Regular Paper

On Contractible Edges in Convex Decompositions

Ferran Hurtado ${ }^{1}$ Eduardo Rivera-Campo ${ }^{2, a}$ a

Received: October 9, 2016, Accepted: March 3, 2017

Abstract

Let Π be a convex decomposition of a set P of $n \geq 3$ points in general position in the plane. If Π consists of more than one polygon, then either Π contains a deletable edge or Π contains a contractible edge.

Keywords: convex decomposition, convex deformation, contractible edge

1. Introduction

Let P be a set of $n \geq 3$ points in general position in the plane. A convex decomposition of P is a set Π of convex polygons with vertices in P and pairwise disjoint interiors such that their union is the convex hull $C H(P)$ of P and that no point in P lies in the interior of any polygon in Π. A geometric graph with vertex set P is a graph G, drawn in the plane in such a way that every edge is a straight line segment with ends in P.

Let Π be a convex decomposition of P. We denote by $G(\Pi)$ the skeleton graph of Π, that is the plane geometric graph with vertex set P in which the edges are the sides of all polygons in Π. An edge e of Π is an interior edge if e is not an edge of the boundary of $C H(P)$.

An interior edge e of Π is deletable if the geometric graph $G(\Pi)-e$, obtained from $G(\Pi)$ by deleting the edge e, is the skeleton graph of a convex decomposition of P. Neumann-Lara et al. [6] proved that if a convex decomposition Π of a set P of n points consists of more that $(3 n-2 k) / 2$ polygons, where k is the number of vertices of $C H(P)$, then Π has at least one deletable edge.
An interior edge $e=u v$ of Π is contractible from u to v if the geometric graph $G(\Pi) / \overrightarrow{u v}=\left(G(\Pi)-\left\{x_{1} u, x_{2} u, \ldots, x_{m} u, u v\right\}\right)+$ $\left\{x_{1} v, x_{2} v, \ldots, x_{m} v\right\}$ is a skeleton graph of a convex decomposition of $P \backslash\{u\}$, where $x_{1}, x_{2}, \ldots, x_{m}$ are the remaining vertices of $G(\Pi)$ which are adjacent to u.
A simple convex deformation of Π is a convex decomposition Π^{\prime} obtained from Π by moving a single point x along a straight line segment, together with all the edges incident with x, in such a way that at each stage we have a convex decomposition of the corresponding set of points. Deformations of plane graphs have been studied by several authors, both theoretically and algorithmically, see for instance Refs. [3], [4], [7] and [1], [2], [5], respectively.

Let P_{1} and P_{2} be sets of $n \geq 3$ points in general position in the

[^0]plane. A convex decomposition Π_{1} of P_{1} and a convex decomposition Π_{2} of P_{2} are isomorphic if there is an isomorphism of $G\left(\Pi_{1}\right)$ onto $G\left(\Pi_{2}\right)$, as abstract plane graphs, such that the boundaries of $C H\left(P_{1}\right)$ and $C H\left(P_{2}\right)$ correspond to each other with the same orientation.
Thomassen [7] proved that if Π_{1} and Π_{2} are isomorphic convex decompositions, then Π_{2} can be obtained from Π_{1} by a finite sequence of simple convex deformations. As a tool, Thomassen proved that if Π is a convex decomposition with at least two polygons, then there is an isomorphic convex decomposition Π^{\prime} that can be obtained from Π by a finite number of simple convex deformations that preserve the boundary and such that Π^{\prime} contains either a deletable edge or a contractible edge. In this note we prove that every convex decomposition Π with at least two polygons contains an edge which is deletable or contractible. Furthermore, if P contains at least one interior point, then Π contains a contractible edge.

2. Preliminary Results

Let Π be a convex decomposition of P containing no deletable edges. For every interior edge e of $G(\Pi)$, the graph $G(\Pi)-e$ has an internal face Q_{e} which is not convex and at least one end of e is a reflex vertex of Q_{e}.
We define an abstract directed graph $\overrightarrow{G(\Pi)}$ with vertex set P in which $\overrightarrow{u v} \in A(\overrightarrow{G(\Pi)})$ if and only if u is a reflex vertex of $Q_{u v}$. Notice that for each interior edge $u v$ of $G(\Pi)$, the directed graph $\overrightarrow{G(\Pi)}$ contains at least one of the arcs $\overrightarrow{u v}$ and $\overrightarrow{v u}$ (see Fig. 1).

Remark 1.

(1) The outdegree of every vertex u of $\overrightarrow{G(\Pi)}$ is at most 3 .
(2) The outdegree of every vertex u in the boundary of $C H(P)$ is 0 .
(3) An interior vertex u of Π has outdegree 3 in $\overrightarrow{G(\Pi)}$ if and only if u has degree 3 in $G(\Pi)$.
(4) If $\overrightarrow{u v}, \overrightarrow{u w} \in A(\overrightarrow{G(\Pi)})$, then $u v$ and $u w$ lie in a common face of $G(\Pi)$.
For two points α and β in the plane, we denote by $r(\alpha \beta)$ the ray, with origin α, that contains the segment $\alpha \beta$.
Lemma 2. An edge $u v$ of Π is not contractible from u to v if and only if there are edges $y x$ and $x u$, lying in a common face of $G(\Pi)$

Fig. 1 A Convex partition Π and the corresponding directed graph $\overrightarrow{G(\Pi)}$.

Fig. 2 Contracting an edge $u v$ continuously.

Fig. 3 Edges $y x$ and $x u_{t}$ become collinear.
that contains vertex u, such that the ray $r(y x)$ meets the edge $u v$ at point u_{t}, with $u \neq u_{t} \neq v$, and that the triangular region defined by x, u_{t} and u contains no point of P in its interior.
Proof. It is easy to see that the existence of such edges $y x$ and $x u$ implies that the edge $u v$ cannot be contracted from u to v. We proceed to prove the remaining part of the lemma. Let $u v$ be an interior edge of Π with u not lying in the boundary of $\mathrm{CH}(\Pi)$ and let $x_{1}, x_{2}, \ldots, x_{m}$ be the remaining vertices of $G(\Pi)$ which are adjacent to u. We contract the edge $u v$ in a continuous way as follows: Slide the point u along the ray $r(u v)$, together with the edges $x_{1} u, x_{2} u, \ldots, x_{m} u$ (see Fig. 2).

If $u v$ is not contractible from u to v, then either the trans-
formed graph $T(G(\Pi))$ becomes non planar or one of its faces becomes non convex. This implies that we must reach a point $u_{t}=u+t(v-u)$, with $0<t<1$, such that there are two edges $y x_{i}$ and $x_{i} u_{t}$ lying in a common face, which become collinear in $T(G(\Pi))$ (see Fig. 3).

Notice that two or more different pairs of edges $y x_{i}, x_{i} u_{t}$ and $y^{\prime} x_{j}, x_{j} u_{t}$ may become collinear simultaneusly; in such a case we may choose any of those pairs and proceed with the proof.

The triangular region defined by x_{i}, u_{t} and u is the region swept by the edge $x_{i} u_{s}, 0 \leq s \leq t$ and therefore it contains no point of P in its interior. The lemma follows since the edges $y x_{i}$ and $x_{i} u$ lie in a common face of $G(\Pi)$ and the ray $r\left(y x_{i}\right)$ meets the edge $u v$ at

Fig. $4 \quad f(u v)=f(u w)=\overrightarrow{x u}$.
the point u_{t}.
Let N denote the set of arcs $\overrightarrow{u v}$ of $\overrightarrow{G(\Pi)}$ such that the edge $u v$ is not contractible from u to v in Π. For each $\overrightarrow{u v} \in N$ let $y=y_{u v}$, $x=x_{u v}$ and u_{t} be as in Lemma 2. Since the edges $y_{u v} x_{u v}$ and $x_{u v} u$ lie in a common face of $G(\Pi)$ and the triangular region, defined by $x_{u v}, u_{t}$ and u, contains no point of P in its interior, the geometric graph $G(\Pi)-x_{u v} u$ contains a face $Q_{x_{w w} u}$ in which $x_{u v}$ is a reflex vertex and therefore $\overrightarrow{x_{u v} u} \in A(\overrightarrow{G(\Pi)})$. This defines a function

$$
f: N \longrightarrow A(\overrightarrow{G(\Pi)})
$$

given by $f(\overrightarrow{u v})=\overrightarrow{x_{u v} u}$.
Notice that the arcs $f(\overrightarrow{u v})$ and $\overrightarrow{u v}$ form a directed path in $\overrightarrow{G(\Pi)}$ with length 2 and middle vertex u. This implies that if $f\left(\overrightarrow{u_{1} v_{1}}\right)=f\left(\overrightarrow{u_{2} v_{2}}\right)$, then $u_{1}=u_{2}$. Moreover, if $u v_{1}, u v_{2}$ and $u v_{3}$ are distinct arcs such that $f\left(\overrightarrow{u v_{1}}\right)=f\left(\overrightarrow{u v_{2}}\right)=f\left(\overrightarrow{u v_{3}}\right)=\overrightarrow{x u}$, then u is adjacent in $G(\Pi)$ to v_{1}, v_{2}, v_{3} and to x, which is not possible by Remark 1 , since u has outdegree 3 in $\overrightarrow{G(\Pi)}$. It follows that there are no three arcs in N with the same image under the function f and therefore $|\operatorname{Im}(f)|=|N|-|U|$, where U is the set of points u of P for which there is a pair of $\operatorname{arcs} \overrightarrow{u v}, \overrightarrow{u w} \in N$ such that $f(\overrightarrow{u v})=f(\overrightarrow{u w})$.
Lemma 3. Let Π be a convex decomposition of P with no deletable edges. If $U \neq \emptyset$, then there is a function

$$
g: U \rightarrow A(\overrightarrow{G(\Pi)})
$$

such that for each $u \in U, g(u)$ is not in the image of the function f. Proof. Let $u \in U$ and let v, w and $x=x_{u v}=x_{u w}$ be points in P such that $f(\overrightarrow{u v})=f(\overrightarrow{u w})=\overrightarrow{x u}$. If u has degree larger than 3 in $G(\Pi)$, let $z \notin\{v, w, x\}$ be such that $u z$ is an edge of $G(\Pi)$. By Remark 1, the outdegree of u in $\overrightarrow{G(\Pi)}$ is at most 2 , therefore $\overrightarrow{u z}$ is not an arc of $\overrightarrow{G(\Pi)}$. It follows that $\overrightarrow{z u}$ must be an arc of $\overrightarrow{G(\Pi)}$. In this case $g(u)=\overrightarrow{z u} \notin \operatorname{Im}(f)$ since $z \neq x$ and $\overrightarrow{x u}$ is the unique arc in $\operatorname{Im}(f)$ that ends at u.

If u has degree 3 in $G(\Pi)$, then u has outdegree 3 in $\overrightarrow{G(\Pi)}$, by Remark 1 and therefore $\overrightarrow{u x}$ is an arc $\overrightarrow{G(\Pi)}$. We claim that in this case $g(u)=\overrightarrow{u x} \notin \operatorname{Im}(f)$. Let $l_{u x}$ denote the line containing the
edge $u x$, and let $y_{u v}$ and $y_{u w}$ be points in P and such that the rays $r\left(y_{u v} x\right)$ and $r\left(y_{u w} x\right)$ intersect the edges $u v$ and $u w$, respectively.
Without loss of generality we assume that $l_{u x}$ is a vertical line such that v and $y_{u w}$ lie to the left of $l_{u x}$ and w and $y_{u v}$ lie to the right of $l_{u x}$ (see Fig.4). Clearly the angles $\angle y_{u v} x u$ and $\measuredangle y_{u w} x u$ are smaller than π, it is easy to see that $\left\langle y_{u w} x y_{u v}\right.$ is also smaller than π.

Therefore if $x z$ is an edge of Π with $z \notin\left\{u, y_{u v}, y_{u w}\right\}$, then $\overrightarrow{x z}$ is not an arc of $\overrightarrow{G(\Pi)}$. This implies that if $\overrightarrow{u x} \in \operatorname{Im}(f)$, then $\overrightarrow{u x}=f\left(\overrightarrow{x y_{u v}}\right)$ or $\overrightarrow{u x}=f\left(\overrightarrow{x y_{u w}}\right)$ since $f(\vec{a})$ and \vec{a} form a directed path of length 2 for each $\operatorname{arc} \vec{a} \in N$.

Suppose $\overrightarrow{u x}=f\left(\overrightarrow{x y_{u v}}\right)$. By the definition of f, there is an edge $y_{x y_{u} u} u$ such that the ray $r\left(y_{x y_{w}} u\right)$ intersects the edge $x y_{u v}$. Since v and w are the only vertices different from x which are adjacent to u in $G(\Pi)$, one of them must be the vertex $y_{x y_{u}}$. Since both edges $u w$ and $x y_{u v}$ lie in the right halfplane defined by $l_{u x}$ then $r(w u)$ cannot intersect the edge $x y_{w v}$ and therefore $y_{x y_{u v}} \neq w$. Finally, since $r\left(y_{u v} x\right)$ intersects the edge $u v, r(v u)$ cannot intersect the edge $x y_{u v}$. Therefore $\overrightarrow{u x} \neq f\left(\overrightarrow{x y_{u v}}\right)$; analogously $\overrightarrow{u x} \neq f\left(\overrightarrow{x y_{u w}}\right)$.

3. Main Results

In this section we prove our main results.
Theorem 4. Let P be a set of points in general position in the plane. If Π is a convex decomposition of P consisting of more than one polygon, then either Π contains a deletable edge or Π contains a contractible edge.
Proof. Assume the result is false and Π contains no deletable edges and no contractible edges. Define the directed graph $\overrightarrow{G(\Pi)}$ as in the previous section, notice that $A(\overrightarrow{G(\Pi)}) \neq \emptyset$ since Π contains at least two polygons. Since Π contains no contractible edges, $N=A(\overrightarrow{G(\Pi)})$.

Let $B=B(\overrightarrow{G(\Pi)})$ be the set of arcs of $\overrightarrow{G(\Pi)}$ of the form $\overrightarrow{u w}$, with w in the boundary of $C H(P)$, and let $\overrightarrow{u w} \in B$. By Remark 1 , w has outdegree 0 in $\overrightarrow{G(\Pi)}$ which implies $\overrightarrow{u w} \notin \operatorname{Im}(f)$.

If $U=\emptyset$, then
$\operatorname{Im}(f) \subset A(\overrightarrow{G(\Pi)}) \backslash B$,

Fig. 5 Left: Ray $r(y x)$ meets edge $u v$ at the point u_{t}. Right: Ray $r\left(y^{\prime} x\right)$ meets edge $u v$ at an interior point $u_{t^{\prime}}$.
therefore

$$
|N|=|\operatorname{Im}(f)| \leq|A(\overrightarrow{G(\Pi)}) \backslash B| \leq|A(\overrightarrow{G(\Pi)})|-3,
$$

which is not possible since Π contains no deletable edges and $|B| \geq 3$.

And if $U \neq \emptyset$, by Lemma 3 no arc in $\operatorname{Im}(g)$ lies in $\operatorname{Im}(f)$, therefore

$$
\operatorname{Im}(f) \subset A(\overrightarrow{G(\Pi)}) \backslash(\operatorname{Im}(g) \cup B)
$$

In this case

$$
|\operatorname{Im}(f)| \leq|A(\overrightarrow{G(\Pi)})|-|\operatorname{Im}(g)|-|B|,
$$

since $g(u) \notin B$. This is a contradiction since $A(\overrightarrow{G(\Pi)})=N$, $|\operatorname{Im}(g)|=|U|,|B| \geq 3$ and $|\operatorname{Im}(f)|=|N|-|U|$.
Corollary 5. Let Π be a convex decomposition of a set of points P in general position in the plane. If P contains at least one interior point, then Π contains at least one contractible edge.
Proof. Let Π^{\prime} be a convex decomposition of P obtained from Π by removing deletable edges, one at a time, until no such edges remain, and let $\overrightarrow{G\left(\Pi^{\prime}\right)}$ be the corresponding directed abstract graph. Since P contains an interior point, Π^{\prime} contains at least one interior edge.

By Theorem 4, there is an arc $\overrightarrow{u v} \in A\left(\overrightarrow{G\left(\Pi^{\prime}\right)}\right)$ such that $u v$ is contractible from u to v in Π^{\prime}. If $u v$ is not contractible in Π, then by Lemma 1 there are edges $y x$ and $x u$ lying in a common face of $G(\Pi)$ such that the ray $r(y x)$ meets the edge $u v$ at an interior point u_{t} and that the triangular region $y u_{t} u$ contains no point of P in its interior. This implies that the geometric graph $G(\Pi)-x u$ contains a face Q_{x} in which x is a reflex vertex and therefore $x u$ is not deletable in Π and $\overrightarrow{x u}$ is an arc of $\overrightarrow{G(\Pi)}$.

Let R be the face of $G(\Pi)$ which contains both edges $y x$ and $x u$. Since Π^{\prime} is obtained from Π by deleting edges but no points, then there is a face R^{\prime} of $G\left(\Pi^{\prime}\right)$ which contains the edge $x u$ and the region bounded by R, let $y^{\prime} \in P$ be such that $y^{\prime} x$ is an edge of R^{\prime}. Notice that $y^{\prime} \neq y$ otherwise $u v$ could not be a contractible edge of Π^{\prime} because the ray $r(y x)$ meets the edge $u v$ at the point u_{t} (Fig. 5, left). Nevertheless, since the face R^{\prime} contains the edge $x u$ and the
region bounded by R, the ray $r\left(y^{\prime} x\right)$ also meets the edge $u v$ at an interior point $u_{t^{\prime}}$ (Fig. 5, right) which again is a contradiction.
Corollary 6. Let Π be a convex decomposition of a set of points P in general position in the plane and Q be the set of points in the boundary of $C H(P)$. There is a sequence $P=P_{0}, P_{1}, \ldots, P_{m}=Q$ of subsets of P, and a sequence $\Pi_{0}, \Pi_{1}, \ldots, \Pi_{m}$ of convex decompositions of $P_{0}, P_{1}, \ldots, P_{m}$, respectively, such that $\Pi_{0}=\Pi$, Π_{m} consists of the boundary of $C H(P)$ and for $i=0,1, \ldots, k$, Π_{i+1} is obtained from Π_{i} by contracting an edge and for $i=$ $k+1, k+2, \ldots, m-1, \Pi_{i+1}$ is obtained from Π_{i} by deleting an edge. Proof. By Corollary 5, if P_{i} contains interior points, then Π_{i} has a contractible edge. If P_{i} contains no interior points, then each interior edge of Π_{i} is a deletable edge.

References

[1] Barrera-Cruz, F., Haxell, P. and Lubiw, A.: Morphing planar graph drawings with unidirectional moves, Proc. Mexican Conference on Discrete Mathematics and Computational Geometry Honoring Jorge Urrutia on the Occasion of his 60th Birthday, pp.57-65 (2013).
[2] Biedl, T., Lubiw, A., Petrick, M. and Spriggs, M.: Morphing orthogonal planar drawings, ACM Trans. Algorithms, Vol.9, No.4, Article No. 29 (2013).
[3] Cairns, S.S.: Deformations of plane rectilinear complexes, American Mathematical Monthly, Vol.51, pp.247-252 (1944).
[4] Grümbaum, B. and Shepard, G.C.: The geometry of planar graphs, H.N.V. Temperley (Ed.), Proc. 8th British Combinatorial Conference, London Math. Soc. Lecture Note Series, Vol.52, pp.124-150, Cambridge University Press (1981).
[5] Guibas, L., Hershberger, J. and Suri, S.: Morphing simple polygons, Discrete Comput. Geom., Vol.24, No.1, pp.1-34 (2000).
[6] Neumann-Lara, V., Rivera-Campo, E. and Urrutia, J.: A note on convex decomposition of points in the plane, Graphs and Combinatorics, Vol.20, pp.1-3 (2004).
[7] Thomassen, C.: Deformations of plane graphs, Journal of Combinatorial Theory Series B, Vol.34, pp.244-257 (1983).

Ferran Hurtado was born in Valencia,
Spain in 1951 and lived most of his life in Barcelona where he studied and worked first as a high school teacher and a later as a university professor at Universitat Politècnica de Catalunya where he reached the highest academic position of Catedrático de Universidad. His research interest was mainly Discrete and Computational Geometry.

Eduardo Rivera-Campo received his B.Math degree from the Universidad $\mathrm{Na}-$ cional Autónoma de México in 1980, his M.Math degree from the University of Waterloo in 1983 and his Ph.D. degree from the Universidad Autónoma Metropolitana - Iztapalapa in 1993. His research interests are Graph Theory and Combinatorial Geometry.

[^0]: 1 Ferran Hurtado worked at Universitat Politècnica de Catalunya until his death in 2014.
 2 Departamento de Matemáticas, Universidad Autónoma MetropolitanaIztapalapa, Mexico City 09340, México
 Partially supported by Conacyt, México
 a) erc@xanum.uam.mx

