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Abstract: We consider variations on the classic video game Tetris where pieces are k-ominoes instead of the usual
tetrominoes (k = 4), as popularized by the video games ntris and Pentris. We prove that it is NP-complete to survive or
clear a given initial board with a given sequence of pieces for each k ≥ 5, complementing the previous NP-completeness
result for k = 4. More surprisingly, we show that board clearing is NP-complete for k = 3; and if pieces may not be
rotated, then clearing is NP-complete for k = 2 and survival is NP-complete for k = 3. All of these problems can be
solved in polynomial time for k = 1.
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1. Introduction

Tetris is one of the most famous puzzle computer games, orig-
inally created in 1984 and released in the west on the IBM PC in
1987 *1, and substantially popularized by being bundled with ev-
ery Nintendo Game Boy (except in Japan) [7]. Today, Tetris and
its many clones are available to play on almost every platform;
the official Tetris mobile game sold over 425 million copies by
2014, eclipsing even the 35 million Game Boy copies [8].

The popularity of Tetris has led to many variations, both
official and unofficial, with various changes to the rules. Here
we consider a theme introduced by Hunter Freyer’s Pentris [3],
where pieces are pentominoes instead of tetrominoes. Later,
Shaunak Kishore’s ntris [6] generalized to pieces that are
k-ominoes (made of k unit squares joined edge to edge).

Our results. In 2004, Breukelaar et al. [1] proved that Tetris
is NP-complete for the original tetromino pieces; here we gen-
eralize this result to k-omino pieces. More precisely, Breukelaar
et al. and we analyze an offline version of Tetris, where the board
has a given configuration of occupied squares (resulting from past
play, or a complex initial board) and the pieces come from a given
sequence of n pieces, and the goals are to survive all the pieces
(avoid stacking any piece too high), clear the entire board (re-
move all occupied squares), or maximize score (according to vari-
ous measures). While the interesting score functions were clearer
for tetrominoes, this aspect has many possible generalizations to
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Table 1 Complexity results for Tetris with k-ominoes, with or without rota-
tion. New results are marked with a section number (§).

With Rotation
Clearing Survival

k = 1 P (§3) P (§3)
k = 2 Open Open
k = 3 NP-complete (§5) Open
k = 4 NP-complete [1] NP-complete [1]
k > 4 NP-complete (§6) NP-complete (§6)

No Rotation
Clearing Survival

k = 1 P (§3) P (§3)
k = 2 NP-complete (§4) Open
k = 3 NP-complete (§5) NP-complete (§5)
k = 4 NP-complete [1] NP-complete [1]
k > 4 NP-complete (§6) NP-complete (§6)

k-ominoes, so we focus on the first two goals.
Table 1 summarizes our (and past) results for Tetris with k-

ominoes for the goals of clearing and survival. In addition to
the standard rules where pieces can be rotated and translated
left/right/down, we consider a variant that forbids rotations. This
variation is particularly interesting for dominoes (k = 2), where
we can show NP-completeness for clearing, while we conjecture
polynomial time with rotation allowed. In total, our results cat-
egorize the computational complexity of most variants of Tetris
with k-ominoes for most k.

Tetris with monominoes (k = 1) is easy (Section 3): we can
always survive (by placing each piece into any blank space), and
clearing is equivalent to the number of falling pieces equaling the
number of blank spaces in nonempty rows plus a nonnegative in-
teger multiple of the board width. Section 4 analyzes dominoes
(k = 2), proving NP-completeness for clearing without rotation
and proving a lemma about survival with rotation. Section 5 an-
alyzes trominoes (k = 3), proving NP-completeness for clear-
ing with and without rotation, and for survival without rotation.

*1 Tetris was one of the very first PC games played by the first two authors.
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Section 6 analyzes large k-ominoes (any k > 4), proving NP-
completeness for all four variants. All of these problems are triv-
ially in NP with a certificate of the sequence of piece placements.
We discuss the remaining open problems in Section 8.

2. Background

Tetris is a video game that is played on a square grid with all
the possible tetrominoes. In Tetris a tetromino piece appears at
the top of the screen and periodically moves down in the grid.
While the block is falling, the player may move the block hori-
zontally or rotate the block by 90◦. If the piece would otherwise
move down into an already occupied square on the board, it in-
stead stops moving and becomes part of the inactive block. If the
piece stops above a certain height, the player loses; otherwise, a
new piece appears at the top. If a row is completely filled by inac-
tive blocks, then all of those squares are emptied and all squares
above that row move down by 1.

2.1 Rules for k-omino Tetris
The formal rules for Tetris are laid out in the paper Tetris is

hard, even to approximate [1]. We allow arbitrary board sizes and
starting states, and the board starting state is part of the problem
specification. Rows cannot be filled entirely in the start state. We
also do not allow rows to “float” above completely clear rows. We
generally require that the initial board state is constructible, i.e.,
could be reached from an empty board by a sequence of moves in
the game. Constructibility has a general characterization [5], but
we give explicit constructions to make this paper self-contained.

Piece sets. For k < 4, we will present separate proofs for
Tetris hardness using the piece sets of either the monomino (1-
omino), domino (2-omino), and tromino (3-omino). For k > 4,
we use the same generalizable proof for all such k using only a
small subset of the larger polyominoes, described in Section 6.

Survival vs. completely clear board. In this paper we con-
sider two objectives in Tetris: clearing the board and survival.
Clearing the board is the goal of having all rows clear at the mo-
ment when all input pieces have been used. Survival is the goal of
not placing any of the pieces above the upper limit of the board.

Rotation vs. no rotation. In the standard Tetris game, the
player can rotate pieces by any integer multiple of 90◦. We con-
sider both the case where rotation is and is not allowed. When
rotation is not allowed, the pieces must stay in their specified ori-
entations.

2.2 Problem to Reduce from
The original proof that Tetris is hard [1] reduces from the prob-

lem of 3-Partition [4]. All of the proofs in this paper use a similar
construction, in particular reducing from the same problem:
Problem 1 (3-Partition). Given a multiset A = {a1, a2, . . . , a3m}
of positive integers such that t/4 < ai < t/2 for each i, where

t = 1
m

∑3m
i=1 ai, determine whether there is a partition of A into m

groups D1, . . . ,Dm each of size 3 and having sum
∑

x∈Dj
x = t.

All of our hardness proofs share a common core. We create
a starting board state consisting of m vertical buckets of equal
height (Θ(t) to incorporate some scaling), forcing the player to
partition their input sequence into the buckets. We create a se-

quence of Tetris pieces S i to represent each input number ai ∈ A,
which forces all of the blocks representing a given ai to go into
one bucket. More precisely, the overall piece sequence is the con-
catenation S 1, S 2, . . . , S 3m, and each piece sequence S i decom-
poses further into a constant-length priming sequence (forcing
the choice of a single bin), a filling sequence of lengthΘ(ai) (rep-
resenting the number), and a constant-length closing sequence
(undoing the priming sequence).

3. Monominoes

Unsurprisingly, Tetris with monominoes is easy. Rotation does
nothing to the 1 × 1 block. If there is a hole, these blocks fit. We
include these proofs for completeness.
Theorem 3.1. Survival with monominoes is in P, and always a

“yes” instance.

Proof. We claim that survival with monominoes is always pos-
sible. There must always be an empty square in the top row, be-
cause if the top row were completely filled, it would clear. So,
every monomino can be placed in any available location. There-
fore, we can always return true, in O(1) time. �
Theorem 3.2. Clearing with monominoes is in P.

Proof. Let h be the number of holes in partially filled rows (eas-
ily counted in linear time), and let w be the width of the board
(size of a row). Then m monominoes can clear the board if
and only if m ≥ h and (m − h) mod s = 0. Both conditions
are obviously necessary. The strategy that proves sufficiency is
to repeatedly place a piece in any hole in any partially filled
row (whichever is accessible), except when the board is already
cleared, in which case the piece can go in any square in the bot-
tom row. �

4. Dominoes

In this section, we consider 2-tris with domino pieces both
without and with rotation. We show that the former is NP-
complete, and prove a lemma about the latter.

4.1 Clearing without Rotation
Theorem 4.1. Clearing the board in 2-tris without rotation is

NP-complete.

Proof. We reduce from 3-Partition; refer to Fig. 1.
The board has width 5m and height 3m + 2t. Each of the m

Fig. 1 Reduction from 3-Partition to clearing 2-tris without rotation.

c© 2017 Information Processing Society of Japan 516



Journal of Information Processing Vol.25 515–527 (Aug. 2017)

buckets consists of five adjacent columns, where the first and last
columns are filled and the middle column is empty. In the bot-
tom 2t rows, the second and fourth columns are filled. In the top
3m rows, we have a blocking structure in which the second and
fourth columns alternate between filled and empty, with opposite
start parity.

To represent ai, we start with a priming sequence of m− 1 hor-
izontal pieces, which will block all but one of the buckets at the
top of the blocking structure. Then we have a filling sequence
of ai vertical pieces, which will all go in the remaining bucket.
Finally, we have a closing sequence of 2 horizontal pieces, which
unprime the bucket by clearing the top row of the blocking struc-
ture.

The area of holes in the board is equal to the area of the pieces
we give to the player. Thus, in order to clear the board, every
piece must be placed within the (original) holes. Similarly, the
bottom part of the board can be filled only with vertical pieces,
and its area equals the total area of the vertical pieces. Thus, in
order to clear the board, every vertical piece must be placed in the
bottom part of the board.

Consider the piece sequence S i representing ai. The priming
sequence of m − 1 horizontal pieces must be placed in the top
nonempty row, and thus must block offm−1 buckets. One bucket
remains unblocked, so the filling sequence of ai vertical pieces
must go in that bucket, and as argued above, in the bottom of that
bucket. The closing sequence of 1 horizontal piece must go in the
top row of the one remaining bucket, which clears that row and
opens back up all of the buckets.

If there is a 3-partition, then we can clear the 2-tris board as fol-
lows. For each group {ai, a j, ak}, we put all of their ai+a j+ak = t

associated vertical pieces into the same bin (and no other vertical
pieces in that bin), filling the 2t rows of this bucket, while also
clearing three of the upper rows with the 3m associated horizon-
tal pieces. Once all buckets are so filled, the entire board clears.

If we attempt an invalid 3-partition where some groups do not
sum to t, then by an area argument, some bucket must have fewer
than t vertical pieces placed into it, leaving that bucket unfilled
and hence some of its rows uncleared.

Figure 2 shows how to construct the board with dominoes. The
bottom 2t rows are straightforward. Every row in the top block-

Fig. 2 Constructibility of the board in Fig. 1.

ing structure has a desired singleton (in purple). We construct the
singletons in each row by placing a vertical piece on top of it, then
adding horizontal pieces to fill the rest of the row. Consecutive
singletons on a common row (from multiple buckets) have four
spaces between them, covered by two horizontal pieces. Once
the row is filled, the horizontal pieces clear, leaving just the sin-
gletons we desired. �

4.2 Toward Survival with Rotation
We conjecture that surviving dominoes with rotation is in P.

Here we show a lemma toward this goal: clearing a single row
leads to survival.
Lemma 4.2. If the top row of the board is clear, then the player

can survive arbitrarily long in 2-tris with rotation.

Proof. Rotate all dominoes to be vertical. Greedily place a piece
in any column with an empty square in both of the top two rows.
Throughout, we maintain the invariant that the filled spaces of the
top row are a subset of the filled spaces of the second row. Even-
tually, the second row (and possibly the first row) of each column
will become filled, at which point the second row clears, and the
first row becomes the second row, returning to the case where the
top row is clear. �

To show that this problem is in P using this method, we must
additionally show that
• determining whether we can clear the top row is in P, and
• deciding survival in cases where the top row cannot be

cleared is in P.
Note that clearing the top row is equivalent to clearing any row,
since clearing any row causes rows to shift down until the top row
is empty.

5. Trominoes

In this section, we show NP-completeness of clearing 3-tris
with rotation, and of survival and clearing in 3-tris without rota-
tion.

5.1 Clearing with Rotation
Theorem 5.1. Clearing the board in 3-tris with rotation is NP-

complete.

Proof. We reduce from 3-Partition; refer to Fig. 3. The proof is
structurally similar to that of Theorem 4.1. Again, each bucket

Fig. 3 Reduction from 3-Partition to clearing 3-tris with rotation.
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Fig. 4 Placing ai = 2 in Fig. 3.

Fig. 5 Constructibility of the board in Fig. 3.

has width 5, for a total board width of 5m; the first and last
columns of each bucket are filled while the middle column is
empty. The bottom 3t rows (instead of 2t rows as in the corre-
sponding 2-tris proof) are filled in the second and fourth columns.
The top 6m rows (instead of 3m rows) form a blocking structure,
with the periodic pattern shown in the figure. For each ai, the
priming sequence is m−1 Ls (instead of horizontal dominos), the
filling sequence is ai straight trominos (instead of vertical domi-
noes), and the closing sequence is an L. These three sequences
serve the same role as before: blocking all but one bucket, fill-
ing that bucket with the number, and then unblocking all buckets.
Figure 4 shows the intended behavior.

As before, the area of holes is equal to the area of the pieces,
so to clear the board, all pieces must be placed within the (orig-
inal) holes. Similarly, the bottom part of the board can be filled
only by straight tromino pieces, so by an area argument, all tro-
mino pieces must go there. Therefore, as in Fig. 4, the priming
sequence must block m − 1 of the buckets, and the filling se-
quence and closing sequence must go in the remaining bucket,
filling some of the bottom of that bucket and filling then clearing
two rows. Hence, as before, there is a valid clearing if and only if
there is a 3-partition.

If m is even, then the board is constructible by tiling; see
Fig. 5. �

5.2 Without Rotation
When no rotation is allowed, we can show hardness of both

clearing and survival.

Fig. 6 Reduction from 3-Partition to surviving or clearing 3-tris without
rotation.

Fig. 7 The two possible ways to place the priming sequence in an unprimed
bucket in Fig. 6.

Theorem 5.2. Surviving or clearing 3-tris without rotation is

NP-complete.

Proof. We reduce from 3-Partition; refer to Fig. 6.
The board has width 4m + 1 and height t + 8. The columns

divide into m buckets followed by a single empty column. Each
bucket consists of four columns, the rightmost of which is filled
and the rest of which are empty except possibly in the bottom-
most two rows. All buckets start unprimed meaning that their
first three columns descend as a staircase with increments of −1,
i.e., with column heights of k + 2, k + 1, k for some k.

To represent ai, we start with a priming sequence of one L tro-
mino pointing up and right, followed by a filling sequence of ai

horizontal straight trominoes, followed by a closing sequence of
one L tromino pointing down and left. The priming sequence
can be placed in two ways into an unprimed bucket, as shown in
Fig. 7. (Unlike the previous two hardness proofs which blocked
all but the desired bucket, this priming sequence reshapes the de-
sired bucket.) If placed to the right, the top surface of the bucket
becomes flat, with column heights k, k, k, which we call primed.
In any bucket that is not primed, placing a horizontal piece will
make an internal hole. In a primed bucket, placing the horizontal
pieces in the filling sequence creates no internal holes and pre-
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serves the invariant that the bucket is primed. The closing se-
quence can also be placed in two ways in a bucket; on the left,
it transforms a primed bucket back into an unprimed bucket. If
placed on the right, later Ls and horizontal pieces will be forced
to create internal holes.

After the S 1, S 2, . . . , S 3m piece sequences representing the
numbers a1, a2, . . . , a3m, we have a final piece sequence of m L
trominoes pointing up and right followed by (t + 8)/3 vertical
straight trominoes. (Here we assume that t + 8 is divisible by 3.)
Only these vertical straight trominoes can fit into the rightmost
column, so no lines can be cleared until these pieces come. The
area of all other empty space in the initial board equals the total
area of the non-vertical pieces. Therefore, if the player makes
any internal holes, they will run out of space to place pieces be-
fore getting to the vertical pieces. This fact forces the behavior
of each ai sequence to convert an unprimed bucket to primed,
fill that bucket, and then convert that primed bucket back to un-
primed. The buckets will not overflow if and only if we follow a
3-partition. In this case, the final m L trominoes finish filling the
(unprimed) buckets, and the vertical trominoes fill the rightmost
column, clearing the board.

The board is constructible by tiling as long as its height t + 8 is
divisible by 3, which we already assumed. �

6. Clearing with Larger Polyominoes

In this section, we consider the case of Tetris when the pieces
are generalized to polyominoes consisting of n > 4 unit squares.
We adapt some of the techniques used to show the hardness of
Tetris to show the hardness of the clearing variant of n-tris for
any n > 4. In Section 6.1, we define some useful terms, explain
how to set up the board, and give a general proof showing that n-
tris is NP-complete if certain piece sequences can be constructed.
In Section 6.2, we give a way to construct these piece sequences
for Pentris (5-tris), the variant of Tetris with pentominoes. In Sec-
tion 6.3, we explain how to generalize this construction to handle
n-ominoes for all n > 5.

6.1 General n-tris Properties
For each problem, we reduce from the 3-Partition problem.

For each proof, we set the width w of the n-tris board to 5m + 2.
We split the height of the board into two sections: a completely
blank space at the top for transforming and rotating pieces, and
a height-h space at the bottom which has each row partly filled.
The value of h will be different for each of the proofs, but will
always be a multiple of n. The sequence of pieces we give will
have area exactly equal to the number of empty cells in the lower
h rows of the board, so if the player wishes to clear all h rows with
the given sequence of pieces, all pieces must be placed entirely
inside the bottom h rows.

We number the h rows of the lower section of the n-tris board
from bottom to top, so that the index of the lowest row is 1 and
the index of the highest row is h. We say that a column is packed
if all cells below the highest filled cell are also filled. In the ini-
tial board we construct, we want all columns to be packed. The
height of a column is the row of the highest filled cell in that
column, or 0 if the whole column is empty.

The last two columns of the board we construct are special.
The rightmost column, 5m + 2, will be completely empty (with a
height of 0). The column 5m+1 will be completely filled (packed
to a height of h). Thus, in order to fill in any cells in the rightmost
column, we must have a 1× n piece (as any other piece, when in-
serted into that column, would extend above row h). This makes
it impossible to clear any rows until we get a 1×n piece to fit into
the rightmost column. The sequence of pieces we construct takes
advantage of this fact. In particular, we construct a sequence of
pieces (none of which are the 1× n piece) with area exactly equal
to the number of empty cells in the rest of the board, and then fol-
low it up with (h/n) copies of the 1 × n piece, just enough to fill
the last column. Thus, if the player leaves any holes when drop-
ping the initial sequence of pieces, they will be forced to place a
piece above the top of the board before they can clear any rows.

A bucket consists of five adjacent columns. The first and last
columns of the bucket are packed to height h, so that any pieces
have to be placed in the center columns between the sides of
the bucket. The shape of a bucket is a function of the heights
h1, h2, h3 of its three center columns:

〈h1−min{h1, h2, h3}, h2−min{h1, h2, h3}, h3−min{h1, h2, h3}〉.
The depth of a bucket is the difference between the height h of
the board and the minimum height min{h1, h2, h3} of any of the
central columns.

The original Tetris paper [1] defines a choke point in a bucket
to be a row where all but one cell in the bucket is filled. If there
is an empty cell in the bucket that is lower than the choke point
but in a different column, then the only way to fill that cell is by
sliding in the only piece that fits through the choke point: a 1 × n

piece. Because we do not use 1×n pieces in the first phase of our
n-tris game, we know that if there is such a cell, it must remain
empty until we reach the last h/n pieces in our sequence. How-
ever, that means that we have at least h + 1 cells being filled by
h/n pieces of total area h, and therefore at least one cell must be
empty at the end of the sequence (which, in turn, means that at
least one cell above row h must be filled). Thus, these two rules
can be used to determine whether a particular piece placement is
valid — that is, whether it will allow all cells in the bucket to be
filled before the first 1 × n bar:
( 1 ) No piece can be placed so that the empty space in a bucket

becomes disconnected
( 2 ) No piece can be placed to cause a choke point with an empty

cell below the choke point in a different column.
For i ∈ {1, . . . ,m}, we construct a bucket in columns 5i − 4

through 5i. All buckets should initially start with the same shape,
which we will call the unprimed shape sU . For each of the vari-
ants of n-tris, we must construct four piece sequences, each of
which alters a bucket in different ways. The first sequence can
only be used to change the shape of a single bucket into a primed
shape sP. Formally, we define the priming sequence as follows:
Definition A (sU, sP)-priming sequence is a non-empty se-
quence of n-ominoes with the following properties:
( 1 ) The sequence does not contain any 1 × n pieces.
( 2 ) Only the first piece can be placed into a bucket with shape

sU .
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( 3 ) There is exactly one valid way to place the pieces in a bucket
with shape sU , and the result will be a packed bucket with
shape sP.

Once the shape of a bucket has been changed to sP, we want
to fill the bucket with a number of pieces proportional to ai, the
number from the 3-Partition instance we are trying to represent.
Thus, we want a sequence that does not change the shape of the
bucket (so that it can be repeated arbitrarily many times), and
cannot fit into an unprimed bucket:
Definition A (sU, sP)-filling sequence is a non-empty sequence
of n-ominoes with the following properties:
( 1 ) The sequence does not contain any 1 × n pieces.
( 2 ) There is no valid way to place any of the pieces into a bucket

with shape sU .
( 3 ) There is exactly one valid way to place the pieces in a bucket

of shape sP, and the result will be a packed bucket with shape
sP.

Finally, once the bucket has been filled with ai copies of the
filling sequence, we want to close the bucket so that the shape
becomes unprimed again:
Definition A (sU, sP)-closing sequence is a non-empty se-
quence of n-ominoes with the following properties:
( 1 ) The sequence does not contain any 1 × n pieces.
( 2 ) There is no valid way to place any of the pieces into a bucket

with shape sU .
( 3 ) There is exactly one valid way to place the pieces in bucket

with shape sP, and the result will be a packed bucket with
shape sU .

These three sequences allow us to force a long sequence of
pieces to be placed in one bucket, which helps us represent the
3-Partition instance as a packing problem. The only other thing
we need is a sequence of pieces that can be used to flatten the top
of each bucket after they have been fully packed:
Definition A sU-flattening sequence is a (sU , 〈0, 0, 0〉)-priming
sequence.
Theorem 6.1. For any n > 4, if there exists a pair of bucket

shapes sU , sP such that the set of n-ominoes can be used to con-

struct a (sU , sP)-priming sequence, a (sU , sP)-filling sequence, a

(sU , sP)-closing sequence, and an sU-flattening sequence, then it

is NP-complete to clear the board in n-tris.

Proof. Let P be the (sU , sP)-priming sequence, let F be the
(sU , sP)-filling sequence, let C be the (sU , sP)-closing sequence,
and let L be the sU -flattening sequence. Let hP be the difference
in the height of the center column of an unprimed bucket after
adding the sequence P. Let hF be the difference in the height
of the center column of a sP-shaped bucket after adding the se-
quence F. Let hC be the difference in the height of the center
column of a sP-shaped bucket after adding the sequence C. Let
hL be the difference in the height of the center column of an un-
primed bucket after adding the sequence L. Note that because
each sequence contains at least one piece, and the sequence does
not contain the 1 × n piece (so all pieces must fill at least one cell
in the center column), we know that hP, hF , hC , hL ≥ 1.

For each ai, the associated sequence S (ai) is defined as follows:

S (ai) = P ◦ F ◦ F ◦ . . . ◦ F︸������������︷︷������������︸
(hL + 1) · ai times

◦ C.

We set up the buckets so that initially, the height of the center
column is:

h − (hL + 3(hP + hC) + t · hF · (hL + 1)).

Let I be the 1 × n piece. Then we create the following sequence
of pieces:

S (a1) ◦ . . . ◦ S (a3m) ◦ L ◦ . . . ◦ L︸������︷︷������︸
m times

◦ I ◦ . . . ◦ I︸�����︷︷�����︸
h/n times

.

We wish to show that this sequence can be placed into a h× (5m+

2) board, with m buckets of shape sU and a single unfilled column
at index 5m + 2, if and only if there is a solution to the original
3-Partition instance.

Consider the placement of the pieces in S (ai). By definition,
only the very first piece of S (ai) can be placed in an unprimed
bucket without producing a hole or a choke-point. Hence, all the
pieces of S (ai) must be placed in the same bucket. Furthermore,
we know that there is exactly one way to place the sequence P in
an unprimed bucket with shape sU , and the result will make the
shape of the bucket sP. We also know that each sequence F can
be arranged in exactly one way in a bucket of shape sP, and the
result will be a bucket of shape sP. Finally, we know that the se-
quence C can be arranged in exactly one way in a bucket of shape
sP, and the result will be a bucket of shape sU . Thus, once the
first piece has been placed, the entire sequence S (ai) has exactly
one valid configuration, and the resulting shape of the bucket will
be sU . This will increase the height of the center column of the
bucket by hP + (hL + 1) · ai · hF + hC .

Suppose that have a solution to the n-tris instance that places
k sequences S (ai1 ), . . . , S (aik ) inside the same bucket. Then the
height of the center column of that bucket will become:

h − (hL + 3(hP + hC) + t · hF · (hL + 1))

+

k∑
j=1

(hP + hC) + (hL + 1) · hF · ai j

= h − hL − 3(hP + hC) − t · hF · (hL + 1)

+ k(hP + hC) + (hL + 1) · hF ·
k∑

j=1

ai j

= h − hL + (k − 3)(hP + hC)

+

⎛⎜⎜⎜⎜⎜⎜⎝
⎛⎜⎜⎜⎜⎜⎜⎝

k∑
j=1

ai j

⎞⎟⎟⎟⎟⎟⎟⎠ − t

⎞⎟⎟⎟⎟⎟⎟⎠ · hF · (hL + 1).

Suppose first that k ≥ 4. Then, because each ai > t/4, we know
that the sum of the ai j s must be strictly greater than t, so the re-
sulting height will be at least h − hL + (hP + hC) + hF · (hL + 1) ≥
h−hL+hL+1 = h+1, and the player will lose. Next suppose that
k = 3 and the sum of the ai j s is strictly greater than t. Then the re-
sulting height will be at least h− hL + hF · (hL + 1) ≥ h+ 1, which
again introduces a contradiction. So we know that each bucket
can only fit at most three sequences S (ai), and that the numbers
used to generate those three sequences can sum to at most t. Be-
cause there are 3m sequences and m buckets, this means that each
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Fig. 8 The pieces used in the Pentris hardness proof.

Fig. 9 The sequences of pieces used for the Pentris proof.

bucket must contain exactly three sequences. Furthermore, we
know that t = 1

m

∑
ai, so if each partition sums to at most t, each

partition must sum to exactly t. Hence, we have a partition of A

into m sets of size 3 such that each set sums to t, which is pre-
cisely what we wanted.

Suppose instead that we have a solution to the 3-Partition in-
stance, and want to solve the corresponding n-tris problem. Let
B1, . . . , Bm be the solution to the 3-Partition instance, and let
K1, . . . ,Km be a partition of the indices {1, . . . , 3m} into groups
so that Bi = {a j | j ∈ Ki}. Then for each j ∈ {1, . . . , 3m}, we place
the sequence S (a j) into the ith bucket, where i is selected so that
j ∈ Ki. There is exactly one way to place each sequence once the
bucket has been chosen, so this uniquely determines how to place
each sequence S (ai). Note that, after this is done, the height of
the center column of each bucket will be exactly h−hL. Thus, we
can use the m copies of L to completely fill in the remaining cells
in each of the buckets. Finally, once each of the buckets has been
completely filled, we can drop the h/n copies of the 1 × n piece
into the last column, and clear the entire board. �

6.2 Pentris
For the Pentris hardness proof, we use the unprimed shape

sU = 〈0, 1, 0〉, and the primed shape sP = 〈0, 0, 0〉. Note that
this means that the (sU , sP)-priming sequence is the same as the
sU -flattening sequence, so it is sufficient to show the existence of
only three sequences: priming, filling, and closing.

We use a total of five different pieces, depicted in Fig. 8. Fig-
ure 8 (a) depicts the piece used to start the priming phase, which
we call the little T. Figure 8 (b) depicts the piece used to finish
the priming phase, which we call the long L. Figure 8 (c) is the
short L used as both the first and last piece in the filling sequence.
Figure 8 (d) is the Z piece used as the second piece in the filler
phase. Figure 8 (e) is the big T used in the closing phase. None
of these pieces are the 1 × 5 piece, so any sequence constructed
using these pieces will satisfy Property 1 of the definitions of the
priming, filling, and closing sequences.

Figure 9 shows the three sequences used for the Pentris proof.
In order to satisfy Property 2 of each of the definitions, we must
show that only the little T piece can be placed in an unprimed
bucket. Figure 10 shows what happens when any other piece is

Fig. 10 Figures (a) through (d) show what happens if the long L piece (the
second priming piece) is placed in an unprimed bucket. Figures (e)
through (h) show what happens if the short L piece (the first and last
filler piece) is used in an unprimed bucket. Figures (i) through (j)
show what happens if the Z piece (the second filler piece) is used
in an unprimed bucket. Figures (k) through (n) show what happens
if the big T piece (the closing piece) is used in an unprimed bucket.
Note that all possible configurations will result in holes or choke
points, meaning the player will not be able to win.

Fig. 11 Possible positions for the little T piece (the first priming piece) in
an unprimed bucket. Clearly, only one placement is valid.

used in an unprimed bucket. All possible orientations and po-
sitions lead to unfillable spaces, which will ultimately cause the
player to lose. Hence, Property 2 is satisfied for all three se-
quences.

Next, we must show that Property 3 holds for all three se-
quences. We begin with the priming sequence. Figure 11 shows
that there is only one possible orientation and position for the lit-
tle T piece, and Fig. 12 shows that, given the location for the first
priming piece, there is only one way to place the subsequent long
L piece. Hence, the positions of the two pieces in the priming
sequence are fixed, and it is clear to see that the bucket will have
the desired sP = 〈0, 0, 0〉 shape as a result of placing them. This
shows that these two pieces form a (sU , sP)-priming sequence (as
well as a sU -flattening sequence, because sP = 〈0, 0, 0〉).

Unfortunately, the filler sequence is not similarly constrained.
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Fig. 12 Possible positions for the second piece in the priming sequence.

Fig. 13 Possible positions for the short L in a primed bucket.

Fig. 14 Possible positions for the Z piece (the second piece in the filler se-
quence), given the two valid positions for the first piece in the filler
sequence.

Fig. 15 Possible positions for the third piece in the filler sequence.

Fig. 16 Possible positions for the big T piece in a primed bucket.

As Fig. 13 shows, There are two valid positions for the short L
piece in a primed bucket with shape 〈0, 0, 0〉. However, as Fig. 14
shows, once the second piece in the filler sequence has been
placed, there is only one configuration of the first two pieces that
will not create holes. When we add the second short L piece to
the initial pieces in the filler sequence, as in Fig. 15, the result is
a sequence of three pieces that has exactly one valid configura-
tion in a bucket with shape 〈0, 0, 0〉, and that configuration will
not change the shape of the bucket. Thus, this is a valid (sU , sP)-
filling sequence.

Finally, we consider the closing sequence, which consists only
of the big T piece. Figure 16 shows that there is only one valid
configuration for the piece in a primed bucket, and that the shape

Fig. 17 The pieces used in the n-tris hardness proof for n > 5. Note the
number of rows in each piece is at least 4 for all n ≥ 6, so each
piece has at most two possible orientations to fit in a bucket. The
Z piece (d) is the same after being rotated 180◦, so it has only one
possible orientation.

Fig. 18 The sequences of pieces used for the n-tris proof.

of the bucket after the piece has been placed will be sU = 〈0, 2, 0〉,
just as we wanted.

In this section, we have shown that there exists a valid (sU , sP)-
priming sequence (and therefore a valid sU -flattening sequence),
a valid (sU , sP)-filling sequence, and a valid (sU , sP)-closing se-
quence. Hence, by Theorem 6.1, we may conclude that:
Theorem 6.2. Clearing the board in Pentris is NP-complete.

6.3 n-tris for n > 5
We can generalize the Pentris proof to n-tris for any n > 5 by

extending each of the pieces vertically, as shown in Fig. 17. For
this case, we set the unprimed bucket shape sU = 〈0, n−3, 0〉, and
we set the primed bucket shape sP = 〈0, 0, 0〉 (so that, once again,
the (sU , sP)-priming sequence is also a sU -flattening sequence).

We use the same sequences as the Pentris proof (see Fig. 18):
the priming sequence uses the little T piece followed by the long
L piece, the filler sequence has a Z piece sandwiched between
two short L pieces, and the closing sequence consists of a single
big T piece. Clearly, none of these sequences contains a 1 × n

piece, so all of them satisfy Property 1 of their respective se-
quence definitions. Figure 19 shows what happens when each
of the pieces (other than the little T) is placed in an unprimed
〈0, n − 3, 0〉 bucket, thus showing that all three sequences satisfy
Property 2 of their respective sequence definitions. So all that
remains is to show that Property 3 holds for each sequence.

Figures 20 and 21 show that there is exactly one way to fit the
little T piece and the long L piece into an unprimed bucket, and
that the result is a bucket with shape sP = 〈0, 0, 0〉— and thus that
the two pieces form an (sU , sP)-priming sequence (as well as an
sU -flattening sequence). Figure 22 shows that the sequence con-
sisting of a short L piece, a Z piece, and a second short L piece
forms a (sU , sP)-filler sequence. Finally, Fig. 23 shows that the
big T place forms an (sU , sP)-closing sequence. Thus, by Theo-
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Fig. 19 Figures (a) through (d) show what happens if the long L piece (the second priming piece) is
placed in an unprimed bucket. Figures (e) and (f) show what happens if the short L piece (the
first and last filler piece) is used in an unprimed bucket. Figure (g) shows what happens if the
Z piece (the second filler piece) is used in an unprimed bucket. Figures (h) and (i) show what
happens if the big T piece (the closing piece) is used in an unprimed bucket. The holes are shaded
in light red, while the choke points are labelled with a cross.

Fig. 20 Possible positions for the little T piece (the first priming piece) in an unprimed bucket.

Fig. 21 Possible positions for the second piece in the priming sequence.

rem 6.1, we know that:
Theorem 6.3. For all n > 5, clearing the board in n-tris is NP-

complete.

7. Surviving with Larger Polyominoes

In the previous section, we showed that it is NP-complete to
clear all rows of a given n-tris board using a given piece sequence.
In this section, we extend these results to show NP-completeness
of mere survival when presented with a given n-tris board and a

given piece sequence. In Section 7.1, we show that, for every pos-
sible board size, there is a sequence of n-tris pieces that will result
in a loss, no matter how the board is initially arranged. Then, in
Section 7.2, we explain how to use this sequence, combined with
the previous results about the hardness of clearing the board, to
show that survival is NP-complete as well.

7.1 Unwinnable n-tris Sequences
In this section, we present a general unwinnable n-tris se-
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Fig. 22 The filler sequence. Figures 22 (a) and 22 (b) show the two possible orientations for the first filler
piece, only one of which is valid. Figure 22 (c) shows how the only possible orientation for the
second filler piece fits on top of the only valid position for the first filler piece. Figures 22 (d)
and 22 (e) show the two possibly orientations for the third and final filler piece, only one of which
is valid.

Fig. 23 Possible positions for the big T piece in a primed bucket.

Fig. 24 The piece used to construct an unwinnable sequence for Pentris.

quence for n ≥ 5, based on the technique of Burgiel [2]. For
this analysis, we ignore the shape of the piece, and examine only
how the placement of each piece affects the number of filled cells
added to each column.

Let si be the number of cells in column i that are initially
filled, before playing the sequence of unwinnable pieces. Let r

be the number of rows that have been cleared after playing the
unwinnable sequence. For each column, let ci be the number of
filled cells in column i after playing the unwinnable sequence.
Then we define bi = ci + r − si to be the total number of filled
cells added to column i during the unwinnable sequence. Let h

be the height of the board. Then the number of filled cells in one
column cannot differ by more than h from the number of filled
cells in another column. That is, for all pairs of columns i, j, we
must have |ci − c j| < h. We additionally must have |si − s j| < h.
Thus, we can conclude that

|bi − b j| = |(ci + r − si) − (c j + r − s j)|
= |(ci − c j) + (s j − si)|
≤ |ci − c j| + |si − s j|
< 2h.

We consider the case of n = 5 first, then explain how to gener-
alize to n > 5. For n = 5, the unwinnable sequence consists of one
piece repeated a large number of times: in particular, we use the
cross piece, depicted in Fig. 24. Because of the piece’s symme-

Fig. 25 The piece used to construct an unwinnable sequence for n-tris,
n > 5. The “center” of each is drawn with a dot. Note that this
may or may not be the center of rotation of the piece — for this
proof, rotation does not matter.

tries, there is effectively only one orientation for the piece, which
makes it easier to analyze. For each column i, let Xi be the num-
ber of crosses placed so that the center of the cross is in column
i. Then we may write each bi as a function of the values Xi:

bi = Xi−1 + 3Xi + Xi+1.

Consider the first column. Because we cannot place a cross cen-
tered on column 1 or the (non-existent) column 0, the formula is
simple: b1 = X2. Now consider the difference between b2 and b1,
which we know must be bounded by 2h:

b2 − b1 < 2h,

3X2 + X3 − X2 < 2h,

2X2 + X3 < 2h.

Because each Xi is non-negative, this means that X2 < 2h. Unfor-
tunately, this implies that b1 = X2 < 2h, so the number of filled
cells inserted into the first column must be less than 2h. Hence,
the player can clear at most b1 + s1 < 2h + h = 3h rows, meaning
that they will lose as soon as they have received enough pieces to
entirely fill 4h rows.

Now consider the case of n > 5. Again, we use a single piece to
construct the unwinnable sequence: an asymmetric cross, shown
in Fig. 25. There are four orientations for the cross: northern,
eastern, southern, and western. Note, however, that both north-
ern and southern crosses result in the same number of filled cells
being inserted into each column, so for simplicity we only keep
track of Ni, the number of northern or southern crosses placed
so that their center lies in column i. For the eastern and western
crosses, we define their center to be the cell where the two bars
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of the cross meet. Then we define Ei and Wi to be the number of
eastern (respectively, western) crosses placed so that their center
lies in column i. Then we can write each bi as a function of Ni,
Ei, and Wi:

bi = Ni−1 + (n − 2)Ni + Ni+1 + Ei−1 + 3Ei

+

n−4∑
j=1

Ei+ j +Wi+1 + 3Wi +

n−4∑
j=1

Wi− j.

Again, we examine the first column to compute the number of
filled cells added. This time, we know that Ni = Wi = 0 for i < 2,
and that Ei = 0 for i < n − 3, which allows us to eliminate some
terms:

b1 = N2 + En−3 +W2.

We then compare this to the number of cells in columns 2 and
n − 3:

b2 = (n − 2)N2 + N3 + En−3 + En−2 +W3 + 3W2,

bn−3 = Nn−4 + (n − 2)Nn−3 + Nn−2 + En−4

+ 3En−3 +

n−4∑
j=1

En−3+ j +Wn−2 + 3Wn−3 +

n−4∑
j=1

Wn−3− j.

Notably, b2 contains the terms (n − 3)N2 ≥ 3N2 and 3W2, while
bn−3 contains the term 3En−3. Now consider the following equa-
tion:

b2 + bn−3 − 2b1 = (b2 − b1) + (bn−3 − 1) < 4h.

If we evaluate b2+bn−3−2b1, we find that the term (n−3)N2 will
absorb the loss of 2N2 to become (n − 5)N2 ≥ N2; the term 3W2

will absorb the loss of 2W2 to become W2; and the term 3En−3

will absorb the loss of 2En−3 to become En−3. Thus the result will
be a sum of non-negative variables, including at least one copy
of N2, W2, and En−3, which must be less than 4h. Hence, we can
conclude that b1 = N2 + En−3 + W2 < 4h. Thus we have shown
that the player can clear at most b1+ s1 < 4h+h = 5h rows, mean-
ing they will lose as soon as they have received enough pieces to
entirely fill 6h rows.

Hence, in both the case of n = 5 and the case of n > 5, we have
shown the following:
Theorem 7.1. For any n ≥ 5, any board width w, and any board

height h, the sequence consisting of 	6hw/n
 cross pieces will

cause the player to lose, no matter how the board is initially con-

figured.

7.2 Survival Reduction
To show that survival is hard for n-tris, we reduce from 3-

Partition. We begin by applying the reduction of Theorem 6.2
or Theorem 6.3, depending on whether n = 5. Call the resulting
board B and the resulting piece sequence Q. Let w be the width
of B. Let hB be the index of the highest non-empty row of B,
and let hS be the number of empty rows above that (the number
of rows allocated to allow the player to move each piece to the
appropriate bucket).

Let I be the 1×n piece, and let X be the cross piece (symmetric
if n = 5, asymmetric otherwise). Let � = 	6(hB + hS )w/n
— that

Fig. 26 The structure of the board used to show that survival is hard.

is, the number of copies of X that would ensure the player loses
on any board of dimensions w × (hB + hS ) (and in particular, any
way the player can reconfigure B). Then the sequence of pieces
we use is QIXl.

Just as in the original Tetris proof, we construct a new n-tris
board of width w with three sections stacked vertically, as shown
in Fig. 26. The top part of the board consists of a copy of B.
Due to the structure of the clearing reduction, the first column of
B is initially filled up to height hB. If there is a solution to the
3-Partition problem, then the player will be able to clear all hB

rows (and in particular, the entire first column) before the last I

piece in the sequence. Otherwise, we know that the bottom-most
cell in the first column of B will be filled when the last I piece is
dropped.

Just as in the original Tetris proof in Ref. [1], we construct a
new n-tris board of width w with three sections stacked vertically,
as shown in Fig. 26. The top part of the board consists of a copy
of B. Due to the structure of the clearing reduction, the first col-
umn of B is initially filled up to height hB. If there is a solution to
the 3-Partition problem, then the player will be able to clear all
hB rows (and in particular, the entire first column) before the last I

piece in the sequence. Otherwise, we know that the bottom-most
cell in the first column of B will be filled when the last I piece is
dropped.

The middle section of the board has height n, and is almost
completely filled. Only the first column of the middle section is
empty. If the player has used the sequence Q to clear the top part
of the board (i.e., if the original 3-Partition instance is solvable),
they can drop the subsequent I piece into the first column in the
middle section, clearing all n rows and opening up the bottom
section for their use. Otherwise, the player will only be able to
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use the later X pieces to try to clear the rows in the middle sec-
tion. However, because of the structure of the X piece, it cannot
be used to complete a row where everything but the first column is
filled, so if the player cannot solve the original 3-Partition prob-
lem, they will not be able to clear any of the rows of the middle
section. This means that all � copies of the cross piece must be
placed in the top hB + hS rows of the board — forcing a loss.

If the player has solved the 3-Partition instance, however, then
the sequence Q ◦ I can be used to open up the bottom part of
the board, which is a space of height 3� such that everything ex-
cept the first column is completely clear. This leaves more than
enough space to place all � crosses. Thus, the player can survive
if they can solve the 3-Partition instance, and they must die if
they cannot solve the original 3-Partition. Hence, we have the
following result:
Theorem 7.2. For all n ≥ 5, surviving n-tris is NP-complete.

8. Conclusion

This paper nearly completes the taxonomy of hardness of Tetris
with k-ominoes. We give a general construction for all k > 4,
proving NP-completeness for infinitely many cases. We also
show that clearing the board with dominoes with no rotation is
NP-complete; clearing the board with trominoes with rotation is
NP-complete; and survival or clearing the board with trominoes
and no rotation is NP-complete.

We leave open a few remaining cases involving small polyomi-
noes. Some of these cases seem deceptively simple. For example,
the case of dominoes with rotation allows the pieces to fairly eas-
ily fill most spaces, but also allows the dominoes to be navigated
into sections with complex internal structure. Efficient algorithms
for maximizing the score with n monominoes would be also in-
teresting. The domino and tromino cases also lack sequences of
blocks that guarantee a loss for the player. This is a property
happily used in other proofs to extend the hardness results from
clearing to survival.
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