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Abstract: We show how to fold a piece of paper and punch one hole so as to produce any desired pattern of holes.
Given n points on a piece of paper (finite polygon or infinite plane), we give algorithms to fold the paper flat so that
those n points and no other points of paper map to a common location, so that punching one hole and unfolding
produces exactly the desired pattern of holes. Furthermore, we can forbid creases from passing through the points
(allowing noncircular hole punches). Our solutions use relatively few creases (in some cases, polynomially many), and
can be expressed as a linear sequence of folding steps of complexity O(1)—a generalization of simple folds which we
introduce.
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1. Introduction

In the fold-and-cut problem introduced at JCDCG’98 [5], we
are given a planar straight-line graph drawn on a piece of paper,
and the goal is to fold the paper flat so that exactly the vertices and
edges of the graph (and no other points of paper) map to a com-
mon line. Thus, one cut along that straight line (and unfolding
the paper) produces exactly the given pattern of cuts. This prob-
lem always has a solution [3], [6], though so far the complexity of
the crease pattern depends on both the number n of vertices and
the ratio r of the largest and smallest distances between noninci-
dent vertices and edges. (A rough estimate on the complexity is
O(nr).)

In the fold-and-punch problem, we are given n points drawn
on a piece of paper, and the goal is to fold the paper flat so that
exactly those points (and no other points of paper) map to a com-
mon point. Thus, punching one hole at that point (and unfolding
the paper) produces exactly the given pattern of holes. This prob-
lem is a natural analog of the fold-and-cut problem where we re-
place one-dimensional features and target (segments onto a com-
mon line) with zero-dimensional features and target (points onto a
common point); thus, we also call the problem zero-dimensional

fold and cut. This problem is also a special case of the multi-
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dimensional fold-and-cut problem posed in Ref. [6], after Open
Problem 26.32.

Directly applying a fold-and-cut solution to the graph with n

vertices and zero edges does not solve the corresponding fold-
and-punch problem, because the n points would come to a com-
mon line but not a common point. This discrepancy can be fixed
by then making n − 1 one-layer simple folds along perpendicu-
lar bisectors between consecutive points (all perpendicular to the
common line).

Our goal in this paper is to find more efficient algorithms for the
fold-and-punch problem. Indeed, unlike the fold-and-cut prob-
lem, we find solutions that use a number of creases depending
only polynomially in n. We also consider four variations on the
problem, based on two binary parameters:
Paper size: The paper can be either a bounded set or the infinite

plane. Solutions to the fold-and-cut problem (with finitely
many creases) are known only in the bounded case. The
paper remains unbounded after any finite number of folds,
making it difficult to prevent accidental alignment.

Creasing through points: Creases can be either permitted or
forbidden to pass through the points to be aligned. Forbid-
ding creases is useful, for example, if we want to punch a
hole with a shape other than a circle. Even with a circu-
lar punch, creases through the hole give little tolerance for
precise hole punching in practice. The solution above using
fold-and-cut leads to creases at every point.

To quantify the efficiency of our solutions, we decompose our
folding into a sequence of folding steps. In particular, our mo-
tivation is to generalize the notion of simple fold [1], [2], which
allows folding along a single line or segment, and sequences of
simple folds. More generally, we can decompose any folding of
a piece of paper into a sequence of one or more folding steps.
Each folding step starts from an already folded piece of paper
(the result of the previous steps), and makes an arbitrary fold,
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Fig. 1 Creating every letter of the alphabet by folding (along the specified
crease pattern) and one punch, resulting in the circular holes. These
foldings were designed by hand to be as simple as possible, using the
ORIPA software. Amusingly, M and W use the same crease pattern,
without rotation or reflection.

Table 1 Results: The number of flat folding steps of complexity O(1), and
the number of resulting creases, in our solutions to each of the four
problem variants.

Allow Creases Forbid Creases
Through Points Through Points

Paper Steps Creases Steps Creases

Bounded O(n) O(n2) O(n log r) O(n3r′) = O(n5r)

Unbounded O(n) O(n2) O(n log r) O(n2r′′) = O(n4r)

producing another folded state. Roughly, a folding step has com-

plexity k if the paper can be decomposed into k+1 clusters (possi-
bly disconnected regions) that each get folded as a single unit not
sandwiched within any other cluster; refer to Section 2 for formal
definitions. We call a folding step flat if the folded state is flat
before and after the step, and all-layers if it treats the folded state
before the step as a piece of paper (not separating any previously
collocated layers). In particular, every some-layers simple fold
is a flat folding step of complexity 1, and every all-layers simple
fold is an all-layers flat folding step of complexity 1. At the other
extreme, any folded state with k+ 1 faces in its crease pattern can
be viewed as a sequence of just one folding step, of complexity k.

We can now measure the number of folding steps, the maxi-
mum complexity of the folding steps in the sequence, the total
complexity of all the folding steps, etc., in addition to the usual
measure of the total number of creases in the final folded state.
In particular, a natural class of foldings studied here decompose
into a sequence of flat folds of O(1) complexity — a natural gen-
eralization of a sequence of simple folds.

Table 1 summarizes the number of such folding steps that we
use in our solution to each of the four variations of the problem,
as well as the total number of creases in the final crease pattern
(i.e., when viewing the folding as a single step). In some cases,
we depend only on the number n of points; in other cases, we
depend (usually, only logarithmically) on the ratio r of the largest
and smallest distances between points.

For fun, we designed a typeface based on folding and one
punch. Figure 1 illustrates one font in the series, showing both
crease pattern and resulting hole punches. Presenting the crease
pattern and just one circle results in an intriguing puzzle font; see
our web implementation*1. See also Ref. [4] for related work on
mathematical and puzzle fonts.

2. Folding Sequence Definition

In this section, we introduce the formal concept of a sequence
of folds, and the complexity of the fold steps. This definition aims
to generalize the idea of a sequence of simple folds in a way that
will be useful beyond the work presented here.

First, we follow the definition of folded state by Ref. [6]:
Definition 2.1 (Folded State). A piece of paper P is an orientable
2-manifold embedded in R3. A folded state or folding ( f , λ) of P

consists of an intrinsically isometric geometry f : P → R3 and
an ordering λ : L → {−1,+1}, where L = {(p, q) ∈ P × P | p, q

are noncrease points of f , and f (p) = f (q)}, satisfying Antisym-
metry, Transitivity, Consistency, and Noncrossing conditions [6].
Here λ(p, q) = +1 means that point p is stacked above q (in the

*1 http://erikdemaine.org/fonts/foldpunch/
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Fig. 2 Weaving with folding steps of complexity 1.

direction of the normal n f (q) of the folded surface at q), and
λ(p, q) = −1 means that p is stacked below q (in the direction
−n f (q)).
Definition 2.2 (Folding Step). A folding step consists of a before

folded state ( f0, λ0) and an after folded state ( f1, λ1); we call the
folding step from ( f0, λ0) to ( f1, λ1). Let Lj denote the domain
of λ j, i.e., all pairs of noncrease points mapped together by f j.

A folding step is flat if both f0(P) and f1(P) lie in the xy plane.
Definition 2.3 (Folding Step Complexity). A folding step of

complexity k from ( f0, λ0) to ( f1, λ1) consists of a clustering

C0,C1, . . . ,Ck satisfying the following properties:
(C1) Clusters partition paper: C0,C1, . . . ,Ck are disjoint

open sets partitioning P, i.e., P = C0 ∪C1 ∪ · · · ∪Ck where
X denotes the closure of X.

(C2) Cluster geometry: On each cluster Ci, f0 and f1 differ by
only a rigid motion gi, i.e., ( f1)|Ci = gi ◦ ( f0)|Ci . Further-
more, g0 is the identity map, i.e., C0 does not move geo-
metrically. As a consequence, L0∩(Ci×Ci) = L1∩(Ci×Ci).

(C3) Cluster layering: For each cluster Ci, λ0 and λ1 agree on
all points in Ci where they are defined, i.e., (λ0)|L0∩(Ci×Ci) =

(λ1)|L1∩(Ci×Ci).
(C4) Clusters don’t sandwich: For each cluster Ci, for both

folded states ( f j, λ j), and for any point pair (p, q) ∈ Lj ∩
(Ci × Ci), there is no point b ∈ P \ Ci in between p and
q according to ( f j, λ j), i.e., no noncrease point b ∈ P \ Ci

with f j(b) = f j(p) = f j(q) satisfying λ j(p, b) � λ j(q, b).
Note that the number of clusters is 1 larger than the complexity,

so that complexity 0 corresponds to no folding whatsoever. This
definition of folding step complexity is nicely general, but it still
allows the layering to be complex even in a folding step of com-
plexity 1. Figure 2 shows how we may “weave” folded shapes
without increasing the complexity.

For example, a (some-layers) simple fold is a flat folding step
of complexity 1 satisfying three additional conditions:
(S1) Rigid motion g1 is not the identity, and thus is a reflection

about a line �1.
(S2) For some sign σ ∈ {+1,−1}, there are no collisions during

a continuous σ 180◦ rotation of C1 around �1, or equiv-
alently, C1 is on the same side of C0 before and after

Fig. 3 An example of an all-layers flat folding step of complexity 5.

the folding step: λ j(p, q) n f j (q) = σ ez for all (p, q) ∈
Lj ∩ (C1 × C0) and for both j ∈ {0, 1}. (Here ez represents
the vector (0, 0,+1).)

(S3) Every point of C0 ∩ C1 is a crease point of f1 or on the
boundary of P.

This definition exactly matches the definition of simple fold in
Ref. [1]. Without Property S3, we call such a folding step a
(some-layers) simple fold/unfold.

At the other extreme in complexity, any target folded state
( f1, λ1) can be viewed as a folding step from the unfolded piece
of paper (given by geometry f0(p) = p) to ( f1, λ1). By choosing
the clusters to be the k + 1 faces of the crease pattern of f1, the
complexity of this step is k (assuming f1 is a rigid motion on each
face of the crease pattern). We refer to k as the face complexity of
( f1, λ1).

Next we define a common type of folding step that treats the
result of a previous folding step as its “piece of paper,” and thus
does not separate any previously collocated layers of paper:
Definition 2.4 (All-layers Folding Step). Given a folded state
( f0 : P → R3, λ0), whose image f0(P) is an orientable mani-
fold P′ (with normals nP′ defined by an arbitrarily chosen “top”
side), and given a second folded state ( f0→1 : P′ → R3, λ0→1),
define the all-layers folding step from ( f0, λ0) to ( f1, λ1) by

f1 = f0→1 ◦ f0,

λ1(p, q) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
λ0(p, q) ( f0(p) = f0(q)),

λ0→1( f0(p), f0(q)) · σ f0 (q) ( f0(p) � f0(q)),

where σ f0 (q) = nP′ ( f0(q)) · n f0 (q) indicates whether q’s normal
vector on P as mapped by f0 matches or is flipped relative to the
normal vector of f0(q) on the coalesced surface P′.

If ( f0→1, λ0→1) has face complexity k, then there is an all-layers
folding step from ( f0, λ0) to ( f1, λ1) of complexity k.

For example, an all-layers simple fold is a simple fold that is
an all-layers folding step (for some f0→1). This definition exactly
matches the definition of all-layers simple fold in Ref. [1].
Definition 2.5 (Folding sequence). A folding sequence is a se-
quence ( f0, λ0), ( f1, λ1), . . . , ( fm, λm) of folded states and a se-
quence s0, s1, . . . , sm−1 of folding steps, where each si is a folding
step from ( fi, λi) to ( fi+1, λi+1). The result of the folding sequence
is ( fm, λm). The folding sequence is complete if ( f0, λ0) is the
unfolded piece of paper, given by geometry f0(p) = p.
Remark 2.6. A folded state ( f , λ) can be the result of multiple
different folding sequences. Figure 3 shows an example of fold-
ing which can be reached by either (1) a sequence of one simple
fold (complexity 1) followed by one all-layers flat folding step of
complexity 5; or (2) one flat folding step of complexity 11.
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3. Problem and Results

In this section, we formally state the 0-dimensional fold-and-
cut problem and describe our results.
Problem 3.1 (0-dimensional fold and cut). Given n points

p1, p2, . . . , pn on a flat piece of paper P, find a flat folding ( f , λ)
satisfying the following conditions:

(F1) f (p1) = f (p2) = · · · = f (pn).
(F2) f (q) � f (p1) for any q ∈ P \ {p1, p2, . . . , pn}.

We have four variations of this problem based on the following
two criteria:
• The paper P is bounded or unbounded.

(Bounded) The paper P ⊂ R2 is bounded.
(Unbounded) The paper P = R2 is the infinite plane*2.

• We can allow or forbid crease lines passing through given
points:
(Allowing) Allow crease lines passing through {pi}.
(Forbidding) Forbid crease lines passing through {pi}.

Our main results are summarized by the following theorem:
Theorem 3.2. Problem 3.1 is always solvable in all four cases

above. The solution can always be given by a sequence of flat

folding steps, each of complexity O(1). Furthermore, every fold-

ing step is either a some-layers simple fold or an all-layers fold-

ing step; and in the bounded-paper cases, every folding step is

a some-layers simple fold. Table 1 bounds the number of steps

and the number of resulting creases in the crease pattern in each

case.

Remark 3.3. For Problem 3.1 with bounded paper, any shape of
paper P is accepted. If we solve the problem for larger finite
paper P′ containing original paper P, then we have a solution for
the original paper P. Thus our solution is free to choose the shape
of P′, e.g., to be convex (say, the convex hull of P) or a rectangle
(say, the bounding box of P).

3.1 Key Ideas
We present our solutions to the four cases in order of increas-

ing solution complexity: bounded & allowing case (Section 4),
unbounded & allowing case (Section 5), bounded & forbidding
case (Section 6), and unbounded & forbidding case (Section 7).
The latter two sections can be read independently from the others,
so to see the most general result and techniques, the reader may
skip to Section 7.

In the bounded & allowing case (Section 4), unbounded & al-
lowing case (Section 5), and unbounded & forbidding case (Sec-
tion 7), we use the following fundamental technique. We perform
some folds in order to place p1, p2, . . . , pn on the same horizontal
line such that each pi is not covered by any other layers of paper.
Then, by just folding bisecting vertical lines, we can easily obtain
a flat folding satisfying Properties F1 and F2; refer to Fig. 4.
Lemma 3.4 (Bisection Folding). Let P be a piece of paper. If all

pi’s are on the same line �, we can get such a folding satisfying

Properties F1 and F2, without adding crease lines through {pi}.
This construction results from a folding sequence of Θ(n) some-

layers simple folds, and works if P is bounded or unbounded.

*2
R

2 is the hardest case of any unbounded piece of paper: a solution to
P = R2 can be applied to its subset.

Fig. 4 Bisection folding to align collinear points.

Proof. Consider � as the x axis. Let xi be the x coordinate of pi.
By relabeling the points, we can arrange for x1 < x2 < · · · < xn.
For each i = 1, 2, . . . , n − 1 in turn, we fold a vertical crease at
x = (xi + xi+1)/2, mountain if i is odd and valley if i is even. �

In the bounded & forbidding case (Section 6), making the
points collinear by simple folds is difficult. Instead we can make
the points arbitrarily close to collinear, using radial “shrink fold-
ing”. Then we observe that bisection folding of Fig. 4 is really
folding along a Voronoi diagram of the points, and for points
close enough to collinear, the Voronoi edges do not intersect on
a bounded piece of paper. Therefore we can use this generalized
form of bisection folding in this case; see Section 6 for details.
Unfortunately, we do not know how to deal with Voronoi ver-
tices, making it difficult to apply Voronoi diagrams directly to the
entire problem.

3.2 Feature Ratios
In the forbidding cases, our algorithms depend on geomet-

ric features of the input, not just the number n of points. (For
the allowing case, the reader may safely skip this section.) The
standard measure for capturing such geometric dependence is the
feature ratio r—the ratio of the maximum and minimum feature
sizes—which in this problem is given by

r =
maxi, j dist(pi, p j)

mini� j dist(pi, p j)
.

Here pi is chosen from the points defined in Problem 3.1, and in
the case of bounded paper P, with the additional four corners of
the bounding box of P. Our algorithms more naturally refer to
two variations of feature ratio, which we will relate back to r:
Definition 3.5. In the bounded & forbidding case, we define the
radial feature ratio

r′ =
maxi Ri

mini� j|Ri − Rj| , (1)

where, for each 1 ≤ i ≤ n, Ri is the distance of pi from the origin
p0, which we assume is exterior to the paper.
Definition 3.6. In the unbounded & forbidding case, we define
the projected feature ratio

r′′ =
maxi� j|yi − y j|

min
(
mini� j|xi − x j|,mini� j|yi − y j|

) , (2)

where, for each 1 ≤ i ≤ n, (xi, yi) is the coordinate of pi (choosing
the coordinate system to make the xi’s and yi’s distinct).

The radial and projected feature ratios are related to the stan-
dard feature ratio by “only” a polynomial function of n:
Lemma 3.7. Any n points have a rotation for which r′′ = O(rn2).
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Fig. 5 Analyzing the radial feature ratio in Lemma 3.8.

Proof. Draw the complete graph on the n points, connecting ev-
ery pair of points with a segment. Thus we obtain Θ(n2) seg-
ments, each with an (unoriented) direction, which we can view as
two antipodal points on the circle of directions. For each such pair
of directions, draw also the two perpendicular directions. Among
Θ(n2) such points, there must be an empty interval on the circle of
directions of length Ω( 1

n2 ). Choose the midpoint of this interval
as the direction for the x axis, and the y axis perpendicular to x.

Now look at the projections of the segments onto the x and y
axes. The longest segment in projection must be shorter or equal
than the length L of the longest segment, so the numerator of
r′′ is at most L. The shortest segment in projection forms angle
Ω(1/n2) with respect to the projection direction (x or y) by con-
struction, and has unprojected length at least the shortest over-
all length �, so the projected length must be Ω(�/n2). Therefore
the projected feature ratio r′′ is O(L)/Ω(�/n2) = O((L/�)n2) =
O(rn2). �
Lemma 3.8. Any n points have a translation for which r′ =
O(rn2) and p0 is exterior to the bounded paper P.

Proof. Let L = maxi, j dist(pi, p j) be the maximum distance be-
tween two points (including points of the bounding box of P).
Consider the circle C of radius 10L centered at one of the
points p1. For every pair (pi, p j) of points, draw the perpendicular
bisector line. These Θ(n2) lines intersect circle C at Θ(n2) points.
These intersection points divide C into Θ(n2) intervals, one of
which must have angular length Ω(1/n2) and thus circumference
Ω(L/n2). Choose p0 to be the center of this interval. Because p0

is on the circle C, we have 9L ≤ Ri ≤ 11L for all i. In particular,
p0 is exterior to the paper.

Now consider any two points pi, p j with i � j, whose dis-
tance d satisfies � ≤ d ≤ L where � is the minimum distance
between any two points. Refer to Fig. 5. Let x be p0’s orthog-
onal distance from the perpendicular bisector of pi and p j. We
have x = Ω(L/n2). Let y be the distance between pi (and p j) and
p0 when projected onto the perpendicular bisector. The quan-
tity

√
x2 + y2 measures the distance between p0 and the midpoint

between pi and p j, so 9L ≤ √
x2 + y2 ≤ 11L. After possibly

swapping pi and p j, we have

Ri =

√
(x + d/2)2 + y2 =

√
x2 + y2 + d2/4 + xd,

Rj =

√
(x − d/2)2 + y2 =

√
x2 + y2 + d2/4 − xd.

Dividing by D =
√

x2 + y2 + d2/4 = Θ(L),

Ri

D
=

√
1 +

xd
x2 + y2 + d2/4

,

Rj

D
=

√
1 − xd

x2 + y2 + d2/4
.

We have xd ≤ (11L)L ≤ 11L2, while x2 + y2 ≥ (9L)2 ≥ 81L2.
Thus xd

x2+y2+d2/4 < 1. By Taylor’s Theorem,
√

1 + ε = 1 + Θ(ε)

and
√

1 − ε = 1 − Θ(ε) for 0 ≤ ε < 1. Therefore

Ri

D
= 1 + Θ

(
xd

x2 + y2 + d2/4

)
,

Rj

D
= 1 − Θ

(
xd

x2 + y2 + d2/4

)
,

so

Ri − Rj

D
= Θ

(
xd

x2 + y2 + d2/4

)
.

Substituting various approximations, we obtain

Ri − Rj

Θ(L)
= Θ

(
Ω(L/n2)Ω(�)
Θ(L2) + O(L2)

)
= Ω

(
�

Ln2

)
= Ω

(
1

rn2

)
.

Taking the reciprocal, we have

r′ =
maxi Ri

mini� j|Ri − Rj| =
Θ(L)

mini� j|Ri − Rj| = O(rn2)

as desired. �
Remark 3.9. Solutions to Problem 3.1 with unbounded paper can
be applied to Problem 3.1 with bounded paper, and solutions to
Problem 3.1 forbidding creases through points can be applied to
Problem 3.1 allowing creases through points. Therefore, if we
apply the solution of the unbounded & forbidding case to the
bounded & forbidding case, we obtain the number of creases as
O(n2r), which is a better bound than O(n3r), but it does not con-
sist of only simple folds.

4. Solution for Bounded Paper, Allowing
Creases Through Points

Theorem 4.1. Let P be a bounded piece of paper and let

p1, p2, . . . , pn be n distinct points on P. Then there exists a flat

folding satisfying Properties F1 and F2, allowing creases through

{pi}. The number of creases is O(n2). The flat folding is the result

of a folding sequence of O(n) some-layers simple folds.

Proof. We can reduce to the case of Lemma 3.4 as fol-
lows. Rotate so that p1, p2, . . . , pn have distinct y coordinates
y1, y2, . . . , yn. Relabel the points so that y1 > y2 > · · · > yn. If we
fold the paper by horizontal mountain creases y = yi for 1 ≤ i ≤ n,
and horizontal valley creases y = (yi + yi+1)/2 for 1 ≤ i ≤ n − 1,
then we will align the pi’s onto a horizontal line, but other points
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will fold to meet pi; see Fig. 6 (left). If we reverse-fold the moun-
tain folds, turning horizontal crease y = (yi + yi+1)/2 into a valley
and adding two mountain crease lines at pi with very small angle
to the horizontal crease y = (yi +yi+1)/2, then the creases will not
intersect, so we obtain the desired result; see Fig. 6 (right). Now
each pi is not covered by any other points, so we can reduce to
the case of Lemma 3.4.

We can implement essentially the same construction by a fold-
ing sequence of some-layers simple folds; refer to Fig. 7. For
each i, we fold the horizontal valley crease y = (yi−1 + yi)/2 (one

Fig. 6 If we fold the paper by mountain creases y = yi (1 ≤ i ≤ n) and
valley creases y = (yi + yi+1)/2 (1 ≤ i ≤ n− 1), we get the product on
the left side. If we reverse-fold each mountain by a sufficiently small
angle at pi, we get the product on the right side. In either case, the
pi’s are all on a horizontal line, and in the latter case, no other points
cover these points.

Fig. 7 How to fold Fig. 6 only by some-layers simple folds.

layer); then the horizontal mountain crease y = yi (one layer);
then each of two near-horizontal valley folds at pi (two layers
each). The valley folds need to be sufficiently close to horizon-
tal to prevent additional overlap in future folds; in particular, it
suffices to make the angle (between the valley folds and the hor-
izontal crease y = (yi + yi+1)/2) be at most half the angle from
the reverse-fold method from Fig. 6 (which just needed to avoid
intersecting creases). In Fig. 7, we fold the valley y = (yi−1+yi)/2
even for i = 1, letting y0 be the top of the paper; and unfold this
crease at the end of the sequence. Alternatively, we could skip
the first valley fold so that each folding step is some-layers sim-
ple fold.

This method consists of Θ(n) simple folds, each folding
through 1 or 2 layers. Thus the number of creases is Θ(n), and
all creases are nearly horizontal (as in Fig. 6 (right), but with a
different mountain–valley assignment). When we apply the Θ(n)
vertical bisection folds of Lemma 3.4, each of the horizontal folds
gets split into Θ(n) pieces, so we end up with a final crease pat-
tern with Θ(n2) creases. The folding sequence still consists of
Θ(n) some-layers simple folds. �

5. Solution for Unbounded Paper, Allowing
Creases Through Points

Theorem 5.1. Let P = R2 and let p1, p2, . . . , pn be n distinct

points on P. Then there exists a flat folding satisfying Proper-

ties F1 and F2, allowing creases through {pi}. The number of

creases is O(n2). The flat folding is the result of a folding se-

quence of O(n) flat folding steps of complexity O(1).
Proof. The difference from Theorem 4.1 is that we cannot fold
the near-horizontal folds in Figs. 6 or 7 because the paper P is
the plane R2, so any near-horizontal lines would intersect all hor-
izontal folds. Instead, we use the thorn gadget shown in Fig. 8.
If the thorn gadget is applied to a point, the paper folds into a
plane (with horizontal and vertical pleats) with a little triangle tab
sticking out. By first rotating the point set, we can assume that all
x and y coordinates are distinct, and thus sufficiently small hori-
zontal and vertical pleats in the thorn gadget will avoid interaction
with any other points.

Figure 9 illustrates the overall construction. We alternately
apply the thorn gadget (as an all-layers flat folding step), and the
bisection between horizontal lines (similar to Theorem 4.1), se-
quentially from the top to down. The result is a plane with n

horizontally aligned tabs, with the n points at the tips of the tabs.
One horizontal mountain fold beneath the triangular tabs leaves

Fig. 8 The thorn gadget folds an infinite sheet of paper (left) into a plane
with a small triangular tab (middle). The gadget is composed of 27
creases and 19 faces, so it is an all-layers flat folding step of com-
plexity 18.
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Fig. 9 The folding sequence for infinite paper, crease passing case. Each
flat folding step has complexity O(1). The final folding step is a sim-
ple fold/unfold as drawn, but by shifting the fold line up slightly, it
is a simple fold.

the tips of the tabs (where the points are) uncovered by other lay-
ers of paper, and on the horizontal line. Finally, we can apply
Lemma 3.4 to align the points.

This method consists of Θ(n) flat folding steps, each of com-
plexity O(1): 1 for the simple folds and 18 for the thorn gadget
of Fig. 8 (which is all-layers). For each point pi, the thorn gad-
get makes horizontal and vertical pleats that cross the pleats of
all previous gadgets. Thus each gadget makes O(n) creases, for a
total of O(n2) creases. Similarly, Lemma 3.4 results in Θ(n2) ad-
ditional creases becauseΘ(n) vertical creases will crossΘ(n) hor-
izontal pleats. We conclude that the number of resulting creases
is Θ(n2). �

6. Solution for Bounded Paper, Forbidding
Creases Through Points

Theorem 6.1. Let P be a bounded piece of paper and let

p1, p2, . . . , pn be n distinct points on P. Then there exists a

flat folding satisfying Properties F1 and F2, forbidding creases

through {pi}. The number of creases is O(n3r′). The flat folding is

the result of a folding sequence of O(n log r′) some-layers simple

folds.

Lemma 6.2 (Radial shrink folding). Consider three noncollinear

points p0, q1, q2 on a convex piece of paper P, defining a wedge

(and angle) ∠q1 p0q2 from ray p0q1 clockwise to ray p0q2. Assume

that p0 is not interior to P, so that removing the fan ∠q1 p0q2 sep-

arates P into two components. Then, for any ε > 0, there exists a

folding f of R2 satisfying

(R1) the angle ∠ f (q1) f (p0) f (q2) ≤ ε;
(R2) the set of points q of P nonstrictly counterclockwise of ray

p0q1 (including q1) move as a single rotation around p0

and are singly covered in f ;

(R3) the set of points q of P nonstrictly clockwise of ray p0q2

(including q1) move as a single rotation around p0 and are

singly covered in f ; and

(R4) f (q) does not change the distance to p0 of any q ∈ P.

Also, f decomposes into a sequence of O
(
log (∠q1 p0q2/ε)

)
=

Fig. 10 Radial shrink folding: reducing a wedge down to a thin fan.

O(log(1/ε)) simple folds, all passing through p0, and the total

number of creases is O(∠q1 p0q2/ε) = O(1/ε).
Proof. Let w = ∠q1 p0q2 − ε, and assume w > 0. (Otherwise,
Property R1 holds without any folding.) Refer to Fig. 10.

To get started, keep fixed the set of points q nonstrictly coun-
terclockwise of ray p0q1, valley fold along the ray from p0 that
is ε/2 clockwise of ray p0q1, and mountain fold along the ray
bisecting the wedge ∠q1 p0q2. We obtain a folded state f1 where
f1(q1) = q1, f1(p0) = p0, and angle ∠q1 p0 f (q2) = ∠q1 p0q2 − w =
ε.

This folded state f1 has a two-layer flap of angle w/2. By ap-
plying a simple fold to the layers of this flap, bisecting its angle,
we may shrink the flap angle by a factor of 2, without moving the
rest of the paper. After k such simple folds, we shrink the angle
of the tuck to w/2k+1. Thus, if we apply log (∠q1 p0q2/ε) + 1 sim-
ple folds (resulting in Θ(∠q1 p0q2/ε) creases), we can shrink the
flap to width < ε/2, clearing any overlap with points of P outside
the wedge ∠q1 p0q2. Thus, in the final folded state f , we obtain
the single coverage required by Properties R2 and R3, without af-
fecting Property R1 already true of f1. The rest of Properties R2
and R3, and Property R4, follow because our folds are all rays
through p0 and strictly between rays p0q1 and p0q2. �
Proof of Theorem 6.1. We assume that r′ is bounded, i.e.,
Ri � Rj for all i � j. For example, this property can be
achieved by the translation in Lemma 3.8, which guarantees that
r′ = O(rn2). By relabeling the points, we arrange to have
Ri < Rj for all i < j. Also, we compute the permutation
of the points p1, p2, . . . , pn (according to this radius order) into
their clockwise order q1, q2, . . . , qn around p0. In addition, let
q0 be the counterclockwise-most point of P relative to p0, and
let qn+1 be the clockwise-most point of P relative to p0. Thus
q0, q1, . . . , qn, qn+1 appear in clockwise order around p0.

The fold sequence consists of two parts. In the first part, we
bring q0, q1, . . . , qn+1 to be almost collinear, as follows. Divide
the paper P into wedges with apex at p0 which have pi’s on their
boundaries (and have no pi’s strictly interior to a wedge). For
each 0 ≤ i ≤ n, we apply Lemma 6.2 to shrink the angle of the
wedge ∠qi p0qi+1 down to ≤ θ/n, while only rotating the other
wedges. After these folds, all of the paper lies within a wedge
with apex at p0 of angle ≤ θ, for desired θ > 0. We use
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Fig. 11 Each bisector lies between adjacent arcs.

θ = min
1≤i≤n−1

Ri+1 − Ri

Ri+1
> 1/r′.

Thus this part consists of O(n log(n/θ)) = O(n log(nr′)) =
O(n log r′) simple folds (because r′ = Ω(n)) and O(n(n/θ)) =
O(n2r′) creases.

In the second part of the fold sequence, we bring the pi’s to a
common point by bisection folding steps. Refer to Fig. 11. For
1 ≤ k < n, let bk be the perpendicular bisector of the segment
pk pk+1. It suffices to fold the paper along these bk’s, assigning bk

as mountain for k odd and valley for k even. This part consists
of O(n) simple folds, each of which can cross the O(n2r′) creases
from the first part. Thus the total number of creases is O(n3r′).

Let X and Y be any points on the arcs of circles centered at
p0 and with radii Ri and Ri+1 (i.e., passing through pi and pi+1),
respectively. By the definition of θ,

piX < Riθ < Ri min
1≤k<n

Rk+1 − Rk

Rk+1

< Ri
Ri+1 − Ri

Ri+1
< Ri+1 − Ri < pi+1X.

Similarly,

pi+1Y < piY.

Therefore, all perpendicular bisectors lie between adjacent arcs,
and do not cross each other. This completes the proof. �

7. Solution for Unbounded Paper, Forbidding
Creases Through Points

Theorem 7.1. Let P = R2 and let p1, p2, . . . , pn be n distinct

points on P. Then there exists a flat folding satisfying Proper-

ties F1 and F2, forbidding creases through {pi}. The number of

creases is O(n2r′′). The flat folding is the result of a folding se-

quence of O(n log r′′) folding steps of complexity O(1).
Lemma 7.2 (Parallel shrink folding). Consider points q1, q2 ∈ R2

with distinct y coordinates y1 > y2. Then, for any ε > 0, there

exists a folding f of R2 satisfying

(P1) |(y coordinate of f (q1)) − (y coordinate of f (q2))| ≤ ε;
(P2) the set of points q with y coordinate ≥ y1 (including q1)

move as a single translation and are singly covered in f ;

Fig. 12 Parallel shrink folding: reducing a horizontal strip down to small
height.

(P3) the set of points q with y coordinate ≤ y2 (including q2)

move as a single translation and are singly covered in f ;

and

(P4) f (q) does not change the x coordinate of any q ∈ R2.

Also, f decomposes into a sequence of O
(
log (|y1 − y2|/ε)) simple

folds, all parallel to the x axis.

The proof of Lemma 7.2 is essentially the same as that of
Lemma 6.2 after a projective transformation to place p0 at in-
finity, but we repeat it for completeness.
Proof. Let w = y1 − y2 − ε, and assume w > 0. (Otherwise,
Property P1 holds without any folding.) Refer to Fig. 12.

To get started, keep fixed the set of points q with y coordinate
≥ y1, valley fold along crease y = y1 − ε/2, and mountain fold
along crease y = (y1 + y2)/2. We obtain a folded state f1 where
f1(q1) = q1 and the y coordinate of f1(q2) is y2+w = y1−ε. Thus

(y coordinate of f1(q1)) − (y coordinate of f1(q2)) = ε.

This folded state f1 has a two-layer flap of width w/2. By ap-
plying a simple fold to the layers of this flap in the middle y co-
ordinate, we may shrink the flap width by a factor of 2, with-
out moving the rest of the paper. After k such simple folds,
we shrink the width of the tuck to w/2k+1. Thus, if we apply
log ((y1 − y2) /ε)+1 simple folds, we can shrink the flap to width
< ε/2, clearing any overlap with the points q having y coordinate
≥ y1 or ≤ y1. Thus, in the final folded state f , we obtain the sin-
gle coverage required by Properties P2 and P3, without affecting
Property P1 already true of f1. The rest of Properties P2 and P3,
and Property P4, follow because our folds are all horizontal with
y coordinates strictly between y1 and y2, �
Proof of Theorem 7.1. Let xi and yi be the x and y coordinates of
pi respectively. By suitable rotation, assume that all xi’s are dis-
tinct and that all yi’s are distinct. By relabeling the points, assume
y1 > y2 > · · · > yn. Define yn+1 = −∞.

We apply an iterative method. Let pi(k) = (xi(k), yi(k)) denote
the position of pi before the kth iteration. For each point pi(k),
we can uniquely define (although they may not exist) its left and
right adjacent points in the projection of p1(k), p2(k), . . . , pn(k) to
the x axis; let i−(k) and i+(k) denote the index of the left and right
adjacent points respectively.

Assume by induction that
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Fig. 13 Downshifting gadget can be inserted if conditions (i)–(ii) are satis-
fied.

y1(k) = y2(k) = · · · = yk(k) > yk+1(k) = yk+1

> yk+2(k) = yk+2 > · · · > yn(k) = yn,

and i−(k) = i−(0) and i+(k) = i+(0) for all i. For an angle
0 < θ < π/4, choose ε > 0 sufficiently small to satisfy the follow-
ing conditions:
(i)

ε

2 tan θ
< yk+1(k) − yk+2(k) = yk+1 − yk+2.

(ii) There is a sufficient horizontal gap between pk+1(k) and its
left and right neighbors:(

3
2
+

1
2 tan θ

)
ε < x(k+1)+ (k) − xk+1(k)(

3
2
+

1
2 tan θ

)
ε < xk+1(k) − x(k+1)− (k)

By applying parallel shrink folding of Lemma 7.2, we can ob-
tain that d(k) := yk(k) − yk+1(k) ≤ ε. Then we apply the down-

shifting gadget, a folding composed of two alternating twist folds
of twist angle θ and pleats width 1

2 d(k); see Fig. 13. The pleats
of unfolded width 3

2 d(k) decompose the paper into six regions
which remain single layered in the folding. The top three regions
translate down by d(k); the left two regions translate right by d(k);
and the right two regions translate left by d(k). Now, the down-
shifting gadget is constructed to weave between the given points,
such that (1) the neighborhoods of p1, p2, . . . pn are kept single
layered, (2) already aligned points p1, p2, . . . , pk are in the top
left and top right regions, (3) point pk+1 is in the bottom middle
region, and (4) the rest of the points pk+2, . . . , pn are in the bot-
tom left and bottom right regions. Conditions (i)–(ii) guarantee
the necessary clearance between points separated by the pleats.
After folding the gadget, y1, y2, . . . , yk, yk+1 coincide, and each
point of p1, p2, . . . , pn has no other points of paper on it.

Now we have

y1(k + 1) = y2(k + 1) = · · · = yk+1(k + 1) > yk+2(k + 1) = yk+2

> yk+3(k + 1) = yk+3 > · · · > yn(k + 1) = yn.

Because
(

3
2 +

1
2 tan θ

)
ε > ε ≥ d(k), the horizontal ordering of

points does not change, and thus i−(k+ 1) = i− and i+(k+ 1) = i+.
The horizontal gap shrinks by multiplying by a factor of at least

1+tan θ
1+3 tan θ < 1. By induction, the points p1, p2, . . . , pn become
collinear after n − 1 iterations. Therefore we can apply the bi-
section fold of Lemma 3.4 to get the desired folding.

Before we count the number of resulting creases, we discuss
how small yk − yk+1 should be to apply the shrink fold fs of
Lemma 7.2. Let y′i (k) denote the y coordinate of fs(pi(k)). For
each step k, we apply Lemma 7.2 so that y′k(k) − y′k+1(k) < ε. To
satisfy the conditions (i)–(ii) above for each k, it suffices to satisfy
the following:

C ·
(
y′k(k) − y′k+1(k)

)
< min

(
min
j�k
|xk − x j|, min

k< j≤n
|yk − y j|

)
, (3)

where C is a constant satisfying the following:

0 < C <
1

2 tan θ
<

1
2
+

1
2 tan θ

.

Note that C depends only on θ. Here, we used that the horizon-
tal displacement between horizontally adjacent points xi and xi+

can occur only twice in the whole sequence. This ensures that the
right-hand sides of condition (ii) are bounded by the original gap
scaled by a constant factor:

xi+ (m) − xi(m) <
1 + tan θ

1 + 3 tan θ
(xi+ − xi), (4)

xi(m) − xi− (m) <
1 + tan θ

1 + 3 tan θ
(xi − xi− ). (5)

In Lemma 7.2, we make O(log r′′) shrink folds. Then we have

y′i − y′i+1 ≤
1

Cr′′
(yi − yi+1).

By the definition of r′′ in Eq. (2), Eq. (3) holds.
We divide the whole folding process into two parts: folding

steps before applying Lemma 3.4 and folding steps in Lemma 3.4.
The latter part consists of n − 1 vertical simple folds. The former
part is divided into n − 1 inductive steps above. For each in-
ductive step, we first apply Lemma 7.2 to make O(log r′′) sim-
ple folds, resulting in O(r′′) total creases. Next we use the
downshifting gadget, which consists of O(1) horizontal, verti-
cal, and diagonal creases. The total number of folding steps is
thus O(n log r′′) for the former part plus O(n) for the latter part,
for a total of O(n log r′′). To bound the total number of result-
ing creases, we consider diagonal creases as both vertical and
horizontal creases. Considering crosses between horizontal and
vertical creases, we conclude that the total number of resulting
creases is O(n(n + nr′′)) = O(n2r′′). �

8. Open Problems

The natural open problems are to improve the bounds on the
number of folding steps of complexity O(1), and the resulting
number of creases, from Table 1. When allowing creases through
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points, are Θ(n2) creases necessary, or do O(n) creases suffice,
e.g., by trying to fold along the Voronoi diagram? When forbid-
ding creases through points, is a dependence on r necessary or is
a polynomial dependence on n possible? Can unbounded paper
be solved by simple folds, or are folding steps of complexity > 1
necessary?

Another peculiar open problem is the worst-case ratio between
r and either r′ or r′′. We proved that the ratio is O(n2), and sim-
ple examples (e.g., a regular n-gon) show that the ratio can be
Ω(n). Is the tight bound one of these extremes, or something in
between?

Finally, Fig. 2 illustrates that our definition of folding step com-
plexity does not intuitively capture the complexity in the layering
between clusters. Can we define a notion of layer complexity to
measure this?
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