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Abstract: Reverberant and noisy automatic speech recognition (ASR) using distant stereo microphones is a very
challenging, but desirable scenario for home-environment speech applications. This scenario can often provide prior
knowledge such as physical information about the sound sources and the environment in advance, which may then
be used to reduce the influence of the interference. We propose a method to enhance the binary masking algorithm
by using prior distributions of the time difference of arrival. This paper also validates state-of-the-art ASR techniques
that include various discriminative training and feature transformation methods. Furthermore, we develop an efficient
method to combine discriminative language modeling and minimum Bayes risk decoding in the ASR post-processing
stage. We also investigate the effectiveness of this method when used for reverberated and noisy ASR of deep neural
networks (DNNs) as well when used in systems that combine multiple DNNs using different features. Experiments
on the medium vocabulary sub-task of the second CHiME challenge show that the system submitted to the challenge
achieved a 26.86% word error rate (WER), moreover, the DNN system with the discriminative training, speaker adap-
tation and system combination achieves a 20.40% WER.

Keywords: CHiME challenge, noise-robust ASR, prior-based binary masking, discriminative methods, feature trans-
formation, deep neural networks, system combination

1. Introduction

Automatic speech recognition (ASR) is a fundamental compo-
nent of various speech interfaces; ASR has many applications in
environments such as in the home or in the car. In such sce-
narios, close-talking input is often impractical or unsafe, and,
while very challenging, allowing the speaker to be far from the
microphone is highly desirable. To validate the effectiveness
of state-of-the-art speech enhancement and ASR techniques in
distant-talking conditions, several challenges have been orga-
nized [4], [22], [44]. Among these, the Computational Hearing
in Multisource Environments (CHiME) challenges recently intro-
duced noise-robust speech processing tasks with a small number
of microphones [4], [44]. The goal of these tasks is to recognize
speech from a distant target speaker that was binaurally recorded
in a domestic environment. Whereas the first CHiME challenge is
a simple keyword recognition task [4], the second CHiME chal-
lenge contains a medium vocabulary recognition task (track 2).
In particular, track 2 contains simulated speech samples that are
taken from the Wall Street Journal (WSJ0) 5k vocabulary read
speech corpus, convolved with binaural room impulse responses,
and then mixed with binaural recordings of a noisy domestic envi-
ronment [44]. The second challenge is much more complex and
difficult from a speech recognition point of view. To overcome
this challenging task, we propose a system involving state-of-the-
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art and newly-proposed components, including a noise suppres-
sion method as well as various discriminative training and feature
transformation methods.

We propose a binary masking (BM) method based on the es-
timated time difference of arrival (TDOA) that is to be used for
noise suppression; this method takes advantage of the availabil-
ity of the binaural training data provided by the challenge. If
many microphones are available, linear noise suppression tech-
niques are effective and generate little distortion [20]. When only
two microphones are used, however, one can expect SNR im-
provements of up to only 3 dB when using techniques such as
standard delay-and-sum beamforming. Therefore, one needs to
resort to non-linear methods for better performance. One such
non-linear method is a BM technique based on the TDOA that has
been shown to be simple and effective for a small number of mi-
crophones [37]. However, the TDOA estimation accuracy can be
severely degraded in the presence of reverberation and noise [40].
To compensate for the influence of reverberation and noise, we
propose to use the training data to generate a prior distribution
of the discrepancy between the instantaneous inter-microphone
phase difference and the expected phase difference of sound em-
anating from the target speaker location. That prior distribution
is then used when building the binary mask. We refer to this ap-
proach as prior-based BM.

In this paper, the goal is not only to improve the baseline recog-
nition systems by using source-separation-based approaches, but
also to understand to what extent performance can be improved
by using the discriminative training ASR approach; this allows
researchers who may not be experts in ASR to better evaluate
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the benefit of these methods. Recent improvements in ASR
techniques have led to high-accuracy speech recognition sys-
tems [3], [36]. Over the past 20 years in particular, model
training techniques have gradually migrated from maximum-
likelihood (ML) estimation approaches to discriminative train-
ing techniques [2], [26], [29], [38]. In addition, various types of
feature transformations have been proposed [1], [13], [15], [16],
[17], [28]. While such state-of-the-art ASR techniques have been
shown to be very effective in clean speech conditions, further in-
vestigation is needed in order to improve the effectiveness of ASR
techniques in challenging conditions such as in the presence of
environmental reverberation and noise. This paper proposes an
approach to overcome these challenges by evaluating discrimina-
tive training and feature transformation techniques based on the
samples provided in the second CHiME challenge. As the con-
ditions between the training data and the test data are matched,
it is reasonable to expect that discriminative training methods
will lead to significant performance improvements even in re-
verberant and noisy conditions. In particular, we investigate the
performance change when using maximum mutual information
(MMI) and boosted MMI (bMMI) training. We also investigate
several feature transformation approaches that include linear dis-
criminant analysis (LDA) [16], maximum likelihood linear trans-
formation (MLLT) [13], [15], and adaptation techniques such
as speaker adaptive training (SAT) [1] and feature-space maxi-
mum likelihood linear regression (fMLLR) [12]. Other discrim-
inative non-linear feature transformations such as feature-space
boosted MMI (f-bMMI) were also investigated. LDA makes use
of long context features across a few contiguous frames (e.g., nine
frames) to exploit feature dynamics, which reduces the influence
of non-stationary noises and reverberation. MLLT finds a linear
transformation to reduce state-conditional feature correlations; it
performs a joint optimization of feature transformation matrices
and acoustic model parameters. Speaker adaptation methods such
as SAT and fMLLR were originally developed for decreasing the
variation between speakers, but they are also known to improve
the ASR accuracy in noisy environments by adapting to unknown
and changing noise conditions in effect, performing noise adap-
tive training [12], [25], [39]. Discriminative non-linear feature
transformations can provide yet further gains in performance, be-
cause the feature transformation is optimized to reduce directly
the error rates of the decoder [33].

Whereas the aforementioned conventional acoustic modeling
techniques are mainly used within the Gaussian mixture model
(GMM) framework, this paper also investigates their use within
the commonly used hybrid DNN-HMM (hidden Markov model)
approach [17]. The study includes all of the previously men-
tioned discriminative training and linear feature transformation
techniques, but excludes f-bMMI *1. The experimental evaluation
shows that these techniques still continue to effectively improve
performance when used with a DNN. This DNN study is one of
the primary new contributions of this paper when compared to
our original challenge workshop publication [41].

*1 This is a reasonable exclusion because the lower layers of the deep neural
networks (DNNs) already serve as an effective non-linear feature trans-
formation.

In the ASR post-processing step, we propose to use a re-
scoring technique based on a simple combination of discrimi-
native language modeling (DLM) [9], [27], [34] and minimum
Bayes risk (MBR) decoding [5], [14], [24], [45]. In contrast
with [24], which performs DLM with the MBR criterion, our
work combines DLM and MBR decoding in a cascade form;
we simply use the re-ranked 1-best obtained through DLM to
initialize the MBR decoding. As a final step, system combina-
tion e.g., recognizer output voting error reduction (ROVER) [11]
and its variants [10], [18], [42] can be used to obtain refined hy-
potheses by majority voting of the hypotheses of different sys-
tems; this results in higher performance than each base system
can achieve individually. In order to create systems with comple-
mentary hypotheses, this work constructs two systems based on
Mel-Frequency Cepstral Coefficient (MFCC) features as well as
Perceptual Linear Prediction (PLP) features.

In summary, the goal of this paper is to evaluate the effective-
ness of various state-of-the-art and novel techniques for ASR in
reverberant and noisy environments by using the second CHiME
challenge medium vocabulary task. Although the primary nov-
elty of our approach lies in the combination of multiple compo-
nents, additional novelties exist in the techniques themselves that
are presented here. In particular, the techniques providing addi-
tional novel approaches are the prior-based BM (Section 3), and
the combination of DLM and MBR (Section 4.6). The primary
novel contributions of this work when compared to our previ-
ous work [41] are the introduction of a DNN system with speaker
adaptation and the ROVER system combination.

2. System Overview

Figure 1 is a schematic diagram of the proposed system, which
consists of three components. First is the noise suppression
step, which is a prior-based BM that suppresses directional in-
terferences (Section 3). Second is the feature transformation
step, including feature-level transformations (LDA and MLLT
with/without fMLLR, which are conventional and thus not ex-
plained in detail here) as well as discriminative feature transfor-
mations (feature-space techniques, presented in Section 4.3) [41].
Third is the ASR decoding step; it uses an acoustic model
(GMM/DNN) with sequence discriminative training (Sections 4.1
and 4.2). Decoding results are re-ranked using DLM (Sec-
tion 4.4), and MBR is performed based on the DLM output (Sec-
tion 4.5). The best results were obtained by the ROVER com-
bination of the hypotheses of two DNN systems using different
features (MFCC and PLP).

3. Prior-based Binary Masking (BM)

In the CHiME challenge, two-channel recordings are provided
and the target speaker is in a fixed frontal position with respect
to the microphones *2. Binary masking based on the TDOA has

*2 This is a reasonable setting suitable for many applications, in which the
users are either in a frontal position (such as when using home appli-
ances), or in a fixed position (such as when using car navigation sys-
tems). In a situation where speakers are able to move freely, our prior-
based BM approach could be modified to allow for multiple priors ac-
cording to the speaker direction; this direction could be estimated by
another method such as the cross-spectrum phase method [23].
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Fig. 1 Schematic diagram of the proposed system.

been shown to be more effective when used for ASR with a small
number of microphones than simple delay-and-sum beamform-
ing [37]. Consequently, we investigate the usage of this BM tech-
nique in our system.

When the receiver is in a frontal position and there is little re-
verberation and noise, the TDOA for signals coming from the tar-
get speaker should be close to zero. Hence, time-frequency bins
for which the inter-microphone phase difference is not close to
zero are unlikely to contain energy from the target speaker. How-
ever, in the presence of reverberation, the phase differences of the
sound waves from a frontal target source may be non-zero. Fig-
ure 2 shows the phase difference histograms at 250 Hz and 1 kHz
in the “reverberated” (i.e., no noise) speech of the CHiME chal-
lenge training set. At 250 Hz, the histogram is almost symmet-
rical and the variance is small; at 1 kHz, however, the mean has
drifted and the variance is large. The extent to which the phase
difference is affected by reverberation and noise varies signifi-
cantly for each frequency bin. Thus, a simple binary mask using
only physical information will not be effective; indeed, prelimi-
nary experiments showed that this type of binary mask led to a
slight improvement of word error rate (WER). As in Ref. [7], a
statistical model is needed. In order to account for the offset of
the phase difference when compared to the anechoic case as well
as its variance, a prior-based BM is proposed. The phase differ-
ence θt,ω at time frame t and frequency bin ω is calculated for
each time-frequency bin as θt,ω = ∠

(
XL

t,ω/X
R
t,ω

)
∈ (−π, π], where

XL
t,ω and XR

t,ω are the complex short-time Fourier spectra for the
left and right channels, respectively, and ∠ denotes the argument
operator of a complex number.

In classical BM, a time-varying masking vector Wt =

[Wt,1, . . . ,Wt,ω, . . . ,Wt,Ω]� ∈ RΩ (where � denotes transposition)
is designed using the following thresholding function:

Wt,ω =

⎧⎪⎪⎨⎪⎪⎩
ε if |θt,ω| > θc,
1 if |θt,ω| ≤ θc, (1)

where ε is a very small constant for spectral smoothing, and θc
is a threshold determined in advance. Noise suppressed spec-
tra Yt ∈ CΩ are obtained as Yt = Wt �

(
XL

t + XR
t

)
/2, where

XL
t , X

R
t ∈ CΩ, and � denotes the element-wise multiplication of

two vectors.
In our prior-based BM approach, a time-varying masking vec-

tor W′
t is determined using a frequency-dependent prior probabil-

ity qω(θ) of the phase difference θ. This prior probability is ob-
tained from a phase difference histogram computed on the train-
ing data, renormalized to sum to unity. Denoting the peak of the

Fig. 2 Histogram of phase differences for two frequency bins.

histogram for frequency ω as q̄ω = maxθ qω(θ), we define the
masking vector as

W ′
t,ω =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
ε if qω(θt,ω)/q̄ω < qc,(
qω(θt,ω)/q̄ω

)α otherwise,
(2)

where qc is a threshold that determines the relative height with
respect to the peak above which a time-frequency bin is passed.
α is a warping parameter that can set the behavior of the mask
from soft to binary. Both qc and α are tuned manually in the de-
velopment set. Whereas in classical BM, thresholding is based on
a constant tolerance angle between the reference and the observa-
tion, our thresholding function takes the shape of the histogram
into account. For histograms with a pronounced peak, such as
the one corresponding to the 250 Hz frequency bin in Fig. 2, the
tolerance angle is small, and only time-frequency bins for which
the phase difference is very close to the peak are passed by the
mask. On the other hand, the tolerance angle is large for flat-
ter histograms such as the one corresponding to the 1 kHz bin in
Fig. 2; in the latter case, phase differences farther from the peak
are passed as well.

4. Discriminative Training Methods for
Acoustic Modeling and Feature Trans-
formation

4.1 MMI Discriminative Training of Acoustic Models
The goal of discriminative training algorithms is to obtain mod-

els that minimize the empirical risk computed from the correct
labels and recognition hypotheses. Several training criteria have
been introduced [19], [38], such as MMI [2], minimum classifi-
cation error [26], or minimum phone error (MPE) [29]. We focus
on MMI in this work, because MMI is the most widely used cri-
terion and because it is the starting point for the more advanced
bMMI, which we use below.

The goal of MMI training is to maximize the mutual informa-
tion between correct labels and recognition hypotheses, based on
the following objective function:
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FMMI(λ) =
∑

r

log
pλ
(
x(r)|Hs(r)

)κ
pL(s(r))∑

s pλ
(
x(r)|Hs

)κ pL(s)
, (3)

where x(r) = (x(r)
1 , . . . , x

(r)
t , . . . , x

(r)
Tr

) is the r-th utterance’s feature
sequence of length Tr; λ denotes the GMM-based acoustic model
parameters composed of mixture weights, mean vectors, and (di-
agonal) covariance matrices; these parameters are optimized us-
ing the extended Baum-Welch algorithm; Hs(r) and Hs are the
HMM sequences that represent the correct label s(r) and a recog-
nition result s, respectively; pλ is the acoustic model likelihood,
κ is the acoustic scale, and pL is the language model likelihood.

While MMI is effective, performance can be further improved
by giving more weight to the training data that is improperly rec-
ognized, as proposed in the bMMI framework [31]. The above
objective function is extended to a boosted version as follows:

FbMMI(λ) =
∑

r

log
pλ
(
x(r)|Hs(r)

)κ
pL(s(r))∑

s pλ
(
x(r)|Hs

)κ pL(s)e−bA(s,s(r))
, (4)

where A(s, s(r)) is the phoneme accuracy of hypothesis s for a
reference s(r), and b ≥ 0 is a boosting factor that controls the
phoneme accuracy dependent weight. In this paper, we study the
performances of bMMI for noisy speech ASR, comparing them
to the performance of ML.

4.2 MMI Discriminative Training of Deep Neural Networks
GMM-HMM systems have constituted the mainstream archi-

tecture for decades, but DNN-HMM hybrid systems have out-
performed them in recent years when used in clean speech con-
ditions. In this paper, we investigate the effectiveness of DNN-
HMM hybrid systems in noisy and reverberant speech conditions,
and we show that these systems can bring further improvements
compared to our challenge submission system [41]. In particular,
we explore the benefits of sequence-level discriminative training
methods for DNNs. DNNs are already discriminative at the frame
level, because they are constructed based on discriminative cri-
teria such as cross entropy (CE). Sequence-level discriminative
training goes further in that it attempts to minimize the risk on the
whole sequence instead of independently on each single frame;
this type of training has been shown to improve performance over
simple cross-entropy training [21], [43].

A DNN model with parameters θ outputs posterior probabili-
ties pθ( j|x(r)

t ) for each HMM state j at frame t. These probabilities
are computed using a softmax layer applied to the top layer of the
DNN:

pθ( j|x(r)
t ) =

exp aθ( j|x(r)
t )∑

j′ exp aθ( j′|x(r)
t )
, (5)

where aθ is the output of the top layer. Each layer of the DNN
transforms the outputs of the previous layer through an affine
transform, whose parameters are a subset of θ, followed by a non-
linear operation such as a sigmoid.

In order to use the classical HMM-based decoding framework,
hybrid DNN-HMM systems replace the acoustic likelihood of
GMMs by a pseudo-likelihood pθ

(
x(r)

t | j
)

obtained as

pθ
(
x(r)

t | j
)
∝ pθ

(
j|x(r)

t

)
/p0 ( j) , (6)

where p0 ( j) is the prior probability calculated from the count of
states in the training data.

The values of the parameters θ are trained discriminatively ac-
cording to the MMI criterion. The (boosted) MMI objective func-
tion is similar to that shown in Eqs. (3) and (4); the only differ-
ence is that the GMM likelihoods pλ

(
x(r)|Hs

)
are replaced for

the whole sequence by the equivalent DNN pseudo-likelihoods
pθ
(
x(r)|Hs

)
:

FbMMI(θ) =
∑

r

log
pθ
(
x(r)|Hs(r)

)κ
pL(s(r))∑

s pθ
(
x(r)|Hs

)κ pL(s)e−bA(s,s(r))
. (7)

The gradient of the objective function with respect to the top layer
output aθ can be obtained by the chain rule as:

∂FbMMI(θ)
∂aθ( j)

=
∑

j′

∂FbMMI

∂ log pθ
(
x(r)| j′)

∂ log pθ
(
x(r)| j′

)
∂aθ( j)

,

= κ(γnum
j,t − γden

j,t ),

(8)

where γnum
j,t and γden

j,t are the posteriors of state j at frame t in
the numerator and denominator of (7). The efficient calcula-
tion of these quantities is a classical step of MMI and MPE
derivations for GMM systems and is described in detail in
Refs. [29], [43]. All of the DNN parameters are estimated using
the back-propagation procedure that begins with Eq. (8).

4.3 Feature-space MMI Discriminative Training
In addition to the acoustic model, sequence discriminative

training can also be used to derive a feature transformation. This
is referred to as feature-space discriminative training [28]. In this
section, the I-dimensional vector xt ∈ RI denotes the original
static features without dynamic features (that is xt does not in-
clude Δ and ΔΔ; this is unlike the previous sections). The trans-
formed features yt ∈ RI are obtained by adding xt to an off-
set determined by applying a linear transformation M to a high-
dimensional feature vector ht ∈ RJ , where M is estimated using
sequence discriminative training: yt = xt + Mht. The dimen-
sion J of ht is assumed to be much larger than the dimension
I of the original features xt (i.e., J 
 I), and the role of the
I × J matrix M is to project these rich high-dimensional features
back down to the low-dimensional space containing the original
features. The high-dimensional features ht are obtained from xt

based on a universal background model (UBM) represented by a
GMM, which we now describe in more detail. We denote the
concatenation of xt with its Δ and ΔΔ features, x∗t ∈ R3I , as
x∗t =

[
xt
�,Δxt

�,ΔΔxt
�]� . A diagonal-covariance GMM for x∗t

is learned from the training data; the number of Gaussian compo-
nents is denoted as Ng, and their mean and variance in dimension
i are denoted as μn,i and σn,i, respectively. Using this GMM, the
high-dimensional features, ht =

[
h�t,1, . . . , h

�
t,Ng

]�
, are computed

from x∗t as follows:

ht,n = pG(n|x∗t )

[ x∗t,1 − μn,1

σn,1
, . . . ,

x∗t,3I − μn,3I

σn,3I
, ξ

]�
, (9)

where pG(n|x∗t ) is the posterior probability of the mixture compo-
nent n at frame t, and ξ is a scaling factor for the bias term. Each
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sub-vector ht,n ∈ R3I+1 is a normalized and reweighted version
of the feature vector based on the parameters and posterior of the
n-th component. Although the number of total dimensions of fea-
ture ht becomes very large in this setup, ht is sparsified by setting
to zero all but a given number of sub-vectors corresponding to
the Gaussian components with the highest posterior probabilities
pG(n|x∗t ).

The objective function with respect to the matrix M is obtained
similarly to the previous sections by replacing x in the bMMI ob-
jective functions (Eq. (4)) with the transformed feature y, as fol-
lows:

Ff-bMMI (M) =
∑

r

log
pλ
(
y(r)|Hs(r)

)κ
pL(s(r))∑

s pλ
(
y(r)|Hs

)κ pL(s)e−bA(s,s(r))
. (10)

In our GMM systems, f-bMMI training with respect to M and
b-MMI training with respect to the GMM parameter λ are itera-
tively performed to optimize both parameters *3.

4.4 Discriminative Language Modeling
DLM [9], [27], [34] learns patterns of errors in the N-best hy-

potheses output by a speech recognizer, and adjusts the hypothe-
ses’ scores so that the one with the least errors is selected. The
score can be modified simply using the inner product of a feature
vector φ(s) extracted from a hypothesis s and a weight vector w.
The re-scored best hypothesis ŝ(r) is then obtained as:

ŝ(r) = arg max
s∈S(r)

[
w(0) · pλ

(
y(r)|Hs

)κ
pL(s) + w�φ(s)

]
, (11)

where w(0) is the weight for the original acoustic and language
model score, and S(r) is the set of N-best hypotheses for utterance
r. Features are usually N-gram counts. During training, separate
weight vectors w(r) for each speech utterance r are estimated by
using an on-line training algorithm, which employs the following
rule:

w(r) ← w(r−1) + (φ(s(r)) − φ(ŝ(r))). (12)

To increase the generalization ability, the weight vector used at
test time is obtained by averaging the weight vectors for all train-
ing utterances [6]. In our paper, instead of using the reference as
s(r) in Eq. (12), we select s(r) within the N-best list as the hypoth-
esis with lowest WER with respect to the reference.

4.5 Minimum Bayes Risk Decoding
MBR decoding is another re-scoring technique that attempts

to approximately minimize the Bayes risk obtained from the
WER [5], [14], [45]. The algorithm modifies the 1-best word
sequence s(r)

1 by word-by-word replacements to obtain a modi-
fied word sequence s̃(r) that minimizes the expected edit distance
L(s̃(r), s′) to other word sequences s′ in the hypothesis lattice *4

L(r). The edit distance L is approximately computed based on the
forward-backward algorithm [45] and this procedure repeats until
no symbols are replaced.

*3 Note that f-bMMI training is undertaken only for the GMM-based acous-
tic models, because the DNN acoustic models in Section 4.2 already in-
clude (non-linear) discriminative feature transformations in their deep
networks.

*4 N-best lists can be used instead of lattices.

4.6 Combination of Minimum Bayes Risk Decoding with
Discriminative Language Modeling

In the previous section, conventional MBR decoding starts
from the 1-best word sequence of the lattice and then by form-
ing alignments of the rest of hypotheses. The iteration above
can reach local minimum, similar to the ML training in acoustic
modeling. Our approach improves the initial point by replacing
the conventional 1-best word sequence s(r)

1 with the 1-best word
sequence ŝ in an N-best list re-scored by DLM *5 to efficiently
combine minimum Bayes risk decoding with DLM-based N-best
re-scoring.

4.7 System Combination
A combination of multiple systems, even if some of the sys-

tems have significantly lower performance, may outperform the
best single system, in particular when the systems tend to display
different patterns in their errors. Many system combination meth-
ods, such as Refs. [8], [10], [11], [18], [32], have been proposed.
Here, we use ROVER [11], which is the simplest approach, be-
cause system combination is a complementary component of this
paper. ROVER combines the 1-best results outputs of multiple
systems which mainly differ by their input features, MFCC and
PLP.

5. Experimental Setup

5.1 Task Description
We validated the effectiveness of our proposed approach for

reverberated and noisy speech on track 2 of the second CHiME
challenge [44], which is a medium-vocabulary task whose speech
utterances are taken from the Wall Street Journal database
(WSJ0). Table 1 presents detailed information about the train-
ing (si tr s), development (si dt 05), and evaluation (si et 05)
datasets. Table 2 shows the settings for the ASR systems.

Acoustic models were trained using the si tr s and some of the
parameters (e.g., language model weights) were tuned using the

Table 1 Number of utterances and speakers in each dataset. Development
and evaluation datasets were provided for each SNR.

dataset # utterances # speakers

Training dataset (si tr s) 7,138 83
Development dataset (si dt 05) 409 10

Evaluation dataset (si et 05) 330 12

Table 2 Setup for the ASR systems.

Sampling frequency 16 kHz
Window length 25 ms
Window shift 10 ms

Feature 1 0th∼12th MFCCs/PLPs + Δ + ΔΔ
Feature 2 (0th∼12th MFCCs/PLPs × 9 frames)

+ LDA+MLLT (→40 dim.)
Feature 3 0th∼22th filter banks (FBANK) + Δ + ΔΔ

HMM state 2,500 shared triphone states
Number of Gaussians 15,000
Hidden layer of DNN 3

Vocabulary size 5,000

*5 The accurate assignment probability can be obtained by converting the
estimated DLM weights to arc weights in a lattice. However, the con-
version is not trivial since DLM would include unseen n-gram features
or wide-span features, and the corresponding DLM weights cannot be
converted to those of lattice arcs, in a straightforward manner.
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WERs on the si dt 05. This database simulates realistic environ-
ments. There are two types of data, “reverberated” and “isolated.”
The “reverberated” data were created by convolving clean speech
with binaural room impulse responses corresponding to a frontal
position at a distance of 2 m from the stereo microphones in a
family living room. The “isolated” data were created by adding
real-world noises recorded in the same room to the “reverberated”
data, and then adding noise excerpts selected to obtain signal-
to-noise ratio (SNR) ranges of −6, −3, 0, 3, 6, and 9 dB with-
out rescaling. Added noise sources are typically non-stationary
(e.g., other speakers’ utterances, home noises, or music). We used
Kaldi toolkit [30] for the experiments.

5.2 Feature Extraction and Transformation
We now describe the settings of the feature extraction and

the feature transformation. The baseline acoustic features were
MFCCs. In addition to these, PLP features were used for the final
system combination, as described in Section 4.7. In this paper,
the LDA classes are taken as the tri-phone HMM states. We con-
catenate 13-order static MFCCs in nine contiguous frames to con-
sider the influence of long context, instead of using conventional
delta features. This results in a total of 117-dimensional features,
which are compressed into 40 dimensions. We use diagonal-
covariance models, together with MLLT feature space transfor-
mation to decrease correlations between features.

For DNN, mel filter bank (FBANK) features tend to lead to
better performance than MFCC features. We validate the effec-
tiveness of FBANK features in addition to MFCC features and
MFCC + LDA+MLLT features. For further noise robustness, we
also investigate the use of SAT and global fMLLR.

In discriminative feature transformation (Section 4.3), the
UBM is constructed using Ng(= 400) Gaussians. Offset fea-
tures are calculated for each of Kg(= 39)-dimensional MFCC
features including Δ and ΔΔs, and the posterior probabilities are
expanded using nine contiguous frames. The total dimension of
the feature vector ht is 144k (400 [Gaussians] × (39 + 1) [dimen-
sions/Gaussian/frame] × 9 [frames]). Features with the top two
posteriors are selected and all other features are set to zero.

5.3 Acoustic Models
We summarize the experimental procedure based on the above

setup as follows: First, a clean acoustic model was trained. The
number of mono-phones was 40, including silence (“sil”). Sec-
ond, reverberated acoustic models were trained using the “re-
verberated” dataset. Third, noisy acoustic models were trained
multi-conditionally using the “isolated” dataset without noise
suppression. Finally, from this ML model, the effectiveness of the
discriminative training and feature transformation for the “iso-
lated” dataset was validated. The parameters used in our experi-
ments were set to be those described in the WSJ tutorial attached
to the Kaldi toolkit.

For the DNN, we used the nnet2 of neural network training
implemented in the Kaldi toolkit with three hidden layers whose
activation functions were sigmoid. Stacking hidden layers layer
by layer, the DNN was constructed instead of using the restricted
Boltzmann machine. The learning rate η was decreased from the

initial learning rate η0 (0.01) to the final learning rate ηe (0.001)
at the end of training as η = η0 exp(i log(ηe/η0)/imax)) where i is
an iteration number. The number of iterations imax was 43 and the
minibatch size was 128. Nine concatenated frames were input
and the number of hidden layer nodes was 309.

5.4 Discriminative Language Modeling
Weights w in Eq. (11) of a DLM were learned on the training

data set using 100-best recognition candidates, where the weight
w0 associated with the original score was set to 20. Using these
weights, results were re-ranked, with w0 set to 13. Weights were
obtained by averaged perceptron at three iterations. Features were
counts of uni-, bi-, and tri-grams.

5.5 System Combination
System combination techniques are effective for the case in

which the hypotheses of the respective systems are different but
the performance of the systems is similar. The most promising
approach is to use additional features; thus, after generation of
the best hypotheses of the DNN-HMM system for MFCC and
PLP feature with regard to the time alignment and the confidence
measure, these hypotheses were combined using ROVER.

6. Results and Discussion

6.1 Discriminative Training
With regard to the MFCC features, discriminative training im-

proved the WER from the ML baseline as shown in Table 3 (up-
per) *6. The mixture of speech and noise increases the likelihood
of detecting erroneous phonemes and leads to incorrect recogni-
tion especially when the noise source is other people’s utterances.
These errors could be modified by discriminative training. The
boosting factor in Eqs. (4), (7), and (10), b, was set to 0.1 be-
cause the preliminary experiments show that the performance did
not heavily depend on the boosting factors and that the optimized
values of the boosting factor were approximately 0.1–0.2. The
denominator lattices for discriminative training were generated
using the ML model. The boosted MMI improved the WER by

Table 3 WER[%] of GMM-HMM for si dt 05 without noise suppression.
MFCC features (upper), MFCC + LDA+MLLT (middle), MFCC
+ LDA+MLLT + SAT+fMLLR (lower).

◦MFCC + Δ + ΔΔ

−6 dB −3 dB 0 dB 3 dB 6 dB 9 dB Avg.

ML 74.20 66.57 58.24 51.84 46.73 40.64 56.37
bMMI 72.78 64.71 55.69 50.83 44.00 40.27 54.71

f-bMMI 68.64 61.56 53.11 47.65 41.73 36.98 51.61

◦MFCC + LDA+MLLT

ML 70.95 62.62 53.98 47.37 40.27 34.84 51.67
f-bMMI 66.65 57.46 48.25 42.99 35.71 31.07 47.02

◦MFCC + LDA+MLLT + SAT+fMLLR

ML 68.36 58.30 48.80 40.73 35.09 28.54 46.64
f-bMMI 62.43 52.23 42.17 35.31 29.84 24.72 41.12

*6 The MMI and f-MMI results were omitted, because the performance of
those was lower than those of the bMMI and f-bMMI and recently, the
results of GMM were less meaningful than at the time of the second
CHiME challenge. The detailed evaluations are found in Ref. [41].
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Table 4 WER[%] of GMM-HMM for si dt 05 with noise suppression by
conventional binary masking (BM) and the proposed prior-based
BM. MFCC features were used.

◦MFCC + Δ + ΔΔ

−6 dB −3 dB 0 dB 3 dB 6 dB 9 dB Avg.

conventional BM 73.98 66.90 57.93 52.35 46.38 40.54 56.35
prior based BM 66.82 57.87 48.86 42.29 38.18 31.86 47.65

1.6% absolute *7 to the ML, whereas the feature-space discrimi-
native training improved the WER by 3% further. We believe that
the feature space was adapted for a target speaker to improve the
WER and that this effect reduced the influence of other noises.

6.2 Feature Transformation
The MFCC features were transformed using LDA and MLLT.

Table 3 (middle) shows the WER for this case, whereas LDA by
itself (i.e., without MLLT) achieves 54.37% (ML). This shows
that features that are highly discriminable from other phonemes
can be obtained by LDA. The performance gains of LDA and
MLLT were 2.0 and 2.7%, respectively. It is effective to use
a long context to reduce the influence of non-stationary noises.
Furthermore, although noises increase the correlations between
MFCC coefficients in each dimension, MLLT reduced the corre-
lations. The denominator lattices for discriminative training were
re-generated using the ML (MFCC + LDA+MLLT) model. Dis-
criminative training improved the WER by 4.6%.

6.3 Adaptation
Table 3 (lower) shows the WER when additional SAT and fM-

LLR were used. Because the amount of training data is very lim-
ited, transformation into a canonical space, which leads to an in-
crease in the effective amount of training data, has a strong impact
on the estimation accuracy of the acoustic models. Additionally,
fMLLR adaptation for a target speaker reduced the influence of
noises and improved the WER by 5.0%. The denominator lat-
tices for discriminative training were also re-generated using this
adapted ML model. Discriminative training improved the WER
by 5.5%.

6.4 Noise Suppression
In order to clarify the effectiveness of the prior-based proposed

BM, Table 4 shows the WERs of the proposed BM compared
with those of the conventional BM [37] by using baseline GMM
with MFCC features. As mentioned in Section 3, the conven-
tional BM improved the performance significantly, whereas the
proposed BM improved the WER in all SNRs by 7% to 9%.
The best warping parameters for the proposed BM α was 0.25.
Directional noises were effectively suppressed by our proposed
method, but diffused noises such as music remained.

Table 5 shows the WER with feature adaptation and discrimi-
native training. Combination of them with noise suppression was
effective. The employed adaptation improved the WER by 9.0%
and discriminative training improved it by 5.6%.

6.5 Deep Neural Network
Tables 6 and 7 provide the WERs of a DNN. Table 6 shows

*7 In this paper, WER improvements are shown in absolute values.

Table 5 WER[%] of GMM-HMM for si dt 05 with noise suppression
by prior-based BM. MFCC features (upper) and MFCC +
LDA+MLLT + SAT+fMLLR (lower).

◦MFCC + Δ + ΔΔ

−6 dB −3 dB 0 dB 3 dB 6 dB 9 dB Avg.

f-bMMI 63.40 54.05 44.28 38.87 33.72 29.90 44.04

◦MFCC + LDA+MLLT + SAT+fMLLR

ML 59.94 47.93 39.83 33.01 28.00 23.47 38.70
f-bMMI 52.93 42.62 34.59 27.63 24.27 20.24 33.71
(+DLM) 53.16 42.93 34.36 27.26 23.72 19.47 33.48
(+MBR) 52.65 42.04 33.75 27.05 23.74 19.91 33.19

(+DLM+MBR) 52.54 42.09 33.72 27.02 23.66 19.66 33.11

Table 6 WER[%] of DNN-HMM for si dt 05 without noise suppression.
MFCC features (upper) and MFCC + LDA+MLLT (lower).

◦MFCC + Δ + ΔΔ

−6 dB −3 dB 0 dB 3 dB 6 dB 9 dB Avg.

CE 67.47 57.55 48.78 43.43 36.10 31.76 47.52

◦MFCC + LDA+MLLT

CE 64.39 53.67 44.28 38.56 32.70 28.09 43.62

Table 7 WER[%] of DNN-HMM for si dt 05 with noise suppression by
prior-based BM. MFCC features (first), FBANK features (sec-
ond), MFCC + LDA+MLLT (third), MFCC + LDA+MLLT +
SAT+fMLLR (fourth) and PLP + LDA+MLLT + SAT+fMLLR
(fifth). Hypotheses of two systems (*1 and *2) were combined by
ROVER (last).

◦MFCC + Δ + ΔΔ

−6 dB −3 dB 0 dB 3 dB 6 dB 9 dB Avg.

CE 62.44 51.59 42.93 35.27 30.11 25.76 41.35

◦FBANK + Δ + ΔΔ

CE 55.60 44.52 36.16 30.62 26.02 22.32 35.87
bMMI 51.70 39.43 31.75 26.83 23.35 19.86 32.15

◦MFCC + LDA+MLLT

CE 57.21 45.85 36.21 30.61 26.36 23.31 36.59

◦MFCC + LDA+MLLT + SAT+fMLLR

CE 52.78 42.50 34.08 27.05 24.13 20.12 33.44
bMMI 47.34 36.33 28.96 23.40 20.03 17.05 28.85

(+DLM) 47.37 36.48 28.94 23.09 20.02 16.93 28.80
(+MBR) 46.79 35.68 28.44 22.88 19.91 16.64 28.39

*1 (+DLM+MBR) 46.67 35.55 28.38 22.84 19.83 16.65 28.32

◦PLP + LDA+MLLT + SAT+fMLLR

*2 (+DLM+MBR) 47.38 35.29 27.89 22.70 19.38 15.92 28.09

◦ROVER

*1+*2 45.12 34.34 26.73 21.71 19.09 15.39 27.06

the result without noise suppression and Table 7 shows that with
noise suppression. Using the same MFCC features, at the ML and
CE baseline, the DNN result outperformed the GMM results by
8.9% (without noise suppression) and 6.3% (without noise sup-
pression), respectively.

Table 7 (the second division) shows that the FBANK fea-
tures outperformed the MFCC features, as previous studies have
shown. The performance of MFCC + LDA+MLLT was worse
than that of the FBANK features for a DNN-HMM system.
When combined with GMM-based speaker adaptation techniques
(SAT+fMLLR), DNN slightly outperformed f-bMMI even with-
out discriminative training when Table 7 is compared with Ta-
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Table 8 WER[%] of GMM-HMM for si et 05 without noise suppression.

◦MFCC + Δ + ΔΔ

−6 dB −3 dB 0 dB 3 dB 6 dB 9 dB Avg.

-GMM-HMM

ML 69.79 62.71 55.86 46.89 42.07 37.49 52.47

-DNN-HMM

CE 62.79 53.19 46.46 38.26 32.30 30.34 43.89

◦MFCC + LDA+MLLT + SAT+fMLLR

-GMM-HMM

ML 60.83 52.14 43.51 34.28 29.22 23.82 40.63
f-bMMI 54.70 45.11 35.98 28.64 24.38 21.39 35.04

ble 5 *8. With discriminative training (bMMI) for DNN, the DNN
outperformed f-bMMI of GMM by 4.9%. This shows the effec-
tiveness of DNN for noise-robust ASR. The performance gains
by discriminative training of acoustic models were around 5% for
both GMM and DNN.

6.6 Discriminative Language Modeling and Minimum
Bayes Risk Decoding

Tables 5 (lower) and 7 (the fourth division) show that DLM
improved the average WER by 0.2% and 0.05%, respectively, es-
pecially for the 9 dB case of GMM, which resulted in a 0.8% im-
provement. DLM was not always effective because, while error
tendencies were dependent on a particular SNR, training was per-
formed on the whole multi-condition training set, which included
all SNRs. This led to a mismatch between training and recogni-
tion, thereby degrading performance. DLM was less effective for
DNN than GMM.

Tables 5 (lower) and 7 (the fourth division) show that MBR
improved the WER by 0.5% for both GMM and DNN. The per-
formance of MBR was stable with respect to SNR. The combi-
nation of DLM and MBR as mentioned in Section 4.5 improved
the WER further by 0.1% for both cases because DLM refined
the initial 1-best result and adapts to error tendencies inherent to
the decoder. Thus, MBR was effective for both GMM and DNN.

6.7 System Combination
Table 7 (the fifth division) shows the WER using PLP features

for the best case of DNN. This (PLP) result was equivalent to
the condition of 1) of the fourth division. PLP was slightly better
than MFCC but preliminary experiments show that simple con-
catenation of MFCC and PLP features for DNN degraded the per-
formance. Table 7 (the last division) shows that ROVER, which
combined the 1-best hypotheses of MFCC and PLP, improved the
WER by 1% and this was effective in all SNR cases.

6.8 Evaluation Set
Table 8 shows the WERs on the evaluation set using the mod-

els tuned on the development set. Tendencies were the same to
those of the development set. DNN was still effective for the eval-
uation set. Using both discriminative training and feature trans-
formation (f-bMMI) achieved a 33.2% error reduction relative to
the baseline (ML). Thus, we show the effectiveness of both dis-

*8 This type of adaptation cannot be directly applied for the FBANK fea-
ture due to their high dimensionality and correlation across feature di-
mensions [35].

Table 9 WER[%] of GMM- and DNN-HMM for si et 05 with noise sup-
pression.

◦MFCC+ Δ + ΔΔ

−6 dB −3 dB 0 dB 3 dB 6 dB 9 dB Avg.

-GMM-HMM

ML 60.58 52.87 45.60 37.70 33.38 29.24 43.23

◦MFCC + LDA+MLLT + SAT+fMLLR

-GMM-HMM

ML 50.91 41.64 33.89 26.30 21.61 18.85 32.20
f-bMMI 44.54 35.91 29.24 22.31 17.77 15.88 27.61
(+DLM) 44.27 35.48 28.75 21.61 17.34 15.37 27.14
(+MBR) 44.51 35.42 28.81 21.46 17.41 14.98 27.10

(+DLM+MBR) 44.12 35.46 28.12 21.20 17.43 14.83 26.86

-DNN-HMM
bMMI 37.98 28.26 21.86 17.71 12.61 11.75 21.70

(+DLM) 38.00 27.82 21.80 16.64 12.22 11.62 21.35
(+MBR) 37.14 27.35 21.41 16.94 12.55 11.54 21.16

*1 (+DLM+MBR) 37.16 27.44 21.24 16.66 12.40 11.49 21.07

◦PLP + LDA+MLLT + SAT+fMLLR

-DNN-HMM

*2 (+DLM+MBR) 38.22 27.93 22.57 16.91 13.49 12.14 21.88

◦ROVER

*1+*2 36.43 26.02 20.96 15.84 11.99 11.17 20.40

criminative training and feature transformation for reverberated
and noisy speech.

Table 9 shows the WERs after noise suppression. Using a
GMM-HMM system with both discriminative training and fea-
ture transformation (f-bMMI) achieved a 37.9% error reduction
relative to the baseline (ML). These results were submitted to the
CHiME challenge workshop [41]. Moreover, for this case, DNN
with bMMI and system combination of two systems (ROVER)
achieved a 52.6% error reduction, which means that errors were
reduced by more than half.

7. Conclusions

We developed a state-of-the-art recognition system for the sec-
ond CHiME challenge track 2, which is a medium-size automatic
speech recognition task under noisy environments, and validated
the effectiveness of both feature transformation and discrimina-
tive methods. For realistic reverberated and noisy environments
of this task, we proposed a prior-based binary masking and show
its effectiveness. Combination of minimum Bayes risk decoding
and discriminative language modeling improved the word error
rate by considering error tendencies, which are inherent to the
decoder. Deep neural networks are also effective; they outper-
formed the feature-space boosted maximum mutual information
technique, which had been the state-of-the-art acoustic modeling
technique for conventional Gaussian mixture model based sys-
tems. This superior performance was achieved even without dis-
criminative training; with the combination of sequential discrim-
inative training and system combination, the best performance
was achieved. Experiments show that these techniques are effec-
tive for non-stationary interference and reverberation.

Future work will be an extension of our approaches to various
tasks. For handling distant speech, reverberation effect is also im-
portant [22]. In this scenario, because the speaker moves freely,
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our prior-based binary masking approach needs modifications to
include multiple priors according to the speaker direction.
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