
Journal of Information Processing Vol.25 426–437 (June 2017)

[DOI: 10.2197/ipsjjip.25.426]

Regular Paper

A Task-driven Parallel Code Generation Scheme
for Coarse Grain Parallelization on Android Platform

Akimasa Yoshida1,2,a) Akira Kamiyama3 Hiroki Oka1

Received: October 24, 2016, Revised: January 5, 2017,
Accepted: February 7, 2017

Abstract: Thanks to high performance and low power consumption on Android mobile devices such as smartphones
and tablet computers, the use of Android platform has been increasing significantly. Android platforms almost con-
sist of ARM-based multicores and most of the applications have been developed in Java language. Recent Android
OS introduces the Java runtime environment called ART which enables use of Fork/Join framework. The Fork/Join
framework provides the scheduling mechanism with work-stealing and it is mainly used for programs to implement
the divide-and-conquer algorithm or the recursive algorithm. However, in the case of ordinary programs, it is difficult
to implement a coarse-grain parallel code based on Fork/Join framework considering data-dependency. To cope with
such a problem, this paper proposes a coarse-grain parallel code generation scheme using a developed compiler which
converts a Java source program with directives into a task-driven parallel code based on Fork/Join framework. In the
performance evaluation using four programs from Java Grande Forum Benchmark Suite, the execution on Samsung
Galaxy S6 with heterogeneous eight cores could achieve 2.77–5.12 times speedup versus sequential processing and
the execution on NVIDIA Shield Tablet with four cores could also achieve 2.34–3.94 times speedup. Consequently,
effectiveness of the proposed scheme was confirmed.
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1. Introduction

Modern computers such as supercomputers, servers, smart-
phones and embedded systems have used the parallel processing
techniques with multicores to improve their computation perfor-
mance. Recently, since mobile devices including IoT devices are
more popular, it is expected to further enhance performance of
Android mobile devices.

Coarse grain parallelization [1], [2], [3], [4] as well as loop
parallelization [5] is expected to provide high performance on
multicore processors. Particularly, in order to enhance coarse
grain parallelism extraction, the layer-unified execution control
scheme [6], [7] has been proposed, which can utilize coarse grain
task parallelism among different layers.

Though C and Fortran languages are conventionally used as
target languages for parallel computing, interest in Java for high
performance computing is recently increasing [8]. This is because
the performance gap between Java and native languages such as
C and Fortran has been narrowing for the last few years owing to
the Just-In-Time compiler of the Java Virtual Machine. In addi-
tion, to improve Android device performance, Android 5.0 later
adopts the ART runtime that is based on Ahead-Of-Time (AOT)
compiler techniques instead of the previous Dalvik runtime.

With respect to the parallel code implementation using Java,
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the Thread class or the Runnable interface is conventionally used.
On the contrary, Java SE 7 and Android 5.0 later adopts Fork/Join
framework [9], which can parallelize small-grain tasks with low
overhead and is promising as a popular parallel platform. The
parallel code implementation based on Fork/Join framework is
generally performed for the divide-and-conquer or recursive algo-
rithm, but is difficult to use for exploiting coarse grain parallelism
considering data-dependency from various kinds of scientific pro-
grams in Fork/Join framework environment.

Therefore, this paper proposes a task-driven execution scheme
to realize the coarse grain parallel processing with the layer-
unified execution control [6] in Fork/Join framework environ-
ment, and develops a parallelizing compiler to generate its par-
allel code. The compiler-generated parallel code enables coarse
grain parallel processing in a task-driven manner on Fork/Join
framework. This paper also describes performance evaluation on
a smartphone Samsung Galaxy S6, a tablet NVIDIA Shield Tablet
and a server equipped with Intel Xeon E5-2680.

The rest of this paper is organized as follows. Section 2 de-
scribes an overview of the proposed scheme. Section 3 describes
a task-driven execution for coarse grain parallel processing. Sec-
tion 4 describes a task-driven parallel code based on Fork/Join
framework. Section 5 describes a parallelizing compiler to gen-
erate a task-driven parallel code. Section 6 evaluates the perfor-
mance of the coarse grain parallel processing with task-driven ex-
ecution on multicore systems. Section 7 describes related works.
Finally, Section 8 presents our conclusions.
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Fig. 1 Flow of task-driven coarse grain parallel processing.

2. Overview of Proposed Scheme

The proposed scheme in this paper consists of (1) Task-driven
coarse grain parallel processing scheme which is also called Task-
driven execution below, (2) Fork/Join-based implementation of
the task-driven execution and (3) Parallelizing compiler for the
task-driven execution.

This section briefly explains how to apply task-driven execu-
tion to ordinary programs. As shown in Fig. 1, a Java program
with directives is input to the developed parallelizing compiler,
and the compiler generates a parallel Java program for task-driven
execution. Namely, the compiler works as a source-to-source
translator.

Next, the generated parallel Java program is executed on An-
droid platform with ART runtime or on Linux platform with JVM
(Java virtual machine). In other words, the generated parallel
Java program can be adapted to several platforms. In addition,
the class files corresponding to the generated parallel Java pro-
gram may be archived into a library like a JAR file. Therefore,
this proposed scheme is considered to be useful for application
developers, library developers and general programmers.

3. Task-driven Execution for Coarse Grain
Parallel Processing

This section describes the task-driven execution scheme to re-
alize coarse grain parallel processing in Fork/Join framework en-
vironment.

3.1 Concept of Task-driven Execution
In this subsection, we explain the concept of the proposed task-

driven execution by using a sample program as shown in Fig. 2.
To realize the task-driven execution, the sample program is con-
verted to a macro-task-graph (MTG) depicted in Fig. 3 by the par-
allelizing compiler. The MTG represents the earliest executable
conditions of coarse-grain tasks (called macrotasks) as indicated
in Table 1.

As seen from Fig. 4, an execution image on four cores, namely

Fig. 2 A source program with parallelization directives.

Fig. 3 Macro-task-graph (MTG).

four worker-threads on Fork/Join framework, shows that macro-
tasks are executed on four cores effectively. When MT1 in
Fig. 4 finishes its execution on Core0, a worker-thread binding
to Core0 tries to check the earliest executable conditions for the
task-driven succeeding macrotask-candidates such as MT2, MT3,
MT4 and MT5 in Table 1, and forks the executable macrotasks to
its own worker-queue. Then, each worker-thread binding to a
core starts to execute a macrotask in Fork/Join framework with
work-stealing.

In code generation of the task-driven execution, the first
phase detects the inter-macrotask parallelism according to the
layer-unified coarse grain parallelization [6], [7], which defines
macrotasks hierarchically, analyzes the earliest executable con-
ditions in Table 1 and represents them as a macro-task-graph
(MTG) [6], [10]. The second phase generates the task-driven par-
allel code that can execute the macrotasks on multicores in a dy-
namic scheduling manner. Here, the management of the macro-
task state such as Finish or Branch is performed by the task-driven
parallel code generated by the compiler, but Fork/Join framework
is responsible for scheduling to take an executable macrotask
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Table 1 Earliest executable conditions and task-driven succeeding
macrotask-candidates.

MTG MT
Earliest Finish/ Task-driven

Executable Branch Succeeding
Condition Notification MT-candidates

0

1 true 1 2,3,4,5
2 1 2 6
3 1 3 7
4 1 4 7
5 1 5 7

6† 2 6S 10
7 3∧4∧5 7 8

8† 7 8S 21,22
9 6∧8 9 End

End‡ 9 — —

1

10‡(Loop) 6S 10 11,12
11 10 11 13
12 10 12 13

13‡(Ctrl) 11∧12 1314, 1315 14,15
14‡(Repeat) 1314 14 10

15‡(Exit) 1315 6 9

2
21 8S 21 23
22 8S 22 23

23‡(Exit) 21∧22 8 9

†: layer-start macrotask
‡: dummy-macrotasks for management
1314: MT13 finishes and branches to MT14
1315: MT13 finishes and branches to MT15

Fig. 4 Task-driven coarse grain parallel processing on 4 cores.

from a worker-queue and execute it on a worker-thread.

3.2 Definition of Macrotask
In coarse grain parallelization [1], [6], an entire program is

firstly decomposed into first-layer macrotasks. A macrotask is
classified into one of three types: a basic block, a repetition block
(e.g., a for-statement, a while-statement), and a subroutine block
(e.g., a method). Next, when a first-layer macrotask contains sev-
eral sub-macrotasks, the sub-macrotasks are defined as second-
layer macrotasks. Similarly, macrotasks can be defined hierar-
chically, but if an upper-layer macrotask has enough parallelism
to exhaust given cores, then lower-layer macrotasks within the
upper-layer macrotask need not be defined as sub-macrotasks.

In addition, the layer-start macrotask [6] is introduced to uni-
formly control macrotasks of all layers. As shown in Fig. 3, in the
case of a repetition block MT6 that contains MT11 and MT12,
MT6 is treated as a layer-start macrotask MT6S in Fig. 4. Also,
in the case of a subroutine block MT8 that invokes a method com-
posed of MT21 and MT22, MT8 is treated as a layer-start macro-
task MT8S in Fig. 4.

3.3 Earliest Executable Condition and Task-driven Suc-
ceeding Macrotask-candidate

After definition of macrotasks, in order to extract inter-
macrotask parallelism taking control dependency and data depen-
dency into consideration, the compiler analyzes the earliest exe-
cutable condition [1], [6]. For example, the earliest executable
condition of MT7 in Fig. 3 is expressed by a logical expression
3∧4∧5 in Table 1, which means that MT7 will be executable af-
ter MT3, MT4, and MT5 finish.

In the case of a repetition block MT6 in Fig. 3, when MT6
completes the role of a layer-start macrotask MT6S, MT6 issues
the Finish notification represented as 6S in Table 1. The notifi-
cation 6S enables executing MT10 (dummy-macrotask for Loop)
within MTG1 in Table 1. After execution of MT10, MT10 issues
the Finish notification represented as 10 in Table 1 and its suc-
ceeding macrotask-candidates such as MT11 and MT12 will be
executable.

MT13 (dummy-macrotask for Ctrl) in Table 1 determines
whether to repeat the loop body of MT6 including MT11 and
MT12 as follows: MT13 compares a loop induction variable with
the loop’s upper limit; it issues the Branch notification to MT14
(dummy-macrotask for Repeat) like 1314 or the Branch notifi-
cation to MT15 (dummy-macrotask for Exit) like 1315; if this
Branch notification can satisfy the earliest executable condition
MT14 or MT15, then MT14 or MT15 will be executable. The ear-
liest executable condition of macrotasks is also represented by a
macro-task-graph (MTG) [1] in Fig. 3 where dummy-macrotasks
are omitted.

In the case of the method invocation MT8 that contains MT21
and MT22, the macrotask MT8 is treated as a layer-start macro-
task. Here, MT23 (dummy-macrotask for Exit) in Table 1 corre-
sponds to an exit node of the method.

3.4 Scheduling for Task-driven Execution
Regarding behavior of macrotasks in the proposed task-

driven execution, when a certain macrotask executing on a
worker-thread finishes, the worker-thread checks whether to sat-
isfy the earliest executable condition for task-driven succeed-
ing macrotask-candidates in Table 1. If a task-driven succeed-
ing macrotask-candidate is executable, the worker-thread forks
the macrotask-candidate and then executes a macrotask that is
popped from its worker-queue.

To take a simple example composed of four macrotasks in
Fig. 5 (a), the execution process in Fig. 5 (b) is explained as fol-
lows: (1) The worker-thread0 executing the macrotask MTa af-
ter MTa finishes, pushes its task-driven succeeding macrotask-
candidates such as MTb and MTc to the worker-queue0; (2) The
worker-thread0 pops the macrotask MTb from the worker-queue0
and executes it; (3) The worker-thread1 takes the macrotask MTc
from the worker-queue0 in work-stealing manner and executes it;
(4) Even if the finish time of MTc is later than that of MTb, the
MTc forks the task-driven succeeding macrotask-candidate MTd
and pushes it to the worker-queue1; (5) The worker-thread1 pops
the macrotask MTd from the worker-queue1 and executes it.
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Fig. 5 Task-driven execution using Fork/Join framework.

3.5 Java Fork/Join Framework
This section describes the Java Fork/Join framework [9] which

is used for scheduling of the proposed task-driven execution. The
Fork/Join framework is a parallel processing framework to im-
plement the ExecutorService interface, which is introduced to
Java SE 7, Android 5.0 later. This framework has been designed
for small-grain task parallel processing and can cope with the
lock-contention problem for large-scale systems by means of the
work-stealing mechanism.

Firstly, the Fork/Join framework creates a thread pool in-
cluding user-specified number of worker-threads. Each worker-
thread has a corresponding worker-queue which is maintained as
a double-ended queue and it pushes a forked task to a front of the
worker-queue in default setting.

When a worker-thread finishes its executing task, it executes a
new task which is popped from a front of its worker-queue. Even
if the worker-queue is empty, the worker-thread executes a new
task which is taken from a back of a worker-queue owned by the
other worker-thread in work-stealing manner.

To implement the parallel code, an abstract class
RecursiveAction or RecursiveTask can be utilized.
The implementation of the proposed parallel code adopts a
RecursiveAction that does not treat the return-value because
the proposed task-driven parallel code can manage the task
state such as Finish or Branch by itself. An abstract method
compute() within RecursiveAction is overridden after class
extension.

4. Task-driven Parallel Code Based on
Fork/Join Framework

This section describes a generation scheme of task-driven par-
allel code based on Fork/Join framework for coarse grain paral-
lelization.

4.1 Structure of Task-driven Parallel Code
The task-driven parallel code based on Fork/Join framework

can be generated automatically by the parallelizing compiler
mentioned below. In general, the form of the parallel code is
shown in Fig. 6 (a). Here, the ForkTemplate-style class is im-
plemented as an inner class and corresponds to a method within
a source program. It contains macrotask codes called self-

Fig. 6 The structure of the task-driven parallel code.

Fig. 7 Data class within a task-driven parallel code.

Fig. 8 Other class within a task-driven parallel code.

manageable macrotask codes as shown in Fig. 6 (b). The self-
manageable macrotask code makes it possible to execute the
macrotask, manage the states of the macrotask, and try to fork
succeeding macrotask-candidates.

For example, in the parallel code corresponding to the macro-
task-graph shown in Fig. 3, three classes exists as follows: (1)
Data class for macrotask-management in Fig. 7, (2) Other class
that expresses a user-defined class in Fig. 8 and (3) Mainp class
corresponding to first-layer macro-task-graph in Fig. 9.
4.1.1 Data Class for Macrotask-management

Data class treats data for macrotask-management. In the
code shown in Fig. 7, a variable forkmt (at lines 2–3) is
used to preserve information of forked macrotasks. A vari-
able successor (at lines 4–5) is used to preserve information
of succeeding macrotasks. The macrotask-management-table
(at line 6) is declared to manage the macrotask state such as
Finish or Branch. initSuccessor() (at lines 7–9) registers
the succeeding macrotask-candidates to the variable successor.
checkEEC() (at lines 10–12) checks whether a macrotask mt sat-
isfies its earliest executable condition and returns the result as a
boolean-type value.
4.1.2 Other Class Defined by the User

If a source program has user-defined classes including paral-
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Fig. 9 Mainp class within a task-driven parallel code.

lelization directives (e.g., Other in Fig. 2), the name of each user-
defined class is preserved as shown in Fig. 8. Each method within
the user-defined class is converted into a ForkTemplate-style class
like ForkTemplate func in Fig. 8.

A ForkTemplate-style class corresponds to a method defined
by the user, and several ForkTemplate-style classes may exist.
In the ForkTemplate func class shown in Fig. 8, shared vari-
ables among macrotasks are declared at line 3. The construc-
tor at lines 4–6 is used when forking an instance of ForkTem-
plate func. Arguments of the constructor include a macrotask
identifier which can identify macrotasks to be executed within
ForkTemplate func. compute() at lines 7–9 executes a cor-
responding self-manageable macrotask code (at lines 10–15).
mt21() at line 10 corresponds to MT21 in Fig. 3, mt22() at line
11 corresponds to MT22 in Fig. 3, and mt23() at lines 12–15
is a dummy-macrotask corresponding to MT23(Exit) in Table 1.
Note that even if the user defines several classes, the compiler
generates respective corresponding classes.
4.1.3 Manip Class Corresponding to First-layer MTG

When executing the task-driven parallel code, firstly a method
main() within Mainp class (at lines 50–54 in Fig. 9) is executed.
This main() method creates a thread pool including worker-

threads. Then, parallel processing based on Fork/Join framework
starts by the invocation of an instance of Layer0 class.

For the 0th-layer macrotask that means an entire program,
Layer0 class (at lines 40–49 in Fig. 9) are prepared and its in-
stance executes a method compute() within it. This leads to
forking a macrotask mtStart in ForkTemplate main within Mainp
(at lines 10–12 in Fig. 9), where compute() executes a cor-
responding self-manageable macrotask-code (at lines 13–38 in
Fig. 9) within ForkTemplate main.

4.2 ForkTemplate-style Class
The ForkTemplate-style class shown in Fig. 6 (b) is gener-

ated for each method including parallelization directives within a
source program. The execution of macrotasks within the method
is realized by forking an instance of the ForkTemplate-style class.

For example, ForkTemplate main class (at lines 2–39 in Fig. 9)
corresponds to a method main() of a source program shown
in Fig. 2. Similarly, ForkTemplate func class (at lines 2–16 in
Fig. 8) corresponds to the method func() within Other class de-
fined by the user.

A ForkTemplate-style class consists of self-manageable
macrotask codes, each of which is processed as follows: (1) To
execute a macrotask; (2) To renew a macrotask-management
table preserving states such as Finish or Branch; (3) To try
to fork succeeding macrotask-candidates by checking their
earliest-executable conditions, or namely to push the executable
succeeding macrotask-candidates to a worker-queue.

5. Parallelizing Compiler

The task-driven parallel code based on Fork/Join framework is
advantageous in terms of use of parallelism. However, it is not
easy for users to generate such a parallel code manually. There-
fore, we have developed a parallelizing compiler as a prototype.

As shown in Fig. 1, this compiler reads a Java program with
directives as a source program, and it generates a parallel Java
program for task-driven execution. Namely, the compiler works
as a source-to-source translator.

5.1 Specification of Parallelizing Compiler
The developed parallelizing compiler reads a Java program in-

cluding parallelization directives listed in Table 2, analyzes the
earliest executable conditions [6] of the macrotasks and generates
a task-driven parallel code based on Fork/Join framework.

When a Java program with parallelization directives is com-
posed of several files, their files need to be concatenated into
one file. However, source files without parallelization direc-
tives and class files can be treated as independent files. They
are called nonparallel-targeted code as mentioned later. Here, if
a parallel-target code may invoke a method within nonparallel-
targeted codes, the method is assumed to be converted to a thread-
safe method in advance.

5.2 Parallelization Directives
To perform the task-driven execution for coarse grain paral-

lelization, it is necessary to insert the parallelization directives in
Table 2 into a target Java program. Then the proposed paralleliz-

c© 2017 Information Processing Society of Japan 430



Journal of Information Processing Vol.25 426–437 (June 2017)

Table 2 Parallelization directives.

Denotation Definition

/*mt fork*/ a macrotask
/*mt fork inner*/ parallelization within a macrotask
/*premt*/ a preprocessing part
/*postmt*/ a postprocessing part
/*mt fork decomp=value*/ the number of loop-decomposition

reduction(+:variable) reduction variable as a clause of the directive decomp
private(variable) private variable as a clause of the directive decomp

/*mt fork logical-expression*/ earliest executable condition (EEC)†
†: e.g., The EEC of MT7 inside MTG0 in Table 1 is denoted by /*mt fork (0 3)&(0 4)&(0 5)*/.

ing compiler generates a task-driven parallel code.
To define a macrotask as mentioned in Section 3.2, the par-

allelization directive /*mt fork*/ must be used as shown in
Fig. 2. With regard to a macrotasks having sub-macrotasks, e.g.,
a repetition block or a class method, the macrotask needs to be
annotated by /*mt fork inner*/ and its sub-macrotasks also
need to be annotated by /*mt fork*/. A sequential-execution
region for preprocessing or postprocessing should be denoted by
parallelization directives such as /*premt*/ and /*postmt*/.

Optionally, several parallelization directives to en-
hance performance are prepared as follows. A directive
/*mt decomp=value*/ specifies the number of decomposi-
tion of a parallelizable loop. Also, reduction(+:variable),
private(variable) can be used as a directive clause. A
directive /*mt fork logical-expression*/ can explicitly in-
dicate an earliest executable condition of a macrotask, where
the logical-expression is written by a pair of ‘(MTG-number

macrotask-number)’, the symbol ‘&’ meaning AND, the symbol
‘|’ meaning OR and the symbol ‘*’ meaning branch. The
example is indicated in the footnote of Table 2. Note that
such an earliest executable condition can be analyzed within a
method automatically, but the directive is effective for exploiting
parallelism among methods.

5.3 Implementation of Parallelizing Compiler
The parallelizing compiler has been developed by Java lan-

guage. The structure of the compiler is shown in Fig. 1, where
the lexical analysis and the syntax analysis are implemented by
the Jay/JFlex parser generator that deals with the LALR(1) gram-
mar. In this compiler, a source program with directives is con-
verted into the abstract-syntax-tree (AST) as intermediate repre-
sentation.

The compiler recognizes macrotasks denoted by parallelization
directives in Table 2, analyzes both control dependency and data
dependency, analyzes the earliest executable condition as shown
in Table 1, and generates a task-driven parallel code based on
Fork/Join framework. Here, the compiler analyzes task-driven
succeeding macrotasks from earliest executable conditions of the
macrotasks and reflects them to the task-driven parallel code.

In this prototype compiler, the data dependency related to the
primitive type can be analyzed automatically, but the data depen-
dency related to the reference type is preserved in consideration
of the alias problem. Thus, to effectively extract inter-method
parallelism, users can partially denote the earliest executable con-
dition as a parallelization directive.

6. Performance Evaluation of Task-driven
Parallel Code on Multicore Systems

This section presents performance evaluation results by means
of the task-driven parallel code on multicore systems. This evalu-
ation consists of the overall evaluation using Java Grande Forum
Benchmark Suite Version 2.0 [11] and the overhead evaluation
using the integral program. The execution time measured in this
paper is expressed as an average of the middle three data within
five measurements.

6.1 How to Evaluate on Android Platform
This subsection uses four programs from Java Grande Forum

Benchmark Suite Version 2.0 whose property is indicated in Ta-
ble 3. For these programs, we apply the program restructuring
techniques such as inline expansion and constant propagation,
and merged several program files into a Java file. After that, we
inserted parallelization directives listed in Table 2. In this eval-
uation, the developed parallelizing compiler reads a source pro-
gram with parallelization directives as an input file, and generates
a task-driven parallel code.

Next, in the evaluation compared to conventional schemes, we
use a parallel code using Runnable interface and a parallel code
using Fork/Join framework without our task-driven execution. A
parallel code using Runnable interface is generated manually in
following manner: decomposing each parallelizable loop into Nd

parts of loop where Nd is the number of loop-decomposition indi-
cated in Table 3 and generating the threaded code which executes
the decomposed partial loop on each thread. Meanwhile, a paral-
lel code using Fork/Join framework without our task-driven exe-
cution is generated manually in following manner: decomposing
each parallelizable loop into Nd parts of loop and generating the
Fork/Join code which forks the decomposed partial loop on each
worker thread.

In the target multicore systems such as Galaxy S6 and NVIDIA
Shield Tablet indicated in Table 4, the parallel codes are executed
by ART runtime of Android OS. We use Android Studio 2.1 to
build and load the parallel code to the Android device. The An-
droid Studio converts Java files into dex (Dalvik Executable) files
via class files. Since ART runtime on Android device adopts AOT
(Ahead-Of-Time) compilation policy, dex files are converted into
native codes like ARM instructions when loading the parallel
codes to the Android device. This type of method allows re-
ducing overhead due to JIT (Just-In-Time) compilation of Dalvik
runtime.
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Table 3 Performance evaluation programs from Java Grande Forum Benchmark Suite.

Property Crypt Series Monte-Carlo Ray-Tracer

Data set C(N= 50,000,000) B(N= 100,000) A(N= 10,000) B(N= 500)
The length of parallel-targeted code 308 505 553 448
The length of compiler-generated parallel code 3,251 1,155 1,349 4,071
The length of nonparallel-targeted code — — 2,585 998
The number of inserted parallelization directives 5 6 5 3
The number of loop-decomposition 16 16 16 50
1-thread task-driven execution time on Galaxy S6 [ms] 5,471 87,746 5,507 657,551
The number of executed macrotasks including dummy-macrotasks 37 22 21 53
Macrotask-granularity (average macrotask execution time) [ms] 148 3,988 262 12,407

Table 4 Environment of performance evaluation.

Device Samsung Galaxy S6 NVIDIA Shield Tablet Dell PowerEdge R730

Processor Exynos 7420 (2.1 GHz+1.5 GHz) Tegra K1 (2.3 GHz) Intel Xeon E5-2680 v3 (2.5 GHz)
CPU core 4-cores Cortex-A57 + 4-cores Cortex-A53 4-cores Cortex-A15r3 12-cores
Memory 3 GB 2 GB 64 GB

OS Android 6.0.1 Android 6.0 CentOS 6.7
Java environment ART (API level 23) ART (API level 23) JDK1.8 (with HotSpot Optimization)

Fig. 10 Task-driven coarse grain parallel processing on Galaxy S6.

In a file MainActivity.java within project files in the Android
Studio, we prepared a template code including both the onClick()
method and the user interface to select the number of worker-
threads in advance. The compiler-generated task-driven parallel
codes are invoked from this template code respectively so as to
perform the coarse grain parallel processing on the Android de-
vice.

6.2 Performance Evaluation of Task-driven Parallel Execu-
tion for Benchmark Programs

This subsection describes a performance evaluation for using
four programs from Java Grande Forum Benchmark Suite Ver-
sion 2.0 [11] on Android platform and Linux platform.
6.2.1 Evaluation on Android Platform

In this evaluation, the task-driven parallel codes are generated
by our compiler and are executed on Android platform.
Crypt on Android Crypt is a program to encrypt and decrypt

by using IDEA (International Data Encryption Algorithm)
and its code length is 308 lines. Our parallelizing com-
piler generates 3,251-lines of task-driven parallel code from
a source code with parallelization directives. According to
the execution result of the parallel code on Galaxy S6 shown
in Fig. 10 (or Table A·1), eight-threads execution gave us
4.43 times faster speedup compared to the original sequen-
tial processing without parallelization. As for the execution
result on Shield Tablet shown in Fig. 11 (or Table A·2), four-

Fig. 11 Task-driven coarse grain parallel processing on Shield Tablet.

Fig. 12 Comparison of parallel processing schemes on Galaxy S6.

threads execution gave us 3.92 times faster speedup com-
pared to the original sequential processing.
Note that Galaxy S6 is composed of heterogeneous multi-
cores indicated in Table 4, namely four-threads execution
can use high-speed four cores, but eight-threads execution
must use both high-speed four cores and low-speed/low-
power four cores. Thus the performance on heterogeneous
eight cores cannot attain an ideal speedup.
In comparison with conventional schemes, we prepare a par-
allel code using Runnable interface and a parallel code using
Fork/Join framework without task-driven execution manu-
ally. As shown in Fig. 12 (or Table A·3), the Runnable
execution with eight-threads of Galaxy S6 gave us 3.23

c© 2017 Information Processing Society of Japan 432



Journal of Information Processing Vol.25 426–437 (June 2017)

Table 5 Single core execution and Math-class-library ratio in Crypt and Series programs.

Program Execution Time[ms] on Galaxy S6
Time[ms] on Xeon

JVM with HotSpot JVM without HotSpot

Crypt
Sequential 5,087 1,933 23,665
(Math-class-library ratio)† (0%) (0%) (0%)
1-thread task-driven 5,471 3,086 21,939

Series
Sequential 87,575 46,154 73,674
(Math-class-library ratio)† (79%) (84%) (65%)
1-thread task-driven 87,746 30,788 74,372

†: Ratio of Math-class-library execution time against Sequential processing time

times faster speedup versus sequential processing, and the
Fork/Join execution without task-driven execution gave us
3.27 times faster speedup versus sequential processing. On
the contrary, the proposed task-driven execution scheme
could achieve 4.43 times faster speedup as mentioned above.
That is to say, the proposed scheme is superior to the
Runnable execution by 27% and to the Fork/Join execution
without task-driven execution by 26% in terms of execution
time.

Series on Android Series is a program composed of 505-lines
of source code to calculate Fourier coefficients. Our paral-
lelizing compiler generates 1,155-lines of task-driven paral-
lel code. The execution result on eight-threads of Galaxy S6
in Fig. 10 (or Table A·1) gave us 5.12 times faster speedup
versus sequential processing. The execution result on four-
threads of Shield Tablet in Fig. 11 (or Table A·2) shows gave
us 3.94 times faster speedup versus sequential processing.
Such an ideal speedup of Series results from the properties
of its program. The partial execution time for Math-class-
library is as much as 79% of the sequential processing time
on Galaxy S6 in Table 5. In addition, the memory access
cost of Math-class-library seems to be less than that of ordi-
nary Java codes written by users. Thus, Series can achieve
better performance than the other benchmark programs.

Monte-Carlo on Android Monte-Carlo is a program of a fi-
nancial simulation using Monte-Carlo techniques to price
derived products. This source program consists of both the
553-lines of parallel-targeted code where our parallelization
directives are inserted and the 2,585-lines of nonparallel-
targeted code where our parallelization directives are not
inserted. Our parallelizing compiler reads the 553-lines of
parallel-targeted code and generates the 1,349-lines of task-
driven parallel code. In the execution on the Android de-
vice, both the 1,349-lines of task-driven parallel code and
the 2,585-lines of nonparallel-targeted code are loaded to the
Android device.
The eight-threads execution on Galaxy S6 in Fig. 10 (or Ta-
ble A·1) shows 4.07 times faster speedup versus sequential
processing. The four-threads execution on Shield Tablet in
Fig. 11 (or Table A·2) shows 2.94 times faster speedup ver-
sus sequential processing.

Ray-Tracer on Android Ray-Tracer is a program to measure
the performance of a 3D ray tracer. The scene including
64 spheres is rendered. This source program consists of
both the 448-lines of parallel-targeted code and the 998-
lines of nonparallel-targeted code. Our parallelizing com-

piler reads the 448-lines of parallel-targeted code and gen-
erates the 4,071-lines of task-driven parallel code. Consid-
ering data size N= 500, the number of loop-decomposition
is determined as 50. In the execution, both the task-driven
parallel code and the nonparallel-targeted code are loaded to
the Android device.
The eight-threads execution on Galaxy S6 in Fig. 10 (or Ta-
ble A·1) shows 2.77 times faster speedup versus sequential
processing. The four-threads execution on Shield Tablet in
Fig. 11 (or Table A·2) shows 2.34 times faster speedup ver-
sus sequential processing. These speedup ratio is not enough
performance, but it is dependent on using frequent instance
creations on the Android platform. On the other hand, the
execution result on the Linux platform presents better scal-
ability as mentioned in 6.2.2, and parallelism seems to be
extracted within this program.

These performance evaluations with four programs on Android
platforms such as Galaxy S6 and Shield Tablet confirmed that
coarse grain parallelization using the task-driven parallel code
can extract parallelism efficiently and can drastically reduce the
execution time. Moreover, it means that the proposed task-driven
execution policy can treat both the parallel-targeted code and the
nonparallel-targeted code. This is beneficial for parallelization of
large-scale applications.
6.2.2 Evaluation on Linux Platform

As the proposed task-driven parallel code is platform-free, the
parallel code enables performing coarse grain task parallel pro-
cessing on not only the Android platform but also the Linux plat-
form. This subsection performs the evaluation on DELL Pow-
erEdge R730 equipped with Intel Xeon E5-2680 v3 (12cores,
2.5 GHz) specified in Table 4. Linux platform adopts JDK1.8 as
a Java execution environment where HotSpot optimization is ap-
plied by default. The execution result on Xeon E5-2680 is shown
in Fig. 13 (or Table A·4) and Fig. 14 (or Table A·5).
Crypt on Linux Crypt program on 12-threads gave us 7.19

times faster speedup versus 1-thread task-driven execution,
or 4.51 times faster speedup versus sequential processing
in Fig. 13. These results show that parallelism within this
program is extracted efficiently, but 1-thread task-driven ex-
ecution is slower than sequential processing on JVM with
HotSpot optimization (Just-In-Time compilation). As can
been seen from Table 5, unless HotSpot optimization is ap-
plied, 1-thread task-driven execution time is slightly shorter
than sequential processing time. However, provided that
HotSpot optimization is applied, 1-thread task-driven execu-
tion time is longer than sequential processing time. This is
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Fig. 13 Task-driven coarse grain parallel processing on Xeon E5-2680.

Fig. 14 Comparison of parallel processing schemes on Xeon E5-2680.

because the length of compiler-generated parallel code with
the loop-decomposition is 10.6 times as long as that of the
sequential processing code in Table 3. Namely, such a long
code degrades the performance of HotSpot optimization.
Meanwhile, Fig. 14 shows comparison with conventional
processing schemes for Crypt program. The Runnable im-
plementation on eight-threads gave us 3.51 times speedup
versus sequential processing, and the Fork/Join implementa-
tion on eight-threads without task-driven execution gave us
1.74 times speedup versus sequential processing. Therefore,
the proposed task-driven execution can respectively reduce
execution time by 20% versus the Runnable implementation
and by 61% versus the Fork/Join implementation without
task-driven execution.

Series on Linux Series program on 12-threads achieves 9.69
times speedup versus sequential processing as shown in
Fig. 13. In this program, let us consider the effect due to
the HotSpot optimization of JVM on Xeon. As shown in Ta-
ble 5, unless HotSpot optimization is applied, the 1-thread
task-driven execution time of Series is almost the same as
the sequential processing time. But, if HotSpot optimization
is applied, the 1-thread task-driven execution time is remark-
ably shorter than the sequential processing time. This is be-
cause HotSpot optimization is more effective for the loops
decomposed by the directive /*mt fork decomp=16*/ in
1-thread task-driven execution.

Monte-Carlo on Linux Monte-Carlo program on 12-threads
achieves 6.26 times speedup versus sequential processing in
Fig. 13.

Ray-Tracer on Linux Ray-Tracer program on 12-threads

Fig. 15 Integral program with directives and its MTG.

Fig. 16 Overhead evaluation using Integral program on Galaxy S6.

achieves 9.31 times speedup versus sequential processing in
Fig. 13.

As mentioned above, the task-driven parallel code can attain
good speedup on the Linux platform and is effective for efficiently
extracting parallelism.

6.3 Overhead Evaluation of Task-driven Parallel Code
This subsection evaluates overhead of the proposed task-

driven parallel code. The evaluation program is the Inte-
gral program that solves Pi by using the trapezoidal rule as
shown in Fig. 15 (a). In a loop to calculate the definite inte-
gral, a parallelization directive /*mt fork*/ is inserted with di-
rective clauses such as decomp=100, reduction(+:sum) and
private(x1,x2,y1,y2). This directive directs the compiler to
decompose a loop into 100 partial loops, namely MT1–MT100,
and to recognize them as macrotasks as shown in Fig. 15 (b),
where MT101 calculates a total value from partial sums. The
number of divisions of the integration interval is N. The value N
varies N= 105, 106, 107 as shown in Fig. 16, which signifies ad-
justing the macrotask’s grain or the macrotask’s execution time.
Macrotasks like MT1–MT100 calculate N/100 parts of trape-
zoidal areas respectively. Next, for comparison with conventional
schemes, we generate a Runnable implementation code and a
Fork/Join implementation code without the task-driven execution
in manual.

Figure 16 presents parallel execution times in three execu-
tions on the condition that N= 105, 106, 107 and the number of
threads is four or eight. These results indicate that coarse grain
parallel processing with the proposed task-driven execution can
demonstrate better performance than conventional implementa-
tions such as Runnable or Fork/Join without task-driven execu-
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Table 6 Macrotask-granularity of task-driven execution for Integral program on Galaxy S6.

Property
The number of divisions for integral

N = 105 N = 106 N = 107

1-thread task-driven execution time[ms] 8.043 56.072 338.932
The number of executed macrotasks including dummy-macrotasks 104 104 104
Macrotask-granularity (average macrotask execution time) [ms] 0.077 0.539 3.259

tion in any case.
In more detail, the conventional Runnable implementation

code creates the same number of threads as cores, where MT1–
MT100 are assigned to respective threads uniformly. Therefore, it
is difficult for a heterogeneous multicore system to attain best per-
formance owing to differences in core performance. Next, in the
conventional Fork/Join implementation code, a class that extends
RecursiveTask is prepared to perform calculation corresponding
to MT1–MT100, and the overridden method compute() exe-
cutes a partial region directed by a parameter. For this class, 100
instances are forked and joined in Fork/Join framework where the
number of worker-threads is equal to the number of cores. On the
other hand, since the proposed task-driven implementation which
adopts the layer-unified execution control [6] can cope with the
dynamic macrotask scheduling based on the earliest-executable-
conditions, we can obtain better load-balancing and less schedul-
ing overhead than conventional implementations.

As a result, in coarse grain parallel processing with the task-
driven execution, N= 106 or N= 107 (where each macrotask
calculates N/100 parts of areas) is suitable as the macrotask-
granularity on Galaxy S6. The execution of N= 107 on eight-
threads gave us 3.48 times speedup versus sequential processing.
Table 6 shows the macrotask-granularity (or the average macro-
task execution time). The macrotask-granularity even if N= 107

is very small compared to that of ordinary programs. Therefore,
it is found that the macrotask-granularity of benchmark programs
in Table 3 is sufficient for effectively extracting parallelism.

7. Related Works

Research on parallelization of Java programs has proposed
methods including the following: HPJava [12] to adopt ar-
ray distribution like HPF; Parallel Java [13] to present API for
shared memory/cluster parallel programming like OpenMP/MPI;
zJava [14] to use parallelism among asynchronous threads by run-
time support; Jrpm [15] to perform speculative execution by us-
ing hardware profile and so on. However, these schemes differ
from our approach that utilizes coarse grain parallelism by layer-
unified execution control [6].

On the other hand, the parallel code generation scheme for the
layer-unified coarse grain parallelization has been proposed [7].
This scheme can generate a parallel Java code with the original
scheduler implemented by Runnable interface, but the generated
parallel code does not adopt the task-driven execution style and
can not cope with Java Fork/Join framework.

The scheduler with work-stealing is widely introduced to not
only Java Fork/Join framework but also Cilk [16], Intel TBB
(Threading Building Blocks) [17], X10 [18] and so on. This is
because it is effective for scheduling small-grain tasks with low-
overhead. Habanero-Java [19] proposed the runtime extension

of work-stealing to support async-finish parallelism by the com-
piler. For fine grain task scheduling on embedded systems, the
lightweight Fork-Join framework ARTM [20] is proposed. Since
these researches focus on improvement of work-stealing mecha-
nism, they are different from our proposed scheme that performs
coarse grain parallel processing with task-driven execution based
on Fork/Join framework.

8. Conclusions

This paper proposes a task-driven parallel code generation
scheme based on Fork/Join framework, which enables perform-
ing the coarse grain parallel processing with dynamic schedul-
ing on Android platform and for which we developed a pro-
totype parallelizing compiler. This parallelizing compiler as a
source-to-source translator can read a Java program with paral-
lelization directives and can generate a task-driven parallel code
automatically. The task-driven parallel code is expressed by
ForkTemplate-style class, which manages macrotask’s execution
and performs coarse grain parallel processing by effectively using
the Fork/Join framework.

In the performance evaluation, four programs with paralleliza-
tion directives from Java Grande Forum Benchmark Suite Ver-
sion 2.0 are compiled into task-driven parallel codes by the de-
veloped parallelizing compiler. When the parallel codes are exe-
cuted on Samsung Galaxy S6 equipped with heterogeneous mul-
ticores and NVIDIA Shield Tablet equipped with a homogeneous
multicore, the execution results for these four programs could at-
tain 2.77–5.12 times speedup on Galaxy S6 and 2.34–3.94 times
speedup on Shield Tablet versus sequential processing. Also,
the compiler-generated task-driven parallel code is executable for
Linux platform based on Intel Xeon E5-2680 and 12-threads ex-
ecution could achieve 4.51–9.69 times speedup versus sequential
processing.

Consequently coarse grain parallelization with task-driven exe-
cution is confirmed as effective for Java parallel processing on an
Android platform. And the developed parallelizing compiler that
achieves high performance is valuable for application developers,
library developers and general programmers.

In the future, we would like to develop a preprocessor that au-
tomatically inserts parallelization directives into target programs
and attains automatic parallelization for Java programs.
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Appendix

Table A·1 Execution time of task-driven coarse grain parallel processing on
Galaxy S6.

Crypt Series Monte-Carlo Ray-Tracer

Execution Time [ms] Time [ms] Time [ms] Time [ms]
(Speedup) (Speedup) (Speedup) (Speedup)

Sequential
5,087 87,575 5,492 656,938
(1.00) (1.00) (1.00) (1.00)

1-thread
5,471 87,746 5,507 657,551
(0.93) (1.00) (1.00) (1.00)

2-threads
2,752 44,102 2,801 382,213
(1.85) (1.99) (1.96) (1.72)

4-threads
1,358 26,070 1,511 237,047
(3.75) (3.36) (3.63) (2.77)

8-threads
1,148 17,121 1,350 243,845
(4.43) (5.12) (4.07) (2.69)

Table A·2 Execution time of task-driven coarse grain parallel processing on
Shield Tablet.

Crypt Series Monte-Carlo Ray-Tracer

Execution Time [ms] Time [ms] Time [ms] Time [ms]
(Speedup) (Speedup) (Speedup) (Speedup)

Sequential
59,442 91,797 8,183 722,222
(1.00) (1.00) (1.00) (1.00)

1-thread
60,142 92,440 7,955 716,251
(0.99) (0.99) (1.03) (1.01)

2-threads
29,919 47,095 4,315 439,139
(1.99) (1.95) (1.90) (1.64)

4-threads
15,156 23,316 2,780 308,289
(3.92) (3.94) (2.94) (2.34)

Table A·3 Execution time of Crypt for comparison of parallel processing
schemes on Galaxy S6.

Execution

Runnable Fork/Join Task-driven
(conventional) (conventional) (proposed)

Time Speed Time Speed Time Speed
[ms] up [ms] up [ms] up

Sequential 5,087 1.00 5,087 1.00 5,087 1.00
1-thread 10,152 0.50 6,569 0.77 5,471 0.93
2-threads 4,954 1.03 6,156 0.83 2,752 1.85
4-threads 1,645 3.09 2,247 2.26 1,358 3.75
8-threads 1,574 3.23 1,558 3.27 1,148 4.43

Table A·4 Execution time of task-driven coarse grain parallel processing on
Xeon E5-2680.

Crypt Series Monte-Carlo Ray-Tracer

Execution Time [ms] Time [ms] Time [ms] Time [ms]
(Speedup) (Speedup) (Speedup) (Speedup)

Sequential
1,933 46,154 1,908 9,739
(1.00) (1.00) (1.00) (1.00)

1-thread
3,086 30,788 1,910 9,936
(0.63) (1.50) (1.00) (0.98)

2-threads
1,604 16,007 992 5,143
(1.21) (2.88) (1.92) (1.89)

4-threads
838 8,524 543 2,672

(2.31) (5.41) (3.51) (3.64)

8-threads
439 4,800 328 1,510

(4.40) (9.62) (5.82) (6.45)

12-threads
429 4,763 305 1,046

(4.51) (9.69) (6.26) (9.31)
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Table A·5 Execution time of Crypt for comparison of parallel processing
schemes on Xeon E5-2680.

Execution

Runnable Fork/Join Task-driven
(conventional) (conventional) (proposed)

Time Speed Time Speed Time Speed
[ms] up [ms] up [ms] up

Sequential 1,933 1.00 1,933 1.00 1,933 1.00
1-thread 2,035 0.95 2,021 0.96 3,086 0.63
2-threads 1,103 1.75 1,328 1.46 1,604 1.21
4-threads 665 2.91 1,291 1.50 838 2.31
8-threads 551 3.51 1,112 1.74 439 4.40
12-threads 565 3.42 1,227 1.58 429 4.51
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