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Abstract: This paper proposes a parallel implementation of graph mining that extracts all connected subgraphs with
common itemsets, of which the size is not less than a given threshold, from a graph and from itemsets associated with
vertices of the graph, in distributed memory environments using the task-parallel language Tascell. With regard to this
problem, we have already proposed parallelization of a backtrack search algorithm named COPINE and its implemen-
tation in shared memory environments. In this implementation, all workers share a single table, which is controlled
by locks, that contains the knowledge acquired during the search to obviate the need for unnecessary searching. This
sharing method is not practical in distributed memory environments because it would lead to a drastic increase in the
cost of internode communications. Therefore, we implemented a sharing method in which each computing node has
a table and sends its updates to the other nodes at regular time intervals. In addition to this, the high task creation
cost for COPINE is problematic and thus the conventional work-stealing strategy in Tascell, which aims to minimize
the number of internode work-steals, significantly degrades the performance since it increases the number of intran-
ode work-steals for small tasks. We solved this problem by promoting workers to enable them to request tasks from
external nodes. We also employed a work-stealing strategy based on estimation of the sizes of tasks created by victim
workers. This approach enabled us to achieve good speedup performance with up to 8 nodes × 16 workers.

Keywords: backtrack search, graph mining, task-parallel languages, distributed memory environments, dynamic load
balancing

1. Introduction

The design and implementation of parallel algorithms to
achieve performance acceleration is indispensable because the
number of processor cores in computer systems has been steadily
increasing. In addition, distributed memory systems consisting of
computing nodes with their own memory space and that are con-
nected to a communication network have become mainstream in
recent high-performance computing (HPC) systems. Distributed
memory systems can improve the performance by carrying out
massively parallel computing with multiple computing nodes,
and also have the ability to process large-scale problems. Thus,
the parallel implementation of graph mining in a distributed en-
vironment is important since the amount of data to be analyzed
continues to become larger. This paper proposes the parallel im-
plementation of graph mining that extracts connected subgraphs
with common itemsets (Common Itemset connected subGraph,
CIG) from a graph and itemsets associated with vertices of the
graph, in distributed memory environments. Here, a common
itemset refers to the intersection of all itemsets with which ver-
tices of a connected subgraph are associated.
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This kind of graph mining is applicable to the acquisition of
various useful types of knowledge from a large amount of data
in various fields [1], [2]. For example, we could identify an ap-
propriate group of users with common interests to which to direct
targeted advertising by applying graph mining to a social network
where each vertex represents a user and contains his/her interests.
Another example would be to find reactional set pairs of genes
and drugs by enumerating CIGs in a biological network where
each vertex represents a gene and is associated with a set of drugs
that react with the gene. Such knowledge is expected to be helpful
for drug discovery.

We have already proposed COmmon Pattern Itemset NEtwork
mining (COPINE) [1], [2] as an efficient backtrack search al-
gorithm for extracting CIGs. We have also proposed its paral-
lel implementation using the task-parallel language Tascell [3] in
shared memory environments [4]. In this research, we enhanced
this implementation for distributed memory environments.

Tascell supports distributed memory environments and dy-
namic load balancing across computing nodes. We confirmed
that Tascell achieves good performance for various backtrack
search benchmark programs in distributed memory environ-
ments [3], [5]. However, the efficient parallel implementation of
the COPINE algorithm in distributed memory environments re-
quires us to solve the following two problems.

The first problem involves determining how computing nodes
share table information related to pruning. COPINE avoids un-
necessary searches by using a pruning mechanism that depends
on the knowledge acquired during searches. In a parallel search
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where a unique set of subtrees (tasks) is assigned to each worker,
workers need to share the acquired knowledge efficiently. In our
implementation in shared memory environments [4], a single ta-
ble controlled by locks is shared among workers. This method is
unrealistic in distributed memory environments because it drasti-
cally increases the cost of internode communications. Therefore,
we implemented a sharing method in which each computing node
has a table and sends its updates to the other nodes at regular time
intervals.

The second problem entails determining how to reduce the to-
tal cost of work-steals among workers. When stealing a part of
another worker’s task with the conventional work-stealing strat-
egy in Tascell, an idle worker (thief) chooses another worker as a
victim inside the same computing node whenever possible. This
strategy is expected to minimize the number of internode work-
steals. However, a thief often obtains a small task within the
same node even if larger tasks are available in external nodes.
Although we did not experience a significant performance degra-
dation in evaluations using some backtrack search algorithms in
[3], [5], serious performance degradation is observed for our par-
allel COPINE solver due to the high cost of work-steal. We alle-
viated this problem by discussing and implementing the follow-
ing work-stealing strategies: (1) workers are promoted to obtain
larger tasks by requesting tasks from workers in external nodes,
(2) a thief estimates the sizes of tasks that can be created by other
workers to enable it to steal a task from the worker with the largest
estimated task size, and (3) a worker, which is expected to steal
only a small task, waits for a certain time before attempting to
steal.

The contributions of this paper are threefold:
• We implemented the parallel COPINE algorithm in dis-

tributed memory environments using the task-parallel lan-
guage Tascell.

• We discussed and implemented new work-stealing strategies
in Tascell to enable workers to obtain larger tasks especially
in distributed memory environments.

• We evaluated the above implementations of COPINE and the
work-stealing strategies, and succeeded in accelerating the
computation with up to 8 nodes × 16 workers when analyz-
ing a real protein network.

The remainder of this paper is organized as follows. We in-
troduce the COPINE algorithm in Section 2. In Section 3, we
present the load balancing strategy in Tascell. Then, we pro-
vide the implementation of COPINE in distributed memory en-
vironments in Section 4, and propose the improved work-stealing
strategies in Tascell in Section 5. We show the performance eval-
uations in Section 6. We summarize related work in Section 7.
Finally, we conclude this paper and describe future work in Sec-
tion 8.

2. COPINE Algorithm

In this section, we introduce graph mining targeted at this re-
search. First, we define the problem in Section 2.1. Then, we
explain the sequential and parallel COPINE algorithms in Sec-
tion 2.2 and 2.3, respectively. Further details and proofs of the
correctness of these algorithms can be found in Ref. [4].

2.1 Definition of CCIG Enumeration Problem
In this section, we define the Closed CIG (CCIG) enumeration

problem. This problem involves a graph of which the vertices
are associated with itemsets, and the common itemset of a con-
nected subgraph, i.e., the intersection of all itemsets associated
with its vertices. A CCIG with respect to an itemset Ic is a maxi-
mal subgraph among CIGs that have Ic as their common itemset;
in other words, a CIG having no adjacent vertex whose addition
to the CIG preserves Ic as the common itemset of the expanded
subgraph. The CCIG enumeration problem is to find all CCIGs
whose common itemset size is not less than a given threshold.
More formal definitions of the connected subgraph, CIG, CCIG,
and the CCIG enumeration problem are as follows.
Definition 1 (Connected Subgraph) For a given graph G =

(V, E), we term G′ = (V ′, E′) a connected subgraph *1 of G iff
all of the following criteria hold.

(1) V ′ ⊆ V

(2) E′ = {(u, v) | u, v ∈ V ′} ∩ E

(3) ∀u, v ∈ V ′ : ∃{(u1, v1), · · · , (un, vn)} being the path be-
tween u and v where u1 = u, vn = v, (ui, vi) ∈ E′,
ui = vi−1 (1 < i ≤ n)

Note that E′ is uniquely defined by V ′, and thus we may let E′ be
denoted by E(V ′).

The CCIG enumeration problem is defined as follows.
Definition 2 (CCIG Enumeration Problem) Given a graph
G = (V, E), a set of items I, items associated with each vertex v
being I(v) ⊆ I (v ∈ V), and a threshold θ, the CCIG enumeration

problem is to extract all connected subgraphs G′ = (V ′, E′) that
satisfy the following two conditions.

(i)

∣∣∣∣∣∣∣
⋂
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∣∣∣∣∣∣∣ ≥ θ
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for any v′ adjacent to G′, i.e., v′ ∈ V − V ′ such that
∃v ∈ V ′ : (v, v′) ∈ E.

A connected subgraph G′ that satisfies (i) above is named a
CIG. A CIG that satisfies (ii) is named a CCIG. CCIGs are closed
with respect to the itemset I(G′) =

⋂
v∈V ′ I(v).

An example of an input graph associated with itemsets is
shown in Fig. 1. Table 1 contains the output when this graph
and θ = 2 are given as input. Note that G′′ = (V ′′, E(V ′′)) where
V ′′ = {v1, v4, v5} is not included in the output, because it satis-
fies (i) since I(G′′) = {i1, i3} but not (ii) since I(G′3) = I(G′′) and
V ′3 ⊃ V ′′.

2.2 Sequential COPINE Algorithm
As shown in Fig. 2, the COPINE algorithm applies a depth-first

search to a search tree consisting of the following components: a

*1 To be exact, this is a connected and induced subgraph due to condi-
tion (2). In this paper, however, we term it a connected subgraph for
simplicity.
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Fig. 1 Example of a graph associated with itemsets.

Table 1 Outputs when the graph in Fig. 1 and θ = 2 are given as inputs.

Connected subgraph: G′i Vertex set: V ′i Common itemset: I(G′i )
G′1 {v1, v3, v4} {i1, i2}
G′2 {v1, v3} {i1, i2, i4}
G′3 {v1, v4, v5, v6} {i1, i3}
G′4 {v1, v4} {i1, i2, i3}
G′5 {v1} {i1, i2, i3, i4}
G′6 {v2} {i1, i5}
G′7 {v4, v6} {i1, i3, i5}
G′8 {v4} {i1, i2, i3, i5}
G′9 {v5} {i1, i3, i4}

Fig. 2 Search tree for the graph in Fig. 1 (θ = 2).

pseudo-root corresponding to an empty graph, nodes correspond-
ing to graph vertices, and edges corresponding to graph edges.
Note that a path from the root to a node represents a connected
subgraph, and adding a child node means adding an adjacent ver-
tex to the connected subgraph. The fact that there are generally
two or more vertices that can be added to a connected subgraph
corresponds to the fact that a node in the search tree can have
multiple child nodes. Therefore, to examine all the connected
subgraphs G′ such that G′ ⊃ Gn, where Gn is the subgraph rep-
resented by a tree node n, COPINE repeats the search rooted by
every child c of n and backtracks to n to choose a sibling of c.

Given that the search tree represents all the subgraphs of an in-
put graph G, we can enumerate all CCIGs by traversing the tree
completely. However, this is generally unrealistic. Therefore, to
reduce the search space, COPINE prunes those tree edges from
which the following three types of subgraphs are derived;
Pruning 1 subgraphs that have already been visited,
Pruning 2 subgraphs of which the itemset is smaller than the

threshold θ, and
Pruning 3 subgraphs not being closed since one of their super-

graphs has already been visited and their itemsets are identi-
cal.

Pruning 1 avoids duplicate enumeration using the gSpan tech-
nique [6]. In a straightforward depth-first search to enumerate the
connected subgraphs, all vertices adjacent to a connected sub-
graph represented by a path from the root to a node become can-
didates for the vertex added in the next step. Pruning 1 limits the
addition to ensure that subgraphs continue to be traversed in as-

cending order in terms of the lexicographical order given to the
path from the root to a node and which is derived from an arbi-
trary ordering v1 ≺ v2 ≺ · · · v|V | of all the vertices in V . That
is, we represent a subgraph G′ = (V ′, E(V ′)) by the sequence of
vertices 〈v′1, . . . , v′k〉 where V ′ = {v′1, . . . , v′k} and v′1 ≺ · · · ≺ v′k,
and traverse subgraphs in the ascending lexicographical order of
these sequences. A search tree for the graph in Fig. 1 to which
this pruning is applied is shown in Fig. 2. The label and itemset
of each tree node represent the last vertex added to the subgraph
corresponding to the node and its common itemset, respectively.
Although 〈v1, v3, v4〉 in Fig. 2 is traversed, 〈v1, v4, v3〉 = 〈v1, v3, v4〉
is not traversed because its precedence over 〈v1, v4〉 in the lexico-
graphic order violates the ascending order of traversal.

Pruning 2 exploits the property that the common itemset size
does not increase when an adjacent vertex is added to a connected
subgraph, i.e., the itemset size is monotonically non-increasing
from the root to the leaf in the search tree. Therefore, if we en-
counter a node of which the corresponding subgraph has a com-
mon itemset smaller than the threshold θ, it is obvious that further
traversal to any descendants of the node would be meaningless
because any expansion to the subgraph results in a common item-
set smaller than θ. The nodes represented by dashed frames in
Fig. 2 are eliminated by this second pruning.

Focusing on the two subtrees surrounded by red frames in
Fig. 2, we find that the subtree on the right, rooted by n2, is iden-
tical to the tail of the one on the left, rooted by n1, including
the itemset labels of their corresponding nodes. This means that
visiting descendants of n2 is unnecessary because the subgraphs
they represent have supergraphs represented by the subtree on the
left of which the itemsets are identical to those of the subgraphs.
That is, the subgraphs represented by the subtree on the right are
not closed. We avoid such a duplicated search by introducing the
third type of pruning (Pruning 3) as follows.

We prepare an itemset table of which the entries correspond to
the vertices of the graph. When a vertex is added to the subgraph
we are visiting, the common itemset of the resulting subgraph is
added to the entry corresponding to the added vertex unless the
table entry contains a super-itemset of the itemset to be added.
Otherwise, if a super-itemset exists, the search of the descendants
of the current tree node can be skipped. The shaded nodes in
Fig. 2 are eliminated by this kind of pruning. For example, the
itemset {i1, i2, i4} is added to the table entry corresponding to v3
when n1 is visited. When n2 is visited, {i1, i2, i4} is to be added to
the same table entry again. At this time, since this super-itemset
(in a broad sense) has already been registered, the search from n2

in the direction of the leaf is skipped.
On the other hand, if a proper subset of the itemset being added

has been registered, it is removed from the entry *2. An itemset
in the entry that has no inclusive relation with the itemset being
added remains stored. For example, the itemset {i1, i2} is added
to the table entry corresponding to v4 when 〈v1, v3, v4〉 is visited.
Then, {i1, i2} is removed from this entry when we visit 〈v1, v4〉 and
add the itemset {i1, i2, i3}, which contains {i1, i2}, to the entry.

The sequential COPINE algorithm shown in Fig. 3 enumerates

*2 Even though this removal is not necessary for the correctness of the al-
gorithm, it prevents the itemset table from becoming unnecessarily large.
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all CCIGs of a graph G = (V, E) whose common itemset size is
not less than θ. In ExploreCCIG( ), T is the sequence of vertices
corresponding to the connected subgraph that the function is vis-
iting, C is the sequence of vertices adjacent to T , and V is the
set of all vertices not in T . In this algorithm, Pruning 1 corre-
sponds to the fact that subgraphs are scanned, managing V , N,
and C. Pruning 2 is performed by detecting the inferiority of the
itemset cardinality to the threshold θ at lines 6 and 21. Prun-
ing 3 is executed by adding an itemset to the itemset table entry
(lines 8 and 23) and detecting an inclusive relation between item-
sets (lines 7 and 22).

2.3 Parallel COPINE Algorithm
We parallelize the algorithm in Fig. 3 by dividing the search

tree and assigning a unique set of subtrees to each worker. This
can be implemented by dividing the two for loops (lines 4–10
and 18–26) into appropriate units and executing them in parallel.

Each worker traverses the assigned subtrees in almost the same
way as in the sequential search. Prunings 1 and 2 can be directly
applied to the parallel algorithm. However, we need to impose
a certain restriction on Pruning 3. In Fig. 3, a worker refers to
ci.I (a set of itemsets registered when the vertex ci was added to
a subgraph) to check whether Pruning 3 is applicable. In a par-
allel search, a worker could excessively prune the branches in its
subtrees if it blindly consulted table entries registered by another
worker. We can avoid such excessive pruning by the restriction
that a worker can refer to itemsets for Pruning 3 only if those

itemsets had been registered earlier in a sequential search. A
worker needs to check whether an element, i.e., an itemset, reg-
istered to the table had been registered earlier to the table, even if
the search was executed sequentially rather than in parallel. This
verification by a worker requires each itemset to have some se-
quential ordering information concerning its registration.

In a parallel search, a search tree node visited by a worker may

Fig. 3 Sequential algorithm to enumerate all CCIGs of graph.

have some precedent nodes left unvisited by other workers even
though they should have been visited in the sequential search.
Therefore, it is virtually impossible to perform Pruning 3 per-
fectly, and thus the parallel version of the algorithm in Fig. 3 will
assert a CIG to be closed even though this is not true in reality. In
order to obtain a sound set of CCIGs, we need to eliminate CIGs
that do not satisfy condition (ii) of Definition 2 after the search *3.

3. Task-Parallel Language Tascell

Before describing the implementation of COPINE, we explain
the mechanism of dynamic load balancing in Tascell.

3.1 Overview
Figure 4 shows a multistage overview of Tascell. Compiled

Tascell programs are executed on one or more computing nodes.
Each computing node has one or more workers in the shared
memory environment, and is TCP/IP connected to a relay server
named Tascell server. Thus, Tascell realizes parallel computa-
tion in distributed memory environments by connecting comput-
ing nodes via Tascell servers.

A Tascell server relays messages among computing nodes, pro-
cesses input and output to the user, and manages workloads of
computing nodes. As shown in Fig. 4, a Tascell server can be
connected to another Tascell server. Thus, computing nodes and
Tascell servers generally form a tree, although we do not include
performance evaluations with more than one Tascell server in this
paper.

3.2 Dynamic Load Balancing
Tascell balances workloads among workers using the dynamic

load balancing mechanism of “work-stealing,” whereby an idle
worker steals part of another worker’s task. In Tascell, program-
mers need to describe: (1) a series of operations, part of which
can be assigned to another worker as a task, e.g., a loop to be
parallelized; and (2) the information passed to a worker during
task assignment, e.g., data referred to or updated by the worker.
During execution, the runtime program creates tasks and assigns

Fig. 4 Multistage overview of the Tascell framework.

*3 The time required for this elimination is not considered in the perfor-
mance evaluation in Section 6 because we can obtain a sound set of
CCIGs in short time independently of the parallel search method that is
used. This can be achieved by traversing the search tree again by refer-
ring to the “perfect” itemset table, which is obtained by the first traversal.
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Fig. 5 Spawning a task lazily in Tascell.

them to workers automatically.
A Tascell worker executes its own task sequentially, and does

not spawn a task until it receives a work-stealing request (task re-
quest) from another worker. That is, when the worker reaches a
statement for which a task can be spawned (e.g., a parallel loop),
it simply remembers the possibility at this point, and then exe-
cutes the statement as if choosing a completely sequential exe-

cution. Each worker has its own workspace containing the data
required for the search, and the search data are updated at each
step.

When a worker (victim) receives a task request from another
worker (thief), it backtracks to the oldest point among the paral-
lelizable (task-spawnable) points, that is, the point at which the
largest task can be spawned, and then spawns a task as if chang-

ing the choice of execution to parallel from sequential. The vic-
tim then allocates and initializes a new workspace for the task by
making a copy of its workspace after backtracking.

Figure 5 illustrates how a task is spawned lazily, that is, only
after a worker receives a task request. Suppose that nx is the old-
est task-spawnable point passed by the worker wv. When wv re-
ceives a task request from the worker wt,
(1) it backtracks to nx performing undo operations to restore the

state of its workspace at nx, and then
(2) spawns a task to traverse the right subtree.
wv creates part of the unexecuted iterations of a parallel for

loop at nx as a task. After sending the task to wt,
(3) wv returns from the backtracking with redo operations to

restore the state of its workspace before backtracking, and
then

(4) resumes its own task.
Each task and its result are transmitted as a task object among

workers. It can be transferred by passing the pointer in shared
memory environments, or by serializing it via Tascell servers in
distributed memory environments.

3.3 Work-Stealing Strategy
3.3.1 Task Request

In conventional Tascell, a thief worker uses the following strat-
egy to choose a victim worker to which to send a task request.
(1) A thief randomly chooses a victim among other workers in

the same computing node and sends a task request to it. If
the victim can spawn a task, it spawns a task and sends it to
the thief, as described in Section 3.2. Otherwise, the victim
sends a refusal message to the thief.

(2) If the thief received a task as a response to the request in
(1), it executes the task. If it received a refusal message, it
chooses another worker in the same node as a victim and
sends a task request to it.

(3) If the thief received refusal messages from all workers in
the same computing node after repeating (1) and (2), that is,
there are no task-spawnable workers in the node, the rep-
resentative worker in the node sends a task request to the
Tascell server directly connected to the node.

(4) The Tascell server that received a task request randomly
chooses a computing node among nodes connected to the
server excluding the request sender, and forwards the re-
quest to it.

(5) The computing node that received a task request forwarded
by a Tascell server checks workers in the node in a random
order. If the node contains a worker with a task that can be
spawned, the worker spawns the task and sends the task to
the thief via the Tascell server. Otherwise, the node sends a
refusal message to the thief, again via the Tascell server.

(6) If the thief cannot acquire a task from external computing
nodes, it returns to (1) and retries stealing a task after halt-
ing for a while.

According to this strategy, a thief always steals a task from a
worker inside the same computing node if there is a worker with
a task that can be spawned. We discuss the problems associated
with this strategy and propose solutions to them in Section 5.1.
3.3.2 Stealing Back

When a Tascell worker cannot process its running task without
receiving the result of a task that has been sent to another worker
as part of the running task, the worker tries to steal another task
as a thief rather than becoming idle waiting for the result. On this
occasion, the victim of the request to steal is not chosen using
the strategy explained in Section 3.3.1 but the thief steals back a
task from the worker to which the task causing the synchroniza-
tion is assigned. Using this technique, we can guarantee that the
maximum size of execution stacks of workers does not exceed a
constant times the maximum stack size encountered during a se-
quential execution [7]. On the other hand, this approach causes
performance problems. We discuss these problems and propose
solutions to them in Section 5.2.

4. Itemset Table Sharing

The efficient implementation of Pruning 3 in a parallel search
requires workers to share table information under the restriction
described in Section 2.3. This necessitates the design of an effi-
cient sharing method by considering a trade-off between increas-
ing the opportunity of using itemsets registered by other workers
and reducing the cost of sharing information. In Section 4.1, we
explain the sharing method in shared memory environments pre-
sented in [4]. Then, we introduce a sharing method in distributed
memory environments in Section 4.2.

4.1 Implementation in Shared Memory Environments
In our COPINE implementation in shared memory environ-

ments, all workers share a single itemset table with a mutual ex-
clusion lock for each table entry. We satisfy the restriction de-
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scribed in Section 2.3 by associating a task ID to each task and
add the ID to each itemset registered in an itemset table entry to
denote where in a search tree the itemset is registered. That is, the
later the itemset is registered in a sequential search, the greater the
value of the ID is associated with the itemset. A worker can use
an itemset in the itemset table only if the task ID of the itemset is
not greater than that of the task being executed.

Since there are too many search tree nodes to associate a unique
ID with each node, we associate a range [minID,maxID] repre-
sented by the 128-bit integers minID ≤ maxID with each task as
its task ID and add the ID to each itemset registered in an itemset
table entry to denote where in a search tree the itemset is regis-
tered. The full range of unsigned 128-bit integers [0, 2128 − 1]
is associated with the root task, which is first assigned to a cer-
tain worker at the beginning of a search. When a task is divided,
we divide the range in half, allocating the lower and higher sub-
ranges to the tasks in the left and right portions of the subtree to
be split. When a worker registers an itemset I to the itemset ta-
ble, the value of the minID of the running task is added to I. At
this time, if a proper subset I′ of I has been registered and the
minID of I′ is greater than that of the running task, I′ is removed
from the entry. The other itemsets remain registered. A worker
can only use an itemset in the itemset table for Pruning 3 if the
task ID of the itemset is not greater than that of the task being
executed.

This management technique enables the order of tasks to be
defined by the order of their minIDs. As this order of tasks is
equivalent to the order in which corresponding subtrees are vis-
ited in the sequential search, we can apply Pruning 3 without the
loss of completeness.

The range [minID,maxID] is divided recursively and minID
may become equal to maxID after a certain number of divisions.
Since we cannot divide such a range any further, a worker exe-
cutes a task with such a range sequentially. Although such a se-
quential task might cause a load imbalance if its size were large,
our implementation with 128-bit unsigned integers divides the
root task up to 128 times recursively such that the resulting se-
quential tasks are sufficiently small.

4.2 Implementation in Distributed Memory Environments
A worker can immediately use itemsets registered by other

workers by using the sharing method described in Section 4.1.
However, it is unrealistic to use this method in distributed mem-
ory environments because the communication cost of acquiring
mutual exclusion locks is excessively high. Therefore, we imple-
mented the following method, which allows table information to
be shared at a realistic cost while allowing some incompleteness
in sharing table information across computing nodes.

We prepare an itemset table in each computing node. All work-
ers in each node share the single itemset table controlled by locks
as described in Section 4.1. In addition, each computing node
sends updates of its own table to other nodes at regular time in-
tervals of tcomm. In our implementation, in addition to worker
threads, a communication thread is created in each computing
node for sending and receiving such updates. The communica-
tion thread repeats the following operations at intervals of tcomm:

Fig. 6 Flow of the communication thread for updates to an itemset table.

(1) extracting table updates of its computing node, (2) sending the
updates to all other nodes and receiving updates from them, and
(3) registering the received updates to the table of its node.

Figure 6 shows the pseudo-code of the operations of a commu-
nication thread. The communication thread of each computing
node extracts all itemsets (including their minIDs and maxIDs
described in Section 4.1) registered to the table after the previ-
ous communication, and stores them in the send buffer. Then, the
communication threads in all the computing nodes synchronously
exchange the contents in their send buffers using MPI collective
communication functions. After receiving updates from external
nodes, the communication thread registers the updates to the ta-
ble of its node. At this time, the communication thread refers
to minID and maxID associated with each received itemset and
performs the operations described in Section 4.1 to satisfy the re-
striction described in Section 2.3 considering the order of itemsets
based on minIDs.

We represent a set of itemsets stored in each table entry as a
linked list in which a new itemset is added to the head. There-
fore, the time required to extract table updates is proportional to
the number of new itemsets.

5. Improvement of Work-Stealing Strategy

As explained in Section 3.2, a victim worker that received
a task request backtracks to the oldest task-spawnable point to
spawn a larger task. On the other hand, the strategy of a thief to
choose a victim, explained in Section 3.3.1, does not aim to seek
a victim that can create a larger task from candidates. In addition,
due to the stealing back mechanism mentioned in Section 3.3.2, a
thief is often restricted to sending a task request only to a specific
worker. This approach did not cause considerable performance
problems in the evaluations conducted in Refs. [3], [5]. However,
the cost of a work-steal in our parallel COPINE implementation
is high because the size of a task object in COPINE, which con-
tains a current subgraph from which a thief starts its search, a
set of vertices adjacent to the subgraph, etc., is large. Since such
a task object is created and transferred among workers at every
work steal, an increase in the number of small tasks that are stolen
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leads to serious performance degradation.
As described in the remainder of this section, we improved the

strategy for choosing a victim and tried to reduce the number of
tasks that are stolen back to allow workers to obtain larger tasks.

5.1 Strategy for Choosing a Victim
5.1.1 Task Request to External Computing Node

In the conventional strategy explained in Section 3.3.1, a thief
does not send a task request to a worker in an external comput-
ing node as long as a worker with a spawnable task exists in the
same node. This means that, once the representative worker in a
node acquired a task, none of the workers in the node send task
requests to external nodes until the first task is completed (except
for stealing back). This strategy is effective from the viewpoint
of reducing the number of internode tasks that are stolen. On the
other hand, it causes the problem that a thief always sends a task
request to a worker in the same node even if it can only acquire
a small task in the same node but can obtain a larger task from
an external node. The thief worker completes such a small task
in a short time and obtains another small task. Such repetition
continues until all tasks assigned to the node are completed; a
number of small tasks are transferred among workers inside the
node during the repetition.

We solved this problem by implementing a strategy that pro-
motes workers to request tasks from external nodes. When send-
ing a task request, a thief omits step (1) in Section 3.3.1 and
chooses a worker in an external node as a victim if the number of
uncompleted tasks taken from external nodes (except tasks taken
by stealing back) is less than a threshold τ. The larger the value of
τ, the more frequently workers request tasks from external nodes.
Note that this strategy is equivalent to the conventional strategy
when τ = 1.
5.1.2 Choosing a Victim inside a Computing Node

In addition to the strategy described in Section 5.1.1, we imple-
mented a strategy where, at steps (1) and (5) in Section 3.3.1, a
thief estimates the sizes of tasks being executed by other workers
in the computing node and chooses a worker with the maximum
estimated size as a victim from which to steal a larger task. More
concretely, the following operations are performed.
• Each worker always remembers the number of divisions of

its running task counting from the root task. In the COPINE
case, the root task corresponds to a task to traverse the whole
search tree.

• Steps (1) and (5) in Section 3.3.1 are modified as follows:
– The thief randomly chooses κ workers (1 ≤ κ ≤ the number

of workers in the node) from the workers in the node, and

Table 2 Evaluation environment.

Appro GreenBlade 8000 Cray XC30 with Xeon Phi
CPU Intel Xeon E5 2.6 GHz 8-core × 2 (16 cores in total per node) Xeon Phi 5120D 1.053 GHz 60-core

Memory DDR3-1600 64 GB GDDR5 8 GB
Compier GCC 4.4.7 with -O3 Intel Compiler 15.0.6 with -O3
Worker Created by pthread create with PTHREAD SCOPE SYSTEM
Lock A pthread mutex t lock is attached to each table entry

Tascell Server
Implemented in Allegro Common Lisp 8.1 with (speed 3) (safety 1) (space 1)

—
Executed on one of the same computing nodes

Network InfiniBand FDR × 2 —
MPI Intel MPI Library 5.1.3 —

checks the numbers of task divisions of their running tasks.
– It chooses a worker with the smallest number of task divi-

sions among the κ workers as a victim.
This strategy is based on the hypothesis that the larger the num-

ber of task divisions, the smaller the resulting task. The opti-
mal value of κ should be found considering a trade-off between
the expected sizes of stolen tasks and the cost of checking other
workers. Note that this strategy is equivalent to the conventional
strategy when κ = 1.

5.2 Reducing the number of Stealing Backs across Comput-
ing Nodes

As discussed in Section 3.3.2, a worker waiting for the result of
another task is restricted to stealing back a task from the worker to
which the task causing the synchronization is assigned, even if an-
other worker can spawn a larger task. As stated in Section 5.1.1,
when a worker completes a small task stolen back in a short time,
it tries to steal back another task. This repetition produces a num-
ber of work-steals for small tasks between the two workers. Note
that such a situation can occur between workers in different com-
puting nodes. Furthermore, a victim of stealing back can also
steal back another worker’s small task at the same time. Such a
chain of stealing back tasks involving a number of workers across
computing nodes significantly degrades the performance.

Unlike the problem discussed in Section 5.1.1, we cannot solve
this problem by changing the destination of a request for a task
that has been stolen back. Therefore, we tried to alleviate the
performance degradation caused by the stealing-back chain by
reducing the number of tasks stolen back. More concretely, a
worker that waits for the result of another task that is assigned to
a worker in an external node waits for a certain time tsb before
sending a stealing-back request. It is expected that we can pre-
vent the thief from stealing a small task whose creation and trans-
fer cost exceeds the performance gain obtained by parallelization,
since the thief would receive the result of the spawned task within
the waiting time if the task is too small to be worth being stolen.

6. Performance Evaluation

6.1 Evaluation Setup
We measured the performance of our implementations in dis-

tributed memory environments using an Appro GreenBlade 8000
supercomputer. For comparison, we also used a Cray XC30 su-
percomputer with Xeon Phi coprocessors to measure the perfor-
mance in shared memory environments with many workers. Both
of these systems are supercomputers of ACCMS, Kyoto Univer-
sity. The evaluation environments are summarized in Table 2.

c© 2017 Information Processing Society of Japan 262



Journal of Information Processing Vol.25 256–267 (Feb. 2017)

Table 4 Results of performance evaluation with multiple computing nodes.

Implementation Parameter (n × w) Exec. time [s]
Speedup Speedup # of visits to vertices # of visits to vertices / s # of task Task exec.
(vs. C) (vs. one worker) (total amt. of all workers) (avg. among workers) creations rate [%]

C — (1 × 1) 30.3 1 — 614,153,293 20,269,085 — 100 ± 0
One worker — (1 × 1) 47.0 0.644 1 614,153,293 13,072,213 — 100 ± 0

Conventional

tcomm = 500 ms
τ = 1
κ = 1

tsb = 0 s

(1 × 16) 11.4 2.66 4.13 1,343,142,530 7,383,659 8,658 81.3 ± 4.20
(2 × 16) 10.6 2.85 4.43 1,727,404,195 5,087,872 8,180 54.0 ± 21.1
(4 × 16) 10.3 2.95 4.58 2,259,465,895 3,440,079 16,014 38.3 ± 12.6
(8 × 16) 10.5 2.88 4.48 3,142,857,961 2,340,209 31,310 27.7 ± 15.3
(16 × 16) 10.8 2.81 4.36 3,280,427,117 1,189,989 27,798 13.9 ± 12.8

Proposed

tcomm = 100 ms
τ = 2
κ = 16

tsb = 100 ms

(1 × 16) 10.5 2.87 4.45 1,281,925,347 7,596,562 10,321 83.4 ± 5.69
(2 × 16) 8.74 3.46 5.38 1,581,756,502 5,658,729 8,430 62.4 ± 10.2
(4 × 16) 7.72 3.92 6.09 2,293,151,188 4,640,698 12,526 60.0 ± 11.4
(8 × 16) 6.51 4.65 7.22 2,839,150,383 3,555,790 21,938 44.3 ± 11.8
(16 × 16) 7.37 4.11 6.38 3,285,588,321 1,742,400 25,760 22.6 ± 11.3

Table 3 Characteristics of the graph used in the evaluation.

Parameter Value
|V | 15,227
|E| 225,458
|I| 158
Average degree 29.6
Diameter of G 12
# of vertices in the largest connected component 15,061
# of vertices in the smallest connected component 1
Average # of items in each vertex 9.42

We used a real protein network and an itemset created by refer-
ring to the database [8] and the results shown in [9], respectively,
as the input. Table 3 shows the characteristics of this graph. We
set the threshold θ to 5.

Note that we executed the program three times for each mea-
surement setting to select the median of the execution times to be
shown in the tables and the charts in this section. The relative er-
rors of the median of the three samples were less than ±10% for
every setting.

6.2 Performance in Distributed Memory Environments
We evaluated the performance improvement attained by the

work-stealing strategies proposed in Section 5 by measuring the
performance with the Appro GreenBlade 8000 on multiple com-
puting nodes with the following two parameter settings:

(1) tcomm = 500 ms, τ = 1, κ = 1, and tsb = 0 s, that is, the
setting to simulate the conventional work-stealing strategy,
and

(2) tcomm = 100 ms, τ = 2, κ = 16, and tsb = 100 ms, which
we found by the following optimal parameter search using
8 nodes × 16 workers.

(a) We found the optimal values of tcomm and κ inde-
pendently by varying tcomm or κ within the range of
tcomm ∈ {100 ms, 250 ms, 500 ms, 750 ms, 1 s} or κ ∈
{1, 2, 4, 8, 16}, respectively, while fixing the other pa-
rameters to the same values as (1).

(b) We found the optimal values of τ and tsb by try-
ing all the combinations of (τ, tsb) that satisfy τ ∈
{1, 2, 4, 8, 16} and tsb ∈ {0 s, 1 ms, 10 ms, 100 ms, 1 s},
while fixing tcomm and κ to the values found in (a).

We also compared the performance of each implementation
with that of the sequential COPINE implementation written in
C. Table 4 contains the results of the evaluation. Note that, in Ta-
ble 4, n denotes the number of computing nodes, and w denotes

the number of workers per node. “Task execution rate” means the
average and the standard deviation of the percentage of time spent
on task execution to the total execution time among all workers.
“Conventional” and “Proposed” are executions with the perfor-
mance parameter settings (1) and (2) above, respectively.

The results of “Conventional” in Table 4 indicate that the task
execution rates significantly decrease as the number of nodes in-
creases, and we cannot obtain speedups with multiple computing
nodes. On the other hand, the “Proposed” strategy enables us to
alleviate the degradation of the task execution rates. The improve-
ment in the execution rates means an improvement in the degrees
of parallelism. This usually leads to degradation of the complete-
ness of Pruning 3, or an increase in the number of visits to ver-
tices *4. However, the number of visits to vertices of “Proposed”
are almost the same as those of “Conventional.” This is because
the communication interval to exchange table updates (tcomm) of
“Proposed” is shorter than that of “Conventional.” As a result,
we can obtain speedups with multiple computing nodes using the
proposed strategy. For instance, with 8 nodes × 16 workers, we
achieved a 7.22-fold speedup compared to the one-worker execu-
tion, which is 4.65-fold to C and 1.75-fold (= 7.22/4.13) to the
execution by 1 node × 16 workers. However, we were unable
to achieve good performance in the 16-node execution of “Pro-
posed” because the task execution rate significantly degrades. Fu-
ture work is needed to improve the performance with additional
computing nodes.

We evaluated the effect of changing the values of tcomm, τ, κ,
and tsb by measuring the performance with 8 nodes × 16 workers
when varying the values of these parameters one by one while
fixing the other parameters to the settings of “Conventional.”
Figure 7 shows the measurement results. The error bars of the
task execution rates show the standard deviation among workers.
These results show the following.
• Reduction of tcomm enables us to reduce the total number

of visits to vertices and improve the overall performance.
In Table 5, we show the cumulative processing time of the
communication thread in the process with MPI rank 0 when
tcomm is set to 100 ms, 500 ms, and 1 s. We can see that the
increase in the cost of communication threads when reduc-
ing tcomm to 100 ms is sufficiently small relative to the effect
of reducing the number of visits to vertices.

• When we promote workers to request tasks from external

*4 This problem also occurs in shared memory environments, and is diffi-
cult to solve as discussed in [4].
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Fig. 7 Performance when changing the values of performance parameters (using 8 nodes × 16 workers).

Table 5 Cumulative processing time of a communication thread.

tcomm Pack [s] MPI comm. [s] Unpack [s] Total [s]
100 ms 0.0362 1.46 1.30 2.80
500 ms 0.0147 0.426 0.798 1.324

1 s 0.0162 0.203 0.816 1.04

nodes by increasing τ, the task execution rate degrades. This
is because the increase in the amount of internode work
stolen also results in an increase in the number of intern-
ode tasks stolen back. Note that we obtained a slight perfor-
mance improvement in spite of the degradation of the task
execution rates when τ is 2 and 4. This is because the de-
crease in the degrees of parallelism resulted in a decrease in
the number of visits to vertices.

• When κ increases, there is no great change in the task execu-
tion rate, but the overall performance is slightly improved.

• There is no correlation between tsb and the performance or
the task execution rate.

We can conclude from these results that we cannot improve
task execution rates and overall performance when varying only
one of τ and tsb. We evaluated the effect of varying both τ and
tsb in detail by rechecking the results of the performance mea-
surements that were conducted to find the settings of “Proposed,”
that is, the measurements when varying τ and tsb at the same time
while fixing tcomm and κ to 100 ms and 16, respectively. Table 6
shows the execution times and the task execution rates with these

Table 6 Performance when changing the values of τ and tsb (using 8 nodes
× 16 workers).

Execution time [s]
(Average task execution rate among workers ± S.D. [%])

tsb

0 s 1 ms 10 ms 100 ms 1 s

τ

1
8.62 8.24 8.23 7.99 7.23

(32.9 ± 12.3) (24.6 ± 19.4) (30.3 ± 14.0) (37.9 ± 9.27) (37.1 ± 8.84)

2
7.97 7.89 7.51 6.51 6.68

(29.2 ± 16.5) (33.0 ± 15.6) (36.4 ± 12.9) (44.3 ± 11.8) (38.4 ± 9.46)

4
7.76 7.66 7.50 7.11 7.75

(24.8 ± 13.7) (32.5 ± 13.6) (33.1 ± 10.4) (41.2 ± 13.2) (34.3 ± 13.1)

8
12.9 12.7 12.7 11.4 10.8

(14.3 ± 9.16) (13.1 ± 8.22) (17.8 ± 11.9) (17.0 ± 9.11) (20.3 ± 9.91)

16
22.3 21.1 23.2 20.8 19.5

(4.83 ± 3.28) (4.91 ± 3.30) (5.90 ± 3.86) (6.86 ± 4.04) (6.45 ± 4.07)

settings. It is clear that the task execution rate has considerably
improved as tsb increases when τ is set to 2 or 4. One possible
reason for these performance improvements is that, not only does
the number of stolen internode tasks increase when τ increases,
the increase in the number of internode tasks stolen back is sup-
pressed by increasing tsb.

6.3 Comparison with Performance in Shared Memory En-
vironments

In order to compare the performance between shared and dis-
tributed memory environments, we measured the performance of
each environment with 1 node × 1–16 workers and 1–16 nodes ×
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Fig. 8 Performance comparison between shared and distributed memory en-
vironments.

Fig. 9 Results of performance evaluation on the Xeon Phi coprocessor.

1 worker on the Appro GreenBlade 8000. We set the parameters
to the values of “Conventional” in Table 4. Figure 8 shows the
measurement results.

A comparison of the results in Fig. 8 indicates that the differ-
ence between the performance in shared and distributed memory
environments becomes large as the number of workers increases.
For instance, the performance in the distributed memory environ-
ment is 36.6% worse than that in the shared memory environment
when n = 16. This is mainly due to the degradation of the task ex-
ecution rate in distributed memory environments. In fact, the task
execution rates in shared and distributed memory environments
are 81.3 ± 4.20% and 32.5 ± 13.1%, respectively, when n = 16.
The task execution rate degrades in distributed memory environ-
ments because the cost of stealing internode work is large. Note
that the number of visits to vertices in distributed memory envi-
ronments is smaller than that in shared memory environments due
to the decrease in the degrees of parallelism caused by the degra-
dation of the task execution rates. Thus, only from these results,
it is difficult to evaluate the extent to which the incompleteness
of table information shared across computing nodes affected the
performance.

We also measured the performance in shared memory environ-
ments with up to 60 workers on the Xeon Phi coprocessor and
compared the results with those on which the “Proposed” strat-
egy was implemented in Table 4 using 1–4 nodes × 16 workers on
the Appro GreenBlade 8000. The results are shown in Fig. 9. In
the executions on the Xeon Phi, a worker can immediately refer to
itemsets registered by other workers, and the cost of stealing work
is smaller than that in distributed memory environments. Never-
theless, we achieved only a 5.41-fold speedup with 60 workers,

because the size of the search space enlarges as the number of
workers increases. The speedup with 4 nodes × 16 workers on
the Appro GreenBlade 8000, which is 6.09-fold relative to the
one-worker execution, is comparable to that in shared memory
environments with approximately the same number of workers.

7. Related Work

7.1 Distributed Memory Environment Support of Task-
Parallel Languages

Apart from Tascell, there are other task-parallel languages and
libraries that support distributed memory environments. For ex-
ample, Distributed Cilk [10], SilkRoad [11], X10/GLB [12], and
Uni-Address Threads [13] are task-parallel execution frameworks
that support dynamic load balancing across computing nodes.

However, there has been little previous effort to implement real
backtrack search applications that require knowledge sharing for
pruning in parallel using such frameworks. In addition, as dis-
cussed in [4], it is difficult to efficiently implement the parallel
COPINE algorithm targeted in this research without using the
temporary backtracking mechanism featured by Tascell.

7.2 Parallel Backtrack Search Implementations in Dis-
tributed Memory Environments

Game tree searches are one of the important applications of
backtrack search algorithms with pruning. Board games such as
chess and shogi (Japanese chess) allow the player to check all the
possible moves by traversing a search tree named game tree. Mas-
sive parallelization of game tree searches using multiple comput-
ing nodes is becoming a popular way to improve the performance.
However, it is not easy to obtain effective parallel performance in
such environments. One of the challenges is sharing information
in a transposition table, which is a hash table with the positions as
the keys and is used to avoid duplicate searches of identical po-
sitions. Some mechanisms have been proposed to manage such
a table in distributed memory environments to alleviate the in-
crease in the search space caused by the incompleteness of infor-
mation sharing. For example, Transposition table Driven work
Scheduling (TDS) [14] uses a distributed hash table. When a task
is created, a hash value for the task is calculated, and the task
is sent to a computing node to which the hash value is assigned.
In TDS, internode communications are required for sending tasks
to external nodes but all table accesses are local. However, its
performance depends on the quality of the hash function; redun-
dant search is performed when a task is sent to an inappropriate
computing node.

In PaSAT [15] and ySAT [16], which are parallel implementa-
tions of the Satisfiability Problem (SAT), each worker has its own
table and exchanges its contents with other workers periodically
to update the table. This sharing method is similar to our imple-
mentation. SAT presents another implementation problem in that
it is difficult to find an appropriate shared portion of an enormous
number of conflict clauses, especially for distributed memory im-
plementations. This issue is less significant in COPINE, since the
size of a table is O(|V | exp(maxv ∈ V |I(v)|)) at the worst, because
the number of itemsets registered in an entry corresponding to a
vertex v is at most 2|I(v)|, or more precisely |I(v)|C|I(v)|/2.
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8. Conclusion and Future Work

In this paper, we proposed a parallel implementation of the
COPINE algorithm for graph mining that extracts all connected
subgraphs with common itemsets of which the size is not less
than a given threshold, in distributed memory environments.

We ensured that table information related to pruning is shared
across computing nodes by implementing a sharing method
whereby computing nodes exchange their table updates period-
ically by using the collective communication functions of MPI.

Although the task-parallel language Tascell used in the imple-
mentation supports distributed memory environments, the con-
ventional work-stealing strategy in Tascell, which aims to mini-
mize the number of internode work-steals and tends to increase
the number of work-steals for small tasks, is not efficient from the
viewpoint of effective load balancing. Therefore, we employed
new work-stealing strategies in which workers request tasks from
external nodes more frequently and estimate the sizes of tasks
created by victim candidates, to obtain larger tasks.

As a result of these improvements, we achieved a 7.22-fold
speedup with 8 nodes × 16 workers compared to the one-worker
execution in the performance evaluation using a real protein net-
work.

Our future work includes improving the performance in more
highly parallel computing environments. In executions with 16
nodes, we were unable to obtain accelerated performance due to
the significant degradation of the task execution rate. We aim to
solve this problem by further improving the strategy for choosing
a victim. We also need to improve the implementation of Tascell
itself, including the stealing back mechanism, which is a major
factor that restricts a worker in choosing a victim. Despite our at-
tempt to use many workers to obtain sufficient speedups this was
neither successful in shared nor in distributed memory environ-
ments. This is because the search space enlarges as the number
of workers increases. One possible approach to this problem is
to abort the execution of a worker traversing a subtree pruned by
another worker. We have already implemented this abort mecha-
nism using exception handling features in a task-parallel language
and confirmed the performance improvement in shared memory
environments [17], [18]. We plan to enhance this implementation
for distributed memory environments.
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