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Abstract: A significant number of logs are generated in dynamic malware analysis. Consequently, a method for effec-
tively compressing these logs is required to reduce the amount of memory and storage consumed to store such logs. In
this study, we evaluated the efficacy of grammar compression methods in compressing call traces in malware analysis
logs. We hypothesized that grammar compression can be useful in compressing call traces because its algorithm can
naturally express the dynamic control flows of program execution. We measured the compression ratio of three gram-
mar compression methods (SEQUITUR, Re-Pair, and Byte Pair Encoding (BPE)) and three well-known compressors
(gzip, bzip2, and xz). In experiments conducted in which API call sequences collected from thousands of Windows
malware were compressed, the Re-Pair grammar compression method was found to outperform both gzip and bzip2.
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1. Introduction

Dynamic analysis is essential for understanding the behavior
of modern malware, which are becoming resistant to static anal-
ysis by code obfuscation and packing. In dynamic analysis, the
runtime behavior of malware is recorded and examined. Nowa-
days, a significant amount of malware is being continuously de-
tected and analyzed. For example, Kaspersky Lab reported that
it detected approximately 310,000 new malicious files daily in
2015 [5]. When dynamic analysis is applied to these rapidly pro-
liferating malware, a substantial number of analysis logs are gen-
erated. These logs require significant amounts of storage and
memory.

In this study, we are concerned with Windows platforms and
logs of Windows API call sequences. In general, dynamic anal-
ysis logs contain various types of data such as sets of files and
registries accessed by malware and process trees observed during
malware execution. Among them, API call sequences are well-
known to be an extremely important clue to understanding and
detecting malware behavior [1], [6], [8], [15]. However, logs of
API call sequences tend to grow particularly large because most
Windows APIs represent basic and small operations, and hence
are invoked more frequently than file accesses and network com-
munication.

We consider that the use of compression can significantly re-
duces the amount of storage and memory consumed to store such
logs. Further, API call sequences are particularly suitable for
compression for a number of reasons. First, call sequences in
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general have low information entropy because of limited varia-
tions in program behavior and execution of iterations. Second,
some malware repeatedly execute the same operation in attack
attempts such as network scanning and file encryption. Call se-
quences invoked in repeated operations are likely to contain many
occurrences of common subsequence patterns. Finally, call se-
quences collected from different malware samples can also con-
tain many common subsequences because multiple variants of a
single malware will behave similarly, and recently a considerable
number of the malware that have spread globally are actually vari-
ants of other malware.

We hypothesized that a high compression ratio can be obtained
with grammar compression [ 7], which is a lossless compression
method that transforms an input string into context-free gram-
mar generation rules. Grammar compression is known to be use-
ful in compressing data that contain repeated common patterns
such as gene sequences. Our observation is that grammar com-
pression has a high potential for effectively compressing call se-
quences, which have generative and hierarchical structures ow-
ing to the execution of nested loops and function calls. Another
observation leading us to consider grammar compression is that
it enables the application of various operations such as pattern
matching without decompressing the data. Pattern matching per-
formance is critical in malware analysis and the ability to avoid
decompressing all of the data is crucial. However, to the best of
our knowledge, no work has evaluated grammar compression in
the compact representation of malware behavior logs application
field.

In this study, we evaluated the efficacy of grammar compres-
sion against call sequences of Windows APIs included in logs of
dynamic malware analysis. Specifically, we conducted experi-
ments involving the compression of API call sequences collected
from thousands of malware samples and compared the compres-
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Generation rules
S—-ABBBCCDIi1iEATF
Input string A—>aEF

abcddddedededfghddfg | — 2 - ; d -
hddddibcabecdddddddd g

D—>dd

E—>Dbc

F—>DD

Fig. 1 Example of transformation by SEQUITUR.

sion ratio of various grammar compression methods to other well-
known methods. In this study, we focused on compressing se-
quences of called API names only and did not treat other infor-
mation such as call arguments and return values.

2. Grammar Compression

We evaluated three grammar compression methods:
SEQUITUR, Re-Pair, and Byte Pair Encoding (BPE). All
three methods produce a straight line program (SLP), which is
a set of generation rules that derive the given input string only.
The generation of the smallest SLP is NP-hard and none of the
methods can always bring about the optimum solution.

2.1 SEQUITUR

SEQUITUR [13] transforms an input string into context-free
grammar generation rules through an online algorithm in which
characters are scanned one by one from the beginning of the string
to the end. It creates generation rules so that the following condi-
tions are satisfied:

e Digram uniqueness: No character pair must occur more than

once in the resulting generation rules.
e Rule utility: All of the resulting generation rules must be
used more than once to recover the original input.

Every time SEQUITUR reads a character, it checks whether the
last character pair in the scanned part has previously occurred. If
it has, SEQUITUR replaces the pairs with a new character and
adds a generation rule to generate the pair from the character.
After the scan of the entire input string, SEQUITUR repeatedly
finds a rule that is used only once and applies “inlining” to it—it
replaces the source character of the rule in the compressed string
with the output characters of the rule, and removes the rule from
the resulting set of rules.

Figure 1 shows an example of transformation by SEQUITUR.
Symbol S represents the start symbol and the symbols from A to
F represent intermediate context-free grammar symbols.

2.2 Re-Pair

Re-Pair [9] is based on an offline algorithm that scans an entire
input string and then starts to transform it. Re-Pair finds the char-
acter pair that occurs most frequently in the currently transformed
string. It then replaces the pair with a new character and adds a
rule that generates the pair from the new character. It repeats the
operation until no character pair in the string occurs more than
once. Then, it outputs the current string and the current genera-
tion rules as the final result.

Figure 2 shows an example of transformation by Re-Pair.
Symbol S represents the start symbol and the symbols from A to
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Generation rules

S>FGDIAIBIiCFRB
A—>dd
B—~>AA
Input string C—>be
abcddddedededfghddfg |~ |D > e d
hddddibcabedddddddd E—>acC
F—>EB
G—>DD
H—>f g
I>Hh

Fig. 2 Example of transformation by Re-Pair.

I represent intermediate context-free grammar symbols. The rule
for the start symbol may have more than two output characters
while any other rule has exactly two output characters.

2.3 Byte Pair Encoding (BPE)

The BPE [3] grammar compression method is a variant of Re-
Pair. BPE fundamentally uses Re-Pair’s method except that the
sum of the number of characters in an input string and the num-
ber of newly introduced characters is limited to 256. When the
sum reaches 256, BPE abandons the replacement of pairs and
outputs the current string and the current generation rules as the
final result. Although compressed strings generated by BPE are
often longer than those generated by Re-Pair, limitations on the
number of characters enable BPE to represent all characters com-
pactly with one byte.

3. Experimental Evaluation

3.1 Method

We measured the compression ratio of API call sequences us-
ing both grammar and other compression methods.

We used FFRI Datasets [4], which are datasets of dynamic
analysis logs of real Windows malware collected by FFRI Inc.
All of the currently available datasets were used: FFRI Datasets
2013, 2014, 2015, and 2016. These datasets contain rich infor-
mation including sequences of API calls invoked in malware ex-
ecution, as well as information about network communication,
file accesses, and registry accesses. FFRI created the datasets by
executing malware in virtual Windows environments managed by
Cuckoo Sandbox. The operating systems for datasets of 2014 and
2015 are Windows 7 and Windows 8.1 (x64), respectively. The
2016 dataset contains logs collected on Windows 8.1 (x64) and
Windows 10 (x64). We used the Windows 8.1 logs. The version
of Windows for the 2013 dataset has not been published. Each
malware was executed for at most 120 seconds.

We extracted the call-sequence parts from the logs of each mal-
ware, and then extracted the API-name section from each call
sequence. Subsequently, we concatenated them into one long se-
quence of API names with a delimiter character inserted between
the sequences to be concatenated. Because the call sequences
of all malware samples in a dataset were concatenated into one,
compression operations affected common call sequences of dif-
ferent malware. Then, we transformed the sequence into an input
character string suitable for compression. Figure 3 shows an ex-
ample of the transformation. Each API name was transformed
into a character, and mapping between the API name and the
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Table 1 Statistics information.

Dataset | Number of call Total size of Number of Average length Size of Size of
sequences used  call sequences ~ APInames  of call sequences  inputstring  mapping table
2016 8,243 569.10 MB 294 4,599 75.85MB 4.83KB
2015 2,970 55.10MB 141 1,191 3.54MB 2.37KB
2014 2,999 576.16 MB 145 11,663 34.99 MB 2.42KB
2013 2,612 28.11 MB 120 652 1.71 MB 2.11 KB
Table 2 Results of compression
Dataset Size of gzip bzip2 XZ SEQUITUR Re-Pair BPE Compressed Generation
input string string (Re-Pair)  rules (Re-Pair)
7585MB | 3.23MB  1.85MB  1.11MB 1.7J0MB  1.10MB —
2016 (100%) (4.25%) (2.44%) (1.47%) (2.24%) (1.45%) (—) 338,678 133,294
3.54MB | 027MB  0.13MB 0.10MB 021MB 0.13MB 1.21 MB
2015 (100%) (7.73%) (3.74%) (2.95%) (6.04%) (3.57%) (34.2%) 38,506 23913
3499MB | 2.01MB 1.07MB  0.55MB 1.08MB 0.62MB  10.41 MB
2014 (100%) | (5.76%) (3.06%)  (1.58%) G.10%)  (177%)  (29.7%) 176,578 95,028
1.7IMB | 0.14MB 0.08MB 0.07MB 0.13MB  0.08 MB 0.61 MB
2013 (100%) | (828%) (4.53%) (4.11%) (1.55%)  (4.61%)  (35.9%) 24,202 16,509

API call sequence

LdrGetDllHandle, LdrLoadDll, LdrGetProcedureAddress,
NtOpenFile, DeviceIoControl, LdrLoadDll,
LdrGetProcedureAddress, IsDebuggerPresent,
GetSystemMetrics, ZwMapViewOfSection, LdrGetDllHandle,
LdrGetProcedureAddress, GetSystemMetrics,
DeviceIoControl, LdrGetDllHandle, LdrLoadDll1,
LdrGetProcedureAddress, LdrGetDllHandle, ExitProcess

/\

Mapping table Input string

a =LdrGetDllHandle abcdebcfghacgeabcai
b =LdrLoadDll

c =LdrGetProcedureAddress
d=NtOpenFile

e =DeviceIoControl

f = IsDebuggerPresent

g =GetSystemMetrics

h = ZwMapViewOfSection
i=ExitProcess

Fig. 3 Example of transformation from a sequence of API names into a
mapping table and an input string of characters.

character was recorded in a mapping table. Because the 2013
to 2015 datasets each contains less than 256 API names, we rep-
resented each character with one byte. For the 2016 dataset how-
ever, we represented each character with two bytes because it
contains more than 256 API names. We also conducted an ex-
periment in which we represented each character in the 2013 to
2015 datasets with two or four bytes, but found that the choice of
representation had negligible impact on the compression ratio.

Some of the logs in the FFRI Datasets do not contain any call
sequences, and some contain unfinished call sequences. We did
not use such logs in our experiment.

We evaluated the abovementioned grammar compression
methods and three other well-known compressors: gzip 1.6
(GNU), bzip2 1.0.6, and xz (XZ Utils) 5.1.0alpha. Gzip and xz
are based on LZ77-like dictionary coder algorithms. Bzip2 is
based on block-sort and move-to-front algorithms. We imple-
mented SEQUITUR, Re-Pair, and BPE using the source code
available at Refs.[16], [14], and [2], respectively. We used
Ubuntu 14.04 LTS (64 bit) running on Intel Core 17-3770 as our
platform.
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3.2 Results

Table 1 shows call sequence statistics information. In the ta-
ble, “Number of call sequences used” indicates the number of
malware samples used to generate the sequences. ‘“Total size of
call sequences” indicates the size of the file that contains the se-
quences of original API names, where both API names and call
sequences are delimited by a one-byte character. “Number of API
names” indicates the number of unique API names and does not
indicate the total number of API calls. “Average length of call
sequences” indicates the average number of calls contained in a
call sequence of one malware sample. “Size of input string” and
“Size of mapping table” indicate their sizes.

Table 2 shows the experimental results obtained. The columns
labelled with the compression methods indicate the sizes of the
resulting output files generated by the corresponding programs.
The numbers in parentheses indicate the compression ratio. We
were unable to apply BPE to the 2016 dataset because its char-
acters were represented with two bytes. The last two columns
indicate the length of the resulting string and the number of gen-
eration rules for Re-Pair. We included the last two columns to
better understand the grammar compression statistics and chose
Re-Pair because it performed the best.

Re-Pair achieved the best compression ratio among the various
grammar compression methods, and xz achieved the best com-
pression ratio among the other compression methods. Comparing
Re-Pair and xz, xz performed better on the 2013-2015 datasets
and Re-Pair performed better on the 2016 dataset. It should be
noted that SEQUITUR and Re-Pair achieved higher compression
ratios than that of gzip. Re-Pair was superior to even bzip2 and
xz in several cases. Even when Re-Pair’s compression ratio was
lower than that of xz, the difference was quite small (in particular,
the difference was 0.2% on the 2014 dataset). The result demon-
strates that grammar compression can achieve compression ra-
tios that are as high as, and even higher than, those achieved by
widely-used compression methods.

We surmise that the reason why Re-Pair’s compression ratio is
sometimes lower than that of xz is the inefficient encoding exe-
cuted by the program. Grammar compression programs finally
encode generation rules into a compressed file. The high com-
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pression ability of xz is partially due to the use of an efficient
encoding algorithm called range coder. The optimization of en-
coding operations in the grammar compression programs can im-
prove their compression ability.

Although details are omitted, we briefly report on the per-
formance of compressed pattern matching in which a character
string was searched for in the compressed data as-is (i.e., a set
of generation rules that represent an input string). We used BPE
as the grammar compression method and the KMP automaton
for a pattern matching algorithm according to the description in
Ref.[17]. The strings used had 5-10 characters containing no
regular expression. The result showed that the amount of time
elapsed for pattern matching was dominantly correlated with the
data lengths and the compressed representation did not signifi-
cantly degrade the performance. Compared with ordinary pattern
matching that scans the original input string, compressed pattern
matching achieved a speedup whose degree was close to the re-
ciprocal of the compression ratio.

4. Related Work

Larus [10] proposed a method of generating whole program
paths, which are a compressed expression of whole control-
flow information recorded in program execution. Larus used
SEQUITUR to generate entire program paths. Larus’ work is
similar to our work in that both works study the efficacy of gram-
mar compression methods to compress program traces. However,
our work differs from Larus’ work in that it provides insights
about the compression ratio of API call sequences in dynamic
malware analysis.

Walkinshaw et al. [18] used SEQUITUR to recognize repeated
patterns in program traces and to visualize them. As in our ex-
periment, they generated an input string by transforming each el-
ement of API call sequences into one character. Whereas they
adopted grammar compression to support user comprehension of
dynamic application behavior, we adopted it to compress logs of
dynamic malware behavior.

Lietal. [11] proposed an LZW-based technique for compress-
ing system logs, including antivirus firewall logs. They did not
evaluate grammar compression and the format of their logs is un-
clear.

Many techniques for compressed pattern matching have been
proposed [12], [17]. However, the targets of these works are En-
glish texts and gene sequences, as opposed to API call sequences.

There has been much work in which API call sequences in the
FFRI Datasets have been used to evaluate systems of malware
detection or classification (e.g., Ref.[6]). Our work is comple-
mentary to such work because it focuses on efficient compression
of malware analysis logs.

5. Conclusion and Future Work

In this study, we evaluated the efficacy of grammar compres-
sion in compressing sequences of Windows API calls generated
in dynamic malware analysis. Our conclusion is that in several
cases, grammar compression methods achieved a better compres-
sion ratio than other well-known compressors. Further, from an-
other aspect, we consider grammar compression as an attractive
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option for managing analysis logs because it enables fast execu-
tion of security operations such as pattern matching against com-
pressed data as-is.

There are several directions for future work. First, it is nec-
essary to develop an extended method to compress all parts of
API calls, including arguments and return values. A technique
for effectively encoding and compressing these additional pieces
of information is required. Second, it is also necessary to conduct
further evaluation using other types of input data such as logs of
benign applications and Linux programs.
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