
Journal of Information Processing Vol.25 366–375 (May 2017)

[DOI: 10.2197/ipsjjip.25.366]

Regular Paper

Inverse Stereographic Projecting Hashing
for Fast Similarity Search

Yui Noma1,a)

Received: August 1, 2016, Accepted: February 9, 2017

Abstract: Fast similarity searches that use high-dimensional feature vectors for a vast amount of multi-media data
have recently become increasingly important. However, ordinary similarity searches are slow because they require a
large number of floating-point operations that are proportional to the number of record data. Many studies have been
done recently that propose to speed up similarity searches by converting feature vectors to bit vectors. Such similar-
ity searches are regarded as approximations of the similarity searches over the original data. However, some of those
approximations are not theoretically guaranteed since no direct approximate relations between the Euclidean and Ham-
ming distances are given. We propose a novel hashing method that utilizes inverse-stereographic projection and gives
a direct approximate relation between the Euclidean and Hamming distances in a closed-form expression. Although
some studies have discussed the relationship between the two distances, to the best of our knowledge, our hashing
method is the first one to give a direct approximate relation between the two distances. We also propose parameter
values that are needed for our proposal method. Furthermore, we show through experiments that the proposed method
has more accurate approximation than the existing random projection-based and Hamming distance-based methods for
many datasets.

Keywords: Inverse Stereographic Projection, similarity search, hypersphere, hashing, binary code

1. Introduction

Acquiring data has become extremely easy with the advent
of the use of multiple sensors connected via networks in recent
years. In particular, it is expected that the amount of multimedia
data such as video and audio will increase in the future, and sim-
ilarity searches over such data will be utilized in many applica-
tions. For example, scanned biometric information could be used
for micro-payments, and surveillance camera images for anomaly
detection.

Similarity searches work by extracting feature vectors from
the multimedia data with a given (dis)-similarity function. The
search process calculates similarities between the feature vectors
and finds the most similar k-records from a database. A preva-
lent dissimilarity function is the Euclidean distance. A naive sim-
ilarity search over a vast amount of data is usually slow since
it requires a large number of floating-point operations that are
proportional to the number of record data. Many methods using
index structures have been proposed in order to speed up simi-
larity searches [1], [2], [3], [4]. However, these index structures
are outperformed by a linear scan for high-dimensional feature
vector spaces [5].

However, it is not always necessary to find k-similar records
from a database. For example, in the case of biometric authen-
tication for micro-payments, similarity searches are used to find
similar items of biometric information, and the retrieved items

1 System Software Laboratories, FUJITSU LABORATORIES LTD.,
Kawasaki, Kanagawa 211–8588, Japan

a) noma.yui@jp.fujitsu.com

are passed to other authentication processes. In such cases, a re-
quirement for the similarity search is that the retrieved items con-
tain the biometric information of the person to be authenticated.
As in this example, many system requirements of the actual ap-
plications of multimedia data can be met not only by similarity
searches but also by approximate-similarity searches. Although
the retrieved results of approximate-similarity searches are not
the same as the results of the similarity searches, most of the
items in the results are the same, and such approximate results
can satisfy the system requirements. In such cases, it is prefer-
able for the approximate-similarity searches to be processed at
high speed and have a high accuracy of approximation. Much
research has been done on fast approximate-similarity searches
in a high-dimensional feature vector space. One area of research
is based on Locality-Sensitive Hashing (LSH) [6], [7], [8]. The
studies on LSH consider a family of hash functions that satisfy
certain conditions, take several hash functions from the family,
and calculate several hash values from the feature vectors. Those
feature vectors are stored in multiple hash tables. For each query,
the search process calculates hash values from the query feature
vector and retrieves the record feature vectors from the multi-
ple hash tables. The actual form of the family of hash func-
tions depends on the (dis)-similarity function used for the sim-
ilarity search. Many families of hash functions have been pro-
posed for several (dis)-similarity functions. Research has been
done on the families of hash functions for the Euclidean dis-
tances [7], [8], [9], [10]. However, these methods require a large
amount of memory because the hash values are integer values,
and LSH requires a large number of hash tables. Hence, they

c© 2017 Information Processing Society of Japan 366

Journal of Information Processing Vol.25 366–375 (May 2017)

cannot be efficiently applied in many real systems [11].
Another area of research on approximate-similarity searches

involves converting feature vectors to bit vectors and conducting
similarity searches whose dissimilarities are Hamming distances
between the bit vectors [12], [13], [14]. The conversion from fea-
ture vectors to bit vectors can be seen as a partitioning of the fea-
ture vector space by multiple hyperplanes, and an assignment of
bit vectors to the partitioned regions and the feature vectors in the
regions. Hereafter, we call such a conversion “hashing that uses
hyperplanes”. Hashing that uses hyperplanes requires floating-
point operations, and consequently, the hashing process is slow.
Nevertheless, by hashing the feature vectors in a database before
querying, the calculation cost is reduced during searching. Al-
though the query feature vectors are converted to bit vectors at
querying time, the calculation cost does not depend on the num-
ber of record data. Furthermore, CPUs in recent years have con-
tained SIMD (single instruction, multiple data) instructions, and
the Hamming distances are calculated at high speed. Moreover,
because the modern CPU contains Field Programable Gate Ar-
rays (FPGA), and the size of the circuits of the Hamming distance
calculations is small, the Hamming distances can be calculated
in massively parallel with modern CPU [15]. Hence, similarity
searches that use hashing can be done at high speed for a vast
amount of data without any index structures and are promising
techniques. Moreover, it is known that the Hamming distance be-
tween bit vectors that are hashed from the feature vectors is prob-
abilistically proportional to the angle between the feature vectors.
However, there is no guarantee that the similarity searches that
use hyperplane hashing are an approximation of the similarity
searches whose dissimilarities are the Euclidean distances, since
the relation between the Hamming distances and the Euclidean
distances is not clear [16]. Although there are studies that aim to
preserve the Euclidean distances by machine learning depending
on the data distribution [17], there is no direct relation between
the Hamming and Euclidean distances. Hence, in order to use
these techniques in real systems, one needs to evaluate its accu-
racy of approximations whenever new pieces of data are inserted
because there is no theoretical guarantee. Such systems require a
lot of work for the users and are not preferred for real systems, in
particular for enterprise systems.

There is another research areas for approximate similarity
search using Product Quantizer (PQ) [18]. Furthermore, fast in-
dex structures are studied [19], [20]. However, these methods
require floating-point operations and the size of the circuits are
larger than the one for the Hamming distances. Hence, the de-
grees of parallelism are not large on FPGA compared with the
similarity searches with Hamming distances. Therefore, we fo-
cus on the similarity searches whose dissimilarities are Hamming
distances.

In this paper, we present our novel method for approximate-
similarity search that gives such a relation between the Hamming
and Euclidean distances. We consider a space with one dimen-
sion larger than the dimensionality of the feature vector space.
We also consider a unit sphere in the space and the inverse stere-
ographic projection to the unit sphere from the original feature
vector space. By applying hashing that uses hyperplanes to the

projected feature vector, we convert the feature vectors to bit vec-
tors. Using the proposed method, we found that the Euclidean
distance between two feature vectors was related to the angle
between the projected feature vectors in a closed-form expres-
sion. This leads to the relation between the Euclidean distance
between two feature vectors and the Hamming distance between
the bit vectors hashed from the feature vectors. To the best of
our knowledge, this is the first work giving the direct approx-
imate relation between the two distances. By the existence of
the relation, users of real systems are not required to evaluate
the accuracy of the approximation whenever new pieces of data
are inserted. Moreover, the users can focus on improvement of
the accuracy by tuning arrangements of hyperplanes with ma-
chine learning [13], [14], [17]. In this paper, in order to clarify
the relation between the two distances, we eliminated the effect
of the learning of arrangements of hyperplanes, and we focused
on approximate similarity searches with random projection-based
and Hamming distance-based methods. We also show by exper-
iments that the proposed method has better accuracy of approxi-
mation than the existing random projection-based and Hamming
distance-based methods.

2. Related Work

One of the well-known methods that convert feature vectors
to bit vectors is random projection [21]. We consider an N-
dimensional vector �n whose components are sampled from the
standard normal distribution. The random projection is per-
formed for an N-dimensional vector �x as follows:

h(�x) = thr(�n · �x), (1)

where

thr(a) :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 if a > 0

0 otherwise
(2)

Equation (1) can be seen as a space partitioning of the feature
vector space by the linear hyperplane whose normal vector is �n.
The probability of collision of the hash function h is as follows:

P
(
h(�x) = h(�y)

)
= 1 − θxy

π
, (3)

where θxy is the angle between �x and �y.
We consider B hash functions and create a bit vector valued

function �h(�x) as follows.

�h(�x) =
(
h(1)(�x), h(2)(�x), · · · , h(B)(�x)

)
(4)

The probability of the difference of a certain bit of �h(�x) and �h(�y)
is θxy

π
. Hence, the Hamming distance Hamm(�h(�x),�h(�y)) is an

unbiased-estimator of B
π
θxy. Therefore, the similarity searches

that use the bit vectors converted from the feature vectors with �h
are approximations of the similarity searches whose dissimilari-
ties are the angles between the feature vectors.

One study on batch-orthogonal locality-sensitive hashing [22]
is based on the random projection method where they grouped
the hyperplanes and orthogonalized them to reduce the variance
of the unbiased estimator.

Another study attempted to speed up the similarity search

c© 2017 Information Processing Society of Japan 367

Journal of Information Processing Vol.25 366–375 (May 2017)

whose dissimilarity is the Euclidean distance by using the ran-
dom projection method [16]. They focused on the cosine term in
the definition of the Euclidean distance.

(dEuc(�x, �y))2 = ||�x||2 + ||�y||2 − 2||�x|| ∗ ||�y|| ∗ cos(θxy) (5)

They reduced the number of floating-point operations to calculate
the Euclidean distance by approximating the angle θxy based on
the Hamming distance between the bit vectors generated by the
random projection method.

(dEuc(�x, �y))2 ≈ ||�x||2 + ||�y||2

−2||�x|| ∗ ||�y|| ∗ cos
(
π

B
Hamm(�h(�x),�h(�y))

)
(6)

However, in order to use this approximation, one needs to use the
floating-point operations. Thus, this method is slower than the
similarity searches that uses only the Hamming distance calcula-
tion.

Spherical Hashing [23] is a hashing method that uses hyper-
spheres instead of hyperplanes. This method uses machine
learning to determine the positions and the radius of the hyper-
spheres. Hence, the relation between the Euclidean distances
and the Hamming distances is not clear. There is also a hashing
method involved with hyperspheres called spherical LSH [24].
This method treats only feature vectors that exist on a hyper-
sphere. Furthermore, the hash value is not a binary. Hence, one
cannot speed up the similarity searches by using the bit vectors
and the Hamming distances with spherical LSH. A study was
done on extending the random projection by combining kernel
methods, referred to as Kernelized LSH [25], but again the rela-
tion between the Euclidean distances and the Hamming distances
was not clear.

3. Proposed Method

We propose a hashing method that uses inverse stereographic
projection in Section 3.2. Before we explain our hashing method,
we introduce a higher dimensional analogue of the inverse stere-
ographic projection. In the following, we assume that the mean
vector of a dataset is zero.

3.1 Inverse Stereographic Projection
Let V be the feature vector space and let the dimensionality of

V be N. We also denote the coordinate of V by xi for i = 1, · · · ,N.
We define the inverse stereographic projection f −1 from V to an
N + 1-dimensional space Ṽ as follows:

f −1(x1, x2, · · · , xN ; d) =

(
2dx1

d2 + r2
, · · · , 2dxN

d2 + r2
,
−d2 + r2

d2 + r2

)
,

(7)

where r2 :=
∑N

i=1 x2
i . The parameter d is a given positive number;

we discuss the value of d in a later section. In the case of N = 2,
the function f −1 is well known. For example, it is used to map a
complex plane to a sphere. Equation (7) is a higher-dimensional
analog of the well-known function.

Inverse stereographic projection can be considered from a ge-
ometric viewpoint. The projection is represented in Fig. 1. The
details are as follows. Let us denote the coordinate of Ṽ by x̃i for

Fig. 1 Inverse-stereographic projection.

Fig. 2 Relation between θxy and dEuc(�x, �y).

i = 1, · · · ,N + 1. Place a unit sphere whose center is the origin
of Ṽ and denote it as S . The image of f −1 is S . We call the com-
mon set of S and the hyperplane defined by x̃N+1 = 0 the equator,
(0, · · · , 1) ∈ Ṽ the north pole, and (0, · · · ,−1) ∈ Ṽ the south pole.
We embed V in the plane x̃N+1 = −d + 1. When one draws a
segment from the north pole to the embedded space V , the seg-
ment has an intersection point in S . The function f −1 maps the
intersection point of the segment and the embedded space V to
the intersection point of the segment and S .

We denote the angle between the projected feature vectors
f −1(�x; d), f −1(�y; d) as θxy. See Fig. 2 for detail. The cosine of
θxy is as follows:

cos(θxy) =
f −1(�x; d) · f −1(�y; d)
|| f −1(�x)|| ∗ || f −1(�y)|| =

4
d2 �x · �y +

(
1 − r2

x

d2

) (
1 − r2

y

d2

)
(
1 + r2

x

d2

) (
1 +

r2
y

d2

)
(8)

We use the following identity.

(dEuc(�x, �y))2 = r2
x + r2

y − 2�x · �y (9)

By using this identity, we arrange Eq. (8) as follows:

(dEuc(�x, �y))2/d2 =

(
1 +

r2
x

d2

) ⎛⎜⎜⎜⎜⎜⎝1 + r2
y

d2

⎞⎟⎟⎟⎟⎟⎠ 1
2

(
1 − cos(θxy)

)
(10)

Equation (10) shows a direct relation between the Euclidean dis-
tance defined in V and the angles defined in Ṽ .

We denote the factor in Eq. (10) as follows:

F(r, d) :=

(
1 +

r2

d2

)
(11)

If the factor F(r, d) is independent of the feature vector, Eq. (10)

c© 2017 Information Processing Society of Japan 368

Journal of Information Processing Vol.25 366–375 (May 2017)

is a proportional relation between the Euclidean distance in V and
the cosine in Ṽ . Moreover, 1 − cos(θ) is a monotonically increas-
ing function of θ. Hence, the similarity search whose dissimilar-
ity is the angle in Ṽ is equivalent to the similarity search whose
dissimilarity is the Euclidean distance in V . If the value of factor
F(r, d) does not vary greatly for the feature vectors, we can re-
gard the factor as a small disturbance. Therefore, in such a case,
both similarity search results are almost the same. In Section 4.1,
we discuss the dependence of the value of F(r, d) on the feature
vectors and on the value of d in order to reduce the variation of
F(r, d).

3.2 Inverse Stereographic Projection Hashing
In the random projection method, the angles in Ṽ can be esti-

mated by the Hamming distances between the bit vectors gener-
ated by a random projection in Ṽ . Hence, we propose the follow-
ing hashing method, Inverse Stereographic Projection Hashing
(ISPH):

�̃h(�x) :=
(
h̃(1)(�x), h̃(2)(�x), · · · , h̃(B)(�x)

)
, (12)

where

h̃(m)(�x) := thr(�̃n(m) · f −1(�x; d))

= thr

⎛⎜⎜⎜⎜⎜⎝2dñ(m)
1 x1

d2 + r2
+ · · · + 2dñ(m)

N xN

d2 + r2
+

ñ(m)
N+1(−d2 + r2)

d2 + r2

⎞⎟⎟⎟⎟⎟⎠ .
(13)

The vectors �̃n(m) are N+1 dimensional vectors whose elements are
sampled from the standard normal distribution. Because the de-
nominators are always positive and function thr does not depend
on the scalar multiplication, h̃(m) can be simplified as follows:

h̃(m)(�x) = thr

⎛⎜⎜⎜⎜⎜⎝ñ(m)
1 x1 + · · · + ñ(m)

N xN +
ñ(m)

N+1(−d2 + r2)

2d

⎞⎟⎟⎟⎟⎟⎠ .
Although Eq. (13) looks like kernelized LSH [25], it is not ker-
nelized LSH because the function f −1 does not satisfy the Mercer
condition.

By using ISPH �̃h and Eq. (10) we arrive at the following rela-
tion:

(dEuc(�x, �y))2/d2 ≈
(
1 +

r2
x

d2

) ⎛⎜⎜⎜⎜⎜⎝1 + r2
y

d2

⎞⎟⎟⎟⎟⎟⎠
× 1

2

(
1 − cos

(
π

B
Hamm(�̃h(�x), �̃h(�y))

))
(14)

Equation (14) is a direct approximate relation between the Eu-
clidean distance and the Hamming distance, and is one of our
main contributions.

3.3 Inverse Stereographic Projection and Hyperspheres
We discuss here the interpretation of ISPH from a geometric

viewpoint. In the case of N = 2, a common set of S and a hy-
perplane in Ṽ correspond to a hypersphere of a hyperplane in V

under the projection f −1. In the following, we show that the same
correspondence holds in the case of N > 2.

An affine hyperplane H̃ in Ṽ , e.g., whose dimensionality is N,
is defined by the following equation:

φ̃(x̃) = �̃n · �̃x + b̃ = 0 (15)

where �̃n = (ñ1, ñ2, · · · , ñN+1) is the normal vector of H̃ and b̃

is an offset. The affine hyperplane H̃ consists of x̃ that satisfies
Eq. (15). When the affine hyperplane H̃ and S have a common
set, the preimage of the common set is represented by the follow-
ing equation:

0 = φ̃(f −1(x; d))⇔ 0 =
N∑

i=1

ñi
2dxi

d2 + r2
+ ñN+1

−d2 + r2

d2 + r2
+ b̃.

(16)

In the case of ñN+1 = −b̃, Eq. (16) is given as follows.

N∑
i=1

ñi xi + db̃ = 0 (17)

The above equation expresses an affine hyperplane in V . In the
case of ñN+1 � −b̃, Eq. (16) is arranged as follows.

N∑
i=1

(
xi +

dñi

ñN+1 + b̃

)2

=
d2

(ñN+1 + b̃)2

⎛⎜⎜⎜⎜⎜⎜⎝
N+1∑
i=1

ñ2
i − b̃2

⎞⎟⎟⎟⎟⎟⎟⎠ . (18)

The above equation expresses a hypersphere in V . In particular,
when �̃n = (0, · · · , 0, 1), the common set is the equator of S . The
preimage of the equator is a hypersphere in V whose radius is d.
From the above discussion, we can conclude that the preimages
of the common sets of S and hyperplanes in Ṽ are hyperplanes or
hyperspheres in V . We show the relation in Fig. 3 from a geomet-
ric viewpoint.

Since the degree of freedom of a hyperplane in Ṽ is equal to
that of a hypersphere or a hyperplane in V , there is a one-to-one
correspondence between hyperspheres/hyperplanes in V and hy-
perplanes in Ṽ whose common sets with S are not empty. Fur-
thermore, the two regions in S separated by a hyperplane in Ṽ

coincide with the two regions in V separated by the correspond-
ing hypersphere/hyperplane because f and its inverse function are

Fig. 3 Common sets of S and hyperplanes and their preimages. A hyper-
plane crossing the north pole (upper), a hyperplane that does not
cross the north pole (lower).

c© 2017 Information Processing Society of Japan 369

Journal of Information Processing Vol.25 366–375 (May 2017)

continuous functions.
In particular, the hyperplanes appearing in Eq. (13) are linear

hyperplanes in Ṽ . In such a case, any N + 1 hyperplanes have at
least one intersection point on S . Hence, the corresponding hy-
perspheres must have at least one intersection point in V . This
property implies that any regions determined by a bit vector are
connected.

4. Resolution of Angles

We discuss the resolution of the angles measured by the Ham-
ming distances between the bit vectors generated by ISPH. Con-
sider two feature vectors and the corresponding bit vectors. Let ˆ̃Xi

be a random variable that is 1 when the i-th bit of the two bit vec-
tors is different, otherwise 0. We consider the following function
J.

J(ˆ̃X1, · · · , ˆ̃X1) := 1 − cos(
π

B

B∑
i=1

ˆ̃Xi) (19)

Function J satisfies the following inequality.

sup
x1 ,··· ,xB,x′i

∣∣∣J(x1, · · · , xB) − J(x1, · · · , x′i , · · · , xB)
∣∣∣ ≤ 1

B
(20)

By using McDiarmid’s inequality,

P
(∣∣∣∣J(ˆ̃X1, · · · , ˆ̃XB) − E[J(ˆ̃X1, · · · , ˆ̃XB)]

∣∣∣∣ ≥ ε
)
≤ 2 exp(−2Bε2).

(21)

Thus, with a probability of at least 1 − δ, we have

∣∣∣∣J(ˆ̃X1, · · · , ˆ̃XB) − E[J(ˆ̃X1, · · · , ˆ̃XB)]
∣∣∣∣ ≥

(
1

2B
ln

(
2
δ

))1/2

(22)

The right hand side of the above inequality can be seen as a res-
olution of (1 − cos(θxy)) measured by the Hamming distances.
Hence, if B is large enough, one can estimate (1 − cos(θxy)) ac-
curately. In the context of the similarity search, we can identify
1 − cos(θ) and θ because 1 − cos(θ) is a monotonically increasing
function of θ. Therefore, the resolution of angles measured by the
Hamming distance becomes high as B becomes large.

4.1 Dependence of F(r, d) on Feature Vectors and Optimal
Parameter d

As we discussed in Section 3.1, if the value of factor F(r, d)
does not change greatly for each feature vector, the approximate
relation between the Euclidean distances in V and the Hamming
distances has good accuracy of approximation. The dependence
of F(r, d) on the feature vectors comes from the value r. Since r

appears as r/d in F(r, d), it is expected that the variation of F(r, d)
is reduced by a certain value d.

One of the most naive parameter regions to reduce the variation
of F(r, d) is d
 1. In such a case, the following relation holds.

(dEuc(�x, �y))2 ≈ d2 1
2

(
1 − cos(θxy)

)
for d
 1. (23)

However, in such a large d, almost all of the feature vectors are
mapped to the neighborhood of the south pole of S . We illustrate
such a situation in Fig. 4. In that case, the angles between the
projected feature vectors are small. If one can estimate the angles

Fig. 4 Distribution of the projected feature vectors when d
 1.

in Ṽ at high resolution, the accuracy of the approximation of the
similarity search will be high for large d. However, as we showed
by Eq. (22), in order to estimate the angles at high resolution, we
need to use long bit vectors. Hence, the parameter region d
 1
is not practical.

We focused on the phenomenon called concentration on the
sphere to reduce the variation of F(r, d). We first explain the phe-
nomenon and discuss its usage. When the dimensionality of a
feature vector space is sufficiently high, almost all of the feature
vectors will be located on a sphere whose center is the mean vec-
tor [26], [27], [28], [29]. We consider the distribution of the dis-
tance r of the feature vectors from the mean vector. Let us denote
p-percentile of the distribution as r(p). If the concentration on a
sphere occurs, almost all of the distances of the feature vectors
from the mean vector will be r∗ := r(50). We define the following
parameter rrDiff in order to measure the variation of r from r∗.

rrDiff := (r(90) − r(10))/r∗ (24)

We used the percentile to reduce the effect of the outlier. If rrDiff
is small enough, we can say that almost all of the feature vectors
are on the sphere.

This phenomenon can be observed for many datasets. We used
four real datasets, SHIFT-1M, GIST-1M [18], MNIST [30], and
LabelMe [31], and the following two artificially made datasets.
Uniform Data were sampled from the uniform distribution

whose domain is the interior of a unit sphere whose center
is the origin in N-dimensional space. The number of feature
vectors was 10,000.

Gauss Data were sampled from the N-dimensional multivariate
standard normal distribution. Here also, there were 10,000
feature vectors.

The dimensionalities of the artificial dataset were 32, 64, 128,
256, and 512. We show rrDiff in Fig. 5. From the figure, we can
say that rrDiff < 1 in high-dimensional spaces.

We now discuss the usage of the concentration on the sphere.
The simplest situation is that all of data have a constant radius
r = rc. In such cases, rrDiff = 0 and r∗ = rc, and F(r, d) is also a
constant. Eq. (10) is given as follows.

(dEuc(�x, �y))2/d2 =

(
1 +

r2∗
d2

)2
1
2

(
1 − cos(θxy)

)
(25)

We discuss the optimal value of d in this situation. Let S (R) be
a sphere in V whose center is the origin of V and whose radius

c© 2017 Information Processing Society of Japan 370

Journal of Information Processing Vol.25 366–375 (May 2017)

Table 1 Quantities of datasets.
����������Parameter

Dataset SHIFT1M GIST1M MNIST LabelMe Gauss Uniform

Number of data for records 10,000 10,000 5,000 5,500 10,000 10,000
Number of data for queries 1,000 1,000 5,000 5,500 1,000 1,000
Dimensionality 128 960 784 511 512 512
k 100 100 50 55 100 100

Fig. 5 rrDiff for various datasets.

is R, i.e. S (R) :=
{
�x ∈ V |||�x|| = R

}
. Because of r = r∗ = rc, all of

the feature vectors are located on S (r∗). If we set d = r∗, S (r∗)
is mapped to the equation of S by f −1 as we mentioned in Sec-
tion 3.3. The equator is a great circle of S and the biggest image
of S (r∗) in various parameter ds. Hence, d = r∗ is the optimal. Al-
though rrDiff is not zero for actual datasets because rrDiff is less
than one, it is expected that the deviation of the optimal value of
d from r∗ is a function of rrDiff.

Let us consider the region where d ≤ r∗. In this case, more than
half of the feature vectors are mapped to the northern hemisphere
of S . Even if there is a pair of feature vectors that are distant
from each other and from the origin of V , they are mapped to S

and have a small angle. Therefore, the accuracy of the approxi-
mation of the similarity searches deteriorates. Thus, the optimal
value of d should be greater than r∗. As we have discussed, the
region where d
 r∗ is not practical.

From the above discussion, it is expected that the optimal value
of d will be finite and greater than r∗, and is controlled by the
concentration on the sphere. Hence, it is expected that the opti-
mal value of d is a function of rrDiff because rrDiff is a measure
of how data are concentrated on a sphere. Furthermore, it is ex-
pected that the optimal value of d will become large as the bit
vector becomes long because the resolution of the angles is high
for long bit vectors.

4.2 Proposed Value of d
We show by experiments that the discussion in Section 4.1 is

correct. Moreover, we propose a value of d that does not depend
on the details of the distribution of the feature vectors but only
depends on the concentration on the sphere.

We used the four datasets and two artificial datasets mentioned
in Section 4.1. We set the dimensionality of the artificial datasets
as 512. From each dataset, we created two kinds of datasets by
sampling from the original dataset a dataset for querying and a
dataset for records, e.g., the feature vectors to be searched. The
datasets are summarized in Table 1.

Fig. 6 rrDiff and dopt/r∗.

We used the following method to calculate the accuracy of the
approximation. Let �q be a query vector. We first performed the
k-nearest neighbor search whose dissimilarity is the Euclidean
distance and obtains a set A(�q) of kNN of �q. The retrieved re-
sults were treated as the ground truth. Parameter k were set to
1% of the number of record data and are summarized in Table 1.
Then we performed the k-nearest neighbor search whose dissim-
ilarity was the Hamming distance between bit vectors generated
with ISPH. Let B(�q, d) be the retrieved results with the parame-
ter d. We calculated precision@k(d), which is a measure of the
accuracy of approximation:

precision@k(d) := #(A(�q) ∩ B(�q, d))/k (26)

We also performed the k-nearest neighbor search with bit vectors
generated with the random projection method and calculated pre-
cision@k for comparison. The length of the bit vectors was 512.
The experiment was performed five times for each value of d be-
cause the normal vectors were generated randomly. We plot the
mean of precision@k in Fig. 8. RP represents the precision@k
with the random projection method. From the figure, one can see
that the accuracy of the approximation depends on the value of d.

Let us denote the value of d where precision@k is the maxi-
mum as dopt; dopt := arg max

d
(precision@k(d)). We sought dopt

numerically by experiments. From a dimensional analysis, d and
dopt have the same unit as r. Hence, in order to compare dopt for
various datasets, we need to normalize it dividing by a parame-
ter having the unit of r. We chose r∗ for the parameter. As we
discussed in Section 4.1, it is expected that dopt is a function of
rrDiff. Hence, we show the scatter plots of rrDiff and dopt/r∗ for
various datasets in Fig. 6. The length of the bit vector was 512.
From the figure, one can see that dopt is greater than r∗, Further-
more, we found that rrDiff and dopt/r∗ have a linear correlation.
This discovery is our second contribution.

Figure 7 shows the same scatter plot for the four real datasets
when the lengths of the bit vectors are changed. The lengths of

c© 2017 Information Processing Society of Japan 371

Journal of Information Processing Vol.25 366–375 (May 2017)

Fig. 8 Precision@k for various datasets.

Fig. 7 Dependence of rrDiff and dopt/r∗ on bit vector length.

the bit vectors were 32, 128, and 512. From the figure, one can
see that dopt/r∗ becomes large as the length of the bit vectors be-
comes long, and the growth rates depend on rrDiff.

From the above experiments, we propose the empirically opti-
mal value of d as follows.

dprop = r∗ + (−1.0 + 0.374 ∗ log2(B)) ∗ (r(90) − r(10)) (27)

5. Experiments

5.1 Experimental Procedure
We examine the performance of the proposed method from the

following three viewpoints: the processing time for learning of
the hash function, the similarity search processing time, and the
accuracy of the approximation.

The datasets used in this section are the ones mentioned in Sec-
tion 4.2. Unless otherwise stated, parameter d is the value of
Eq. (27).

We compared our proposed method with the following state-
of-the-art methods: Random Projection (RP) [21], Angle Ap-

c© 2017 Information Processing Society of Japan 372

Journal of Information Processing Vol.25 366–375 (May 2017)

Table 2 Processing time for learning (msec).
����������Algorithm

Data set SHIFT1M GIST1M MNIST LabelMe

ISPH 4.36 33.22 27.14 18.72
RP 2.80 20.90 17.16 11.23
AA 2.80 20.90 17.16 11.23

BOLSH 7.95 29.32 24.18 16.06

proximation for Euclidean Distance (AA) [16], and Batch-
Orthogonal Locality-Sensitive Hashing (BOLSH) [22]. For
BOLSH, we set the number of hyperplanes in a group as 32.

The experimental environment was as follows. The CPU was
an Intel Xeon X5680 3.3 GHz, and the size of the main mem-
ory was 72.0 GB. The OS was Windows Server 2008 R2. Each
method was implemented using C++, each process was a single
thread, and the linear algebra library LINPACK was used. This
experimental environment is the same through this section.

5.2 Processing Time for Learning
To determine parameter d, we need to calculate the percentiles

r(10), r(50), and r(90). We regarded this calculation as a learning
process of ISPH.

We measured the processing time for learning for each method.
The length of the bit-vectors was 512. The data used for learning
were sampled from the original dataset. The number of data used
for learning was 10,000. The learning was done 100 times. Ta-
ble 2 summarizes the average processing time for learning. The
processing time for learning for ISPH was less than twice the time
for RP for all of the datasets.

5.3 Processing Time for Similarity Search
The hash function for ISPH defined in Eq. (13) can be given

for fast calculation.

h̃(m)(�x) = thr

⎛⎜⎜⎜⎜⎜⎝−
(

dñN+1

2

)
+

(ñN+1

2d

)
r2 +

N∑
i=1

ñi xi

⎞⎟⎟⎟⎟⎟⎠
Since the first term and the coefficient of the second term do not
depend on the feature vectors, they are calculated before query-
ing. Although r2 in the second term depends on the feature vec-
tors, it does not depend on the hyperplanes and is calculated once
at querying. The third term depends on the feature vectors and
hyperplanes. However, it is an inner product of vectors, so we
can use the linear algebra libraries.

Figure 9 plots the processing time for searching when chang-
ing the length of the bit vectors. Since the processing time for
searching does not change greatly on the datasets and is propor-
tional to the number of record data, we show the processing time
for searching only for the 512-dimensional Gauss dataset. The
values in Fig. 9 are the processing time per query. The processing
times for searching for LHP, BOLSH, and ISPH are almost the
same. In contrast, the AA processing time for searching is about
twice that of LHP.

5.4 Accuracy of Approximation
We calculated precision@k to measure the accuracy of the ap-

proximation and show the precision@k as a function of process-
ing time. These treatments were used in Ref. [19]. The procedure

Fig. 9 Similarity search processing time.

Fig. 10 Precision@k as a function of processing time for various datasets
when changing the length of the bit vector. Each graph shows the re-
sults for various datasets: Gauss (upper left), Uniform (upper right),
SHIFT1M (middle left), GIST1M (middle right), MNIST (lower
left), LabeMe (lower right).

and parameters, for example k, are the same as the one described
in Section 4.2. Figure 10 shows the precision@k as a function of
processing time for various datasets. The length of the bit vectors
run from 32 to 1,024.

From Fig. 10, one can see that ISPH is the most accurate and
high-speed for almost all datasets. The exception is for the Uni-
form dataset. This can be explained as follows. With the Uniform
dataset, rrDiff is almost zero, as shown in Fig. 5, and almost all of
the feature vectors are located on a sphere. Hence, the angles in
V and the Euclidean distances in V are almost equal. Therefore,
the precision@k of ISPH and AA are almost the same as that of
RP, and ISPH is slightly slower than RP because the calculation

c© 2017 Information Processing Society of Japan 373

Journal of Information Processing Vol.25 366–375 (May 2017)

of the inverse stereographic projection requires more operations
than RP. We cannot observe a difference in the precision@k val-
ues of BOLSH and RP. The reason for this is because BOLSH
does not work well for high-dimensional feature spaces.

Even though 1,024 length bit vectors are long compared with
the one used in other researches [17], such bit vectors are used
in [14] and are shorter than the bit length of the original fea-
ture vectors. To store the original feature vector in memory, one
needs 32 or 64 bits times the dimensionality of the feature vec-
tor. It is 4,096 bits for SHIFT1M to 61,440 bits for GIST1M,
and is longer than 1,024. The processing times for the original
similarity search per query are 6.64 msec for 512-dimensional
Gauss, 6.77 msec for 512-dimensional Uniform, 1.99 msec for
SHIFT1M, 24.74 msec for GIST1M, 6.14 msec for MNIST, and
4.18 msec for LabelMe. These processing times are 4-50 times
longer than the approximate similarity searches with 1,024 length
bit vector.

6. Conclusion

We have argued that the Euclidean distances in the feature vec-
tor space can be related to the angles in the higher-dimensional
space by using inverse-stereographic projection. Moreover, we
argued that the Euclidean distances in the feature vector space
can be approximated by the Hamming distances between the bit
vectors generated with the random projection method applied in
the higher-dimensional space. To the best of our knowledge, this
is the first work to give a direct approximate relation between the
two distances. The relation is required for real system in par-
ticular for enterprise systems. The proposed method has better
accuracy of approximation of the similarity search than the ran-
dom projection method in the feature space and can be processed
faster than the angle approximation method. We also discovered
the relation between the optimal value of d and concentration on
spheres. This discovery leads us to propose the value of d. With
this proposal, the developers for real system are not required to
tune the parameter. Such a feature is preferred for real system
in particular for enterprise systems. Furthermore, we believe that
the accuracy of the approximation of the proposed method will
be improved by adjusting the normal vectors of the hyperplanes
in the higher-dimensional space to the distribution of the feature
vectors by using methods denoted in Refs. [13], [14], [17].

References

[1] Arya, S., Mount, D.M., Netanyahu, N.S., Silverman, R. and Wu,
A.Y.: An optimal algorithm for approximate nearest neighbor search-
ing fixed dimensions, J. ACM, Vol.45, No.6, pp.891–923 (1998).

[2] Guttman, A.: R-trees: A Dynamic Index Structure for Spatial Search-
ing, Proc. 1984 ACM SIGMOD International Conference on Manage-
ment of Data, SIGMOD ’84, pp.47–57, ACM (1984).

[3] Novak, D. and Batko, M.: Metric Index: An Efficient and
Scalable Solution for Similarity Search, Proc. 2009 2nd Interna-
tional Workshop on Similarity Search and Applications, SISAP ’09,
Washington, DC, USA, pp.65–73, IEEE Computer Society (online),
DOI: 10.1109/SISAP.2009.26 (2009).

[4] Almeida, J., Torres, R.d.S. and Leite, N.J.: BP-tree: An Efficient In-
dex for Similarity Search in High-dimensional Metric Spaces, Proc.
19th ACM International Conference on Information and Knowledge
Management, CIKM ’10, New York, NY, USA, pp.1365–1368, ACM
(online), DOI: 10.1145/1871437.1871622 (2010).

[5] Weber, R., Schek, H.-J. and Blott, S.: A Quantitative Analysis and Per-
formance Study for Similarity-Search Methods in High-Dimensional

Spaces, Proc. 24rd International Conference on Very Large Data
Bases, VLDB ’98, pp.194–205, Morgan Kaufmann Publishers Inc.
(1998).

[6] Indyk, P. and Motwani, R.: Approximate nearest neighbors: towards
removing the curse of dimensionality, Proc. 30th Annual ACM Sympo-
sium on Theory of Computing, STOC ’98, pp.604–613, ACM (1998).

[7] Datar, M., Immorlica, N., Indyk, P. and Mirrokni, V.S.: Locality-
sensitive Hashing Scheme Based on P-stable Distributions, Proc. 20th
Annual Symposium on Computational Geometry, SCG ’04, pp.253–
262, ACM (2004).

[8] Andoni, A. and Indyk, P.: Near-optimal Hashing Algorithms for
Approximate Nearest Neighbor in High Dimensions, Comm. ACM,
Vol.51, No.1, pp.117–122 (2008).

[9] Andoni, A., Indyk, P., Nguyen, H.L. and Razenshteyn, I.: Beyond
Locality-Sensitive Hashing, Proc. 25th Annual ACM-SIAM Sympo-
sium on Discrete Algorithms, SODA 2014, pp.1018–1028 (2014).

[10] Andoni, A. and Razenshteyn, I.: Optimal Data-Dependent Hashing for
Approximate Near Neighbors, Proc. 47th Annual ACM on Symposium
on Theory of Computing, STOC 2015, pp.793–801 (2015).

[11] Weiss, Y., Torralba, A. and Fergus, R.: Spectral Hashing, NIPS,
pp.1753–1760 (2008).

[12] Wang, J., Kumar, S. and Chang, S.-F.: Semi-supervised hashing for
scalable image retrieval, CVPR, pp.3424–3431, IEEE (2010).

[13] Norouzi, M. and Fleet, D.J.: Minimal Loss Hashing for Compact Bi-
nary Codes, ICML, Getoor, L. and Scheffer, T. (Eds.), pp.353–360,
Omnipress (2011).

[14] Noma, Y. and Konoshima, M.: Markov Chain Monte Carlo for Ar-
rangement of Hyperplanes in Locality-Sensitive Hashing, Journal of
Information Processing, Vol.22, No.1, pp.44–55 (2014).

[15] Matsumura, H., Sugimura, M., Yamasaki, H., Tomita, Y., Baba, T. and
Watanabe, Y.: An FPGA-accelerated partial duplicate image retrieval
engine for a document search system, WACV 2016 (2016).

[16] Marukatat, S. and Methasate, I.: Fast nearest neighbor retrieval using
randomized binary codes and approximate Euclidean distance, Pattern
Recognition Letters, Vol.34, No.9, pp.1101–1107 (2013).

[17] Wang, J., Zhang, T., Song, J., Sebe, N. and Shen, H.T.: A Survey on
Learning to Hash, arXiv:1606.00185 (2016).

[18] Jegou, H., Douze, M. and Schmid, C.: Product Quantization for Near-
est Neighbor Search, IEEE Trans. Pattern Anal. Mach. Intell., Vol.33,
No.1, pp.117–128 (online), DOI: 10.1109/TPAMI.2010.57 (2011).

[19] Iwamura, M., Sato, T. and Kise, K.: What is the Most Efficient Way
to Select Nearest Neighbor Candidates for Fast Approximate Nearest
Neighbor Search?, The IEEE International Conference on Computer
Vision (ICCV) (2013).

[20] Matsui, Y., Yamasaki, T. and Aizawa, K.: PQTable: Fast Exact
Asymmetric Distance Neighbor Search for Product Quantization Us-
ing Hash Tables, The IEEE International Conference on Computer
Vision (ICCV) (2015).

[21] Charikar, M.S.: Similarity estimation techniques from rounding algo-
rithms, Proc. 34th Annual ACM Symposium on Theory of Computing,
STOC ’02, pp.380–388, ACM (2002).

[22] Ji, J., Yan, S., Li, J., Gao, G., Tian, Q. and Zhang, B.: Batch-
Orthogonal Locality-Sensitive Hashing for Angular Similarity, IEEE
Trans. Pattern Analysis and Machine Intelligence, Vol.36 (2014).

[23] Heo, J.-P., Lee, Y., He, J., Chang, S.-F. and Yoon, S.-E.: Spherical
hashing, CVPR, pp.2957–2964 (2012).

[24] Terasawa, K. and Tanaka, Y.: Spherical LSH for Approximate Near-
est Neighbor Search on Unit Hypersphere, WADS, Lecture Notes in
Computer Science, Vol.4619, pp.27–38 (2007).

[25] Kulis, B. and Grauman, K.: Kernelized locality-sensitive hashing for
scalable image search, IEEE International Conference on Computer
Vision ICCV (2009).

[26] Beyer, K.S., Goldstein, J., Ramakrishnan, R. and Shaft, U.: When Is
“Nearest Neighbor” Meaningful?, Proc. 7th International Conference
on Database Theory, ICDT ’99, pp.217–235, Springer-Verlag (1999).

[27] Hall, P., Marron, J.S. and Neeman, A.: Geometric representation of
high dimension, low sample size data, J.R. Statist. Soc. B, Vol.67
(2005).

[28] Ahn, J., Marron, J.S., Muller, K.M. and Chi, Y.-Y.: The high-
dimension, low-sample-size geometric representation holds under
mild conditions, Biometrika, Vol.94 (2007).

[29] Aoshima, M. and Yata, K.: Two-Stage Procedures for High-
Dimensional Data, Sequential Analysis, Vol.30 (2011).

[30] THE MNIST DATABASE of Handwritten digits, available from
〈http://yann.lecun.com/exdb/mnist/〉.

[31] LabelMe: The open annotation tool, available from 〈http://labelme.
csail.mit.edu/〉.

c© 2017 Information Processing Society of Japan 374

Journal of Information Processing Vol.25 366–375 (May 2017)

Yui Noma received a B.S. in physics
from Kyoto University, Kyoto, Japan in
2003. He received an M.S. and Ph.D.
in physics from Osaka University, Osaka,
Japan in 2005 and 2008, where his inter-
est was elementary particle physics. His
current interest is data mining and infor-
mation theory.

c© 2017 Information Processing Society of Japan 375

