ent performance metrics can be successful.

9. Implementation

In federated clouds, independence of technologies from CPs
and SPs is key. Existing examples in literature are, for exam-
ple, resource metering conducted independently from resource
providers [2]. In case of Cloud Probing API as a Service, it is
also important to perform stress optimizations as independently
as possible.

Figure 8 presents the TopoAPI – a generic API that imple-
ments cloud probing. There are two roles: Service Provider (SP)
and TopoAPI itself. Prior to being able to use the API, SP has to
have a contract with TopoAPI which comes with access tokens –
traditionally using OAuth protocols same as in Ref. [2]. Once the
contract is made and access tokens are exchanged, SP can start
using the API.

One session of using TopoAPI goes as follows. SP starts a new
session and gets an ID which it then can use to identify this ses-
sion in later API calls. SP can then register any number of pair-
wise records using the ADD (a, b, value) API where a, b are
parties and the nature of the performance metric value is up to
SP.

When SP decides that sufficient volume of data has been
collected, SP can complete the session by calling the optimize

(model) API. The model here specifies a particular optimization
method. The default is the stress optimization defined in this

c© 2016 Information Processing Society of Japan 106



Journal of Information Processing Vol.24 No.1 99–108 (Jan. 2016)

Fig. 8 The overall design of the TopoAPI – the practical implementation of
the cloud probing concept proposed in this paper.

paper but future publications will look into other options. For
example, TopoAPI may implement a set of methods defined for
VNE in future versions [19].

Note that TopoAPI is platform-independent in two major ways.
First, it is completely isolated from any CP or SP and can run in
any 3rd-party environment. Secondly, TopoAPI is independent
from the definition of performance. SP can register any met-
ric with the API. As long as the metric is consistent through-
out each API session, TopoAPI will successfully convert it into
stress and generate migration recommendations that aim at stress
minimization.

Also note that in existing clouds, the TopoAPI can be applied
to both App Platforms and DIY Platforms from the taxonomy
discussed in Section 2. It can be applied to Cloud Platforms auto-
matically assuming that DIY Platforms (like Docker), in fact, pro-
vide the minimal environment necessary to run cloud populations
in clouds. Although App Platforms (Heroku) do not normally
provide a mechanism for services to trigger migration of individ-
ual apps, migrations can be emulated by changing the scale-out
parameter. The practical advices for App Platforms will be pro-
vided in future publications on the topic.

10. Conclusion

This paper proposed a new technology called cloud probing

which cloud service providers can use to optimize performance
of their app populations. Cloud probing is not merely one of the
available options for managing performance of cloud populations
– it is the only feasible option available today. The only other al-
ternative – global optimizations conducted by cloud providers for
individual populations – is shown to be unfeasible in practice due
to high complexity. Cloud probing reduces the complexity by al-
lowing service providers to optimize their own populations while
cloud providers facilitate the optimization by allowing apps mi-
grate freely across regions. Many existing cloud platforms (like
Amazon cloud) already fit this description and can be used by
service providers (based on Docker, for example) to manage their
populations. In fact, the concept of population is already common
in clouds today, while the term population performance optimiza-
tion is defined for the first time in this paper.

Cloud probing is named after its predecessor – the active
probing. Like in traditional active probing, end-to-end network
performance is inferred by sending dummy packet probes and

measuring network response. Cloud probing is a large concept
because active probing results are later used for performance op-
timization. The probes do not have to be dummy packets, instead
probing data can be extracted from normal operation of a cloud
population.

This paper formulated the concepts of stress and stress opti-
mization. However, while stress optimization is commonly found
in graphs (graph drawing, etc.), this paper shows that cloud pop-
ulations do not require complex graphs. Instead, this paper pro-
posed rings which can facilitate effective visualizations of stress.
This paper proposed simple rings as well as complex structures
with multiple rings.

Emulation in this paper was based on a trace created from real
measurements conducted in Amazon cloud. This means that con-
ditions in emulations were very close to those that occur for real
cloud populations. Analysis was performed on two example ap-
plication scenarios – Big Data pooling and cloud-based content
delivery. The former depends on efficient bulk transfer across the
populations while the later optimizes the 2-ring system where the
first ring models the stress from bulk transfer across content de-
livery servers and the second ring models stress from end-to-end
delay between end users and servers. For both cases, emulation
showed that performance optimization can succeed for at least
80% of situations.

Future work on the subject of cloud probing is planned
in several directions. Probing will be incorporated into nor-
mal/continuous operation of cloud populations where future work
will study several existing popular cloud applications. The
TopoAPI – the practical implementation of cloud probing – will
be implemented as an actual web service and will be extended
with optimization models used in the existing literature on vir-
tual network embedding (VNE), thus, making the connection be-
tween the two topics. Finally, more work will be dedicated to
software tools that support full automation of the various activi-
ties involved in cloud probing.

References

[1] Zhanikeev, M.: Multi-Source Stream Aggregation in the Cloud, Ad-
vanced Content Delivery, Streaming, and Cloud Services, Wiley
(2014).

[2] Zhanikeev, M.: Coins in Cloud Drives Can Use OAuth for Micropay-
ments and Resource Metering Alike, 9th International Conference on
Future Internet Technologies (CFI) (2014).

[3] Tanaka, Y. and Zhanikeev, M.: Active Network Measurement: Theory,
Methods, and Tools, ITU Association of Japan, Tokyo (2009).

[4] Zhanikeev, M. and Tanaka, Y.: Application of Graph Theory to Clus-
tering in Delay Space, 8th Asia-Pacific Symposium on Information
and Telecommunication Technologies (APSITT), Kuching, Sarawak,
Malaysia, Paper No.B-7-2, pp.1–6 (2010).

[5] Andreolini, M., Casolari, S., Colajanni, M. and Messori, M.: Dynamic
Load Management of Virtual Machines in a Cloud Architecture, ICST
CLOUDCOMP, pp.201–214 (2009).

[6] Chandra, A., Gong, W. and Shenoy, P.: Dynamic Resource Allocation
for Shared Data Centers using Online Measurements, International
Workshop on QoS (IWQoS) (2003).

[7] Zhanikeev, M.: A Software Design and Algorithms for Multicore Cap-
ture in Data Center Forensics, 9th ACM Symposium on Information,
Computer, and Communication Security Workshops (ASIACCS/SFCS),
pp.11–18 (2014).

[8] Zhanikeev, M.: A holistic community-based architecture for measur-
ing end-to-end QoS at data centres, Inderscience International Journal
of Computational Science and Engineering (IJCSE), Vol.10, No.3
(2015).

[9] Zhanikeev, M.: Optimizing Virtual Machine Migration for

c© 2016 Information Processing Society of Japan 107



Journal of Information Processing Vol.24 No.1 99–108 (Jan. 2016)

Energy-Efficient Clouds, IEICE Trans. Communications, Vol.E97-B,
No.2, pp.450–458 (2014).

[10] Dhiman, G., Marchetti, G. and Rosing, T.: vGreen: A System
for Energy Efficient Computing in Virtualized Environments, 14th
ACM/IEEE International Symposium on Low Power Electronics and
Design, pp.243–248 (2009).

[11] Xu, J. and Fortes, J.: Multi-objective Virtual Machine Placement
in Virtualized Data Center Environments, IEEE/ACM International
Conference on Green Computing and Communications (GreenCom)
jointly with Conference on Cyber, Physical and Social Computing
(CPSCom), pp.179–188 (2010).

[12] Stage, A. and Setzer, T.: Network-Aware Migration Control and
Scheduling of Differentiated Virtual Machine Workloads, CLOUD,
pp.9–14 (2009).

[13] Zhanikeev, M.: A Home Gateway Box with Meter, Probe and L2 QoS
Policy Edge, IEEE Conference on Computers, Software and Applica-
tions (COMPSAC), pp.550–555 (2013).

[14] Zhanikeev, M.: A Cloud Visitation Platform for Federated Services
at Network Edge, 10th Annual International Joint Conferences on
Computer, Information, Systems Sciences, and Engineering (CISSE)
(2014).

[15] Voorsluys, W., Broberg, J., Venugopal, S. and Buyya, R.: Cost of Vir-
tual Machine Live Migration in Clouds: A Performance Evaluation,
CloudCom, pp.254–265 (2009).

[16] Wood, T., Shenoy, P., Venkataramani, A. and Yousif, M.: Black-Box
and Gray-Box Strategies for Virtual Machine Migration, 4th USENIX
Symp. on Networked Systems Design and Implementation, pp.229–242
(2007).

[17] Antonio, C., Tusa, F., Villari, M. and Puliofito, A.: Improving Virtual
Machine Migration in Federated Cloud Environments, 2nd Interna-
tional Conference on Evolving Internet, pp.61–67 (2010).

[18] Lu, J. and Turner, J.: Efficient Mapping of Virtual Networks
onto a Shared Substrate, Technical Report No.WUSCE-2006-35,
Washington University in St. Louis (2006).

[19] Houidi, I., Louati, W. and Zeghlache, D.: A Distributed Virtual Net-
work Mapping Algorithm, International Conference on Computers
and Communications (ICC), pp.5634–5641 (2008).

[20] Zhanikeev, M.: Circuit Emulation for Big Data Transfers in Clouds,
Networking for Big Data, CRC (in print) (2015).

[21] Chekuri, C. and Khanna, S.: On Multidimensional Bin Packing Prob-
lems, 10th ACM Symposium on Discrete Algorithms, pp.185–194
(1999).

[22] Kamada, T. and Kawai, S.: An algorithm for drawing general undi-
rected graphs, Inf. Process. Lett., Vol.31, No.1, pp.7–15 (1989).

[23] Amazon Web Services (online), available from 〈http://aws.amazon.
com〉, (accessed 2014-12).

[24] Docker platform (online), available from 〈https://www.docker.com〉,
(accessed 2014-12).

[25] Heroku (online), available from 〈http://heroku.com〉, (accessed 2014-
12).

Marat Zhanikeev received M.S. and
Ph.D. in Global Information and Telecom-
munications Studies from Waseda Uni-
versity in Tokyo, Japan, in 2003 and
2007, respectively. His research interests
include network measurement, network
monitoring, and network management,
but also extend to practical applications

related to these topics as well as non-traditional applications of
information technology in general. He is presently an Associate
Professor at Kyushu Institute of Technology (Kyutech), and is
a Regular Member of IPSJ.

c© 2016 Information Processing Society of Japan 108


