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Abstract: We examine a routing problem that arises when an unmanned aerial vehicle (UAV), or drone, is used in the
last-stretch of parcel delivery to end customers. In the scenario that we study, a delivery truck is dispatched carrying a
shipment of parcels to be delivered to customers. While the truck is following a predetermined route, a drone is charged
with making the last-stretch delivery of a parcel from the truck to a customer’s doorstep. Given a set of customers to
be served and a set of rendezvous points where the drone can meet with the truck to pick up a parcel, we ask what the
quickest way is of delivering all parcels to the end customers. We model this problem as a problem of finding a special
type of a path in a graph of a special structure, and show that the graph problem is NP-hard even when all edge weights
are restricted to be 1 or 2. Furthermore, we identify a special instance type that can be solved optimally in polynomial
time. Finally, we propose a polynomial-time approximation algorithm for the graph problem in metric graphs, and
show that its approximation ratio is bounded above by 2 in restricted metric graphs.
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1. Introduction

Unmanned Aerial Vehicles (UAV-s), also known as drones,
have recently been popular in many areas including the military,
command, control and communications (3C) [6], remote sens-
ing and scientific research [14], as well as in precision agricul-
ture [15]. One of the areas which gather a lot of attention with
announcements for using drones is parcel delivery [2], [3], [13].
Major delivery and logistics companies have already started in-
vestigating ways in which drones could improve the efficiency of
their operations and widen the range of services that they could
offer.

In this study, we approach a scenario in which a drone is used
in tandem with a delivery truck for the last-stretch or last-mile

delivery of parcels to customers’ doorsteps. The truck departs
from a distribution center carrying a drone and parcels for a set
C of customers, and moves along a predetermined route. The
last-stretch deliveries of parcels from the truck to a customer’s
doorstep are performed exclusively by the drone. The drone has
a payload capacity of at most one parcel, and hence must return
to the truck after each delivery. The drone must return to the
truck at the end of the truck’s predetermined route. Moreover,
the drone can only rendezvous with the truck at a given set R of
points along the truck’s predetermined route. Notice that the or-
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der in which points of the set R are visited by the truck along its
route defines a total order on the set R. While the drone is mak-
ing a delivery of a parcel, the truck may either wait for it to return
at the previous rendezvous point, or proceeds along its route and
will intercept the drone at some future rendezvous point in the set
R. Our aim is to determine a routing policy for the drone, such
that all parcels are delivered in the least amount of time.

With a motivation of cooperatively routing heterogeneous ve-
hicles with different capabilities, a similar routing problem was
studied by Garone et al. [5], who named the scenario carrier-

vehicle systems.
A closely related model to our problem appears in the work of

Mathew et al. [9]. In their study, they investigate a combination
of a drone and a truck to perform parcel deliveries, where last-
stretch deliveries are performed solely by the drone, which de-
livers parcels between the truck and a customer’s doorstep. The
truck in turn is routed along a street network. For their original
problem model, Mathew et al. [9] give a polynomial-time reduc-
tion to the Generalized TSP (GTSP) and report computational
experiments using a solver for the GTSP. In addition, they also
examined a special case of their problem where the drone’s route
alternately visits customers and points of a fixed set of depots.
For this special case, they give a reduction to the TSP as well as
a brute-force exponential-time algorithm, but do not comment on
the computational complexity of the problem itself. Our prob-
lem models are in fact a special case of the problems investigated
by Mathew et al. [9], where we assume that the truck’s route is
predetermined.

Another related problem is the Traveling Salesman Problem
with Drone (TSP-D) in the work of Agatz et al. [1], where they
work on the combination of a single truck and a single drone to
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find the shortest tour in terms of time, to serve all customer loca-
tions by either the truck or the drone. They assume that both the
truck and the drone travel on the road network, and the drone’s
speed is a constant α times higher than the truck’s speed. They
proposed a (2 + α)-approximation algorithm for the TSP-D, with
the minimum spanning tree heuristic for the TSP and no drone
deliveries. They also allow the drone’s launch and rendezvous to
be at the same point, as in Mathew et al. [9]. They formulate this
problem as a mixed-integer programming (MIP) model and de-
velop several “Truck First, Drone Second” procedures, based on
local search and dynamic programming.

Murray and Chu [10] introduced a similar problem of using a
combination of a drone and a truck for the last-stretch deliver-
ies, naming it the Flying Sidekick Traveling Salesman Problem
(FSTSP). In their problem setting, it is assumed that delivery re-
quests can be satisfied by either the drone or the truck, and they
ask to simultaneously determine a route for both the truck and
the drone, to minimize the total time it takes to complete all de-
liveries. They proposed a MIP formulation and a heuristic to the
problem. Their heuristic is based on a “Truck First, Drone Sec-
ond” idea, in which they first construct a route for the truck to
perform all deliveries by solving a TSP problem over the set of
customers awaiting a delivery. Next, they run a relocation pro-
cedure which iteratively checks for each vertex whether the route
can be improved by having the drone instead of the truck perform
the corresponding delivery.

Furthermore, Ha et al. [7] studied a variant of the TSP-D as
introduced in the work of Agatz et al. [1], albeit with a formula-
tion that excludes the possibility to have a launch and rendezvous
in the same point. They called their problem the Min-Cost TSP-
D. The problem is first formulated mathematically and two al-
gorithms are proposed for the solution. The first algorithm, the
Traveling Salesman Problem Local Search (TSP-LS), is inspired
from the work of Murray and Chu [10], and the second one is a
Greedy Randomized Adaptive Search Procedure (GRASP).

Ponza [11] gives an extensive overview of current results, and
examines several heuristic solution methods, including a Simu-
lated Annealing (SA) approach.

We examine four particular cases of the problem arising in the
scenario outlined above. In the first setting, the drone immedi-
ately takes off from the truck after getting a parcel, and while the
drone is making a delivery of a parcel, the truck is allowed to wait
for the drone to return at the previous rendezvous point. The sec-
ond problem model has a similar setting to the previous problem
model. The only difference from the first setting is that the truck
is not allowed to wait for the drone to return at the previous ren-
dezvous point. We term the former the Alternating Last-Stretch
Delivery Problem, or ALSDP for short. We call the later prob-
lem the No-Wait Alternating Last-Stretch Delivery Problem,
or NW-ALSDP. In the next two settings, we assume that the
drone may “hitch a ride” on the truck before proceeding to its
next delivery. When the truck is allowed to wait for the drone to
return at the previous rendezvous point while the drone is deliv-
ering a parcel, we term the problem the Last-Stretch Delivery
Problem, or LSDP for short. In the last problem model, which
has a similar problem setting with the LSDP, the truck is not al-

lowed to wait for the drone to return at the previous rendezvous
point. We term this problem the No-Wait Last-Stretch Delivery
Problem, or NW-LSDP.

With this work, we propose graph problem models for the
ALSDP, the NW-ALSDP, the LSDP, and for the NW-LSDP.
Next, we show that the recognition version of the graph problems
are NP-complete, and that they remain NP-hard even in metric
graphs where all edge weights are restricted to be 1 or 2. Further-
more, we identify a special instance type of the NW-ALSDP and
the NW-LSDP that can be solved optimally in polynomial time.
Finally, we propose a polynomial-time approximation algorithm,
and show that the algorithm has a factor 2 approximation guar-
antee in metric graphs with an additional restriction of the cost
function, to be defined later.

The rest of this paper is organized as follows. Section 2 out-
lines the basic notation and the problem models for this paper.
Section 3 establishes the NP-completeness of our problem mod-
els, while Section 4 outlines the analysis of the polynomially
solvable case. Section 5 describes the approximation algorithm
for our problem models, and finally, Section 6 concludes the pa-
per.

2. Preliminaries

2.1 Notation
The set of reals (resp., nonnegative reals) is denoted by R

(resp., R+).
The vertex set and the edge set of a graph G are denoted by

V(G) and E(G), respectively. For vertices u, v ∈ V(G), we use uv

to refer to an edge e ∈ E(G) such that e is incident to u and v. We
call u and v the end vertices of the edge uv. For a set E′ ⊆ E(G)
of edges we write V(E′) for the set of all end vertices of edges
in E′. A graph G is complete if every two vertices u, v ∈ V(G)
are adjacent. The degree of a vertex u ∈ V(G) in a graph G is the
number of edges E(G) incident to u.

A subgraph G′ of a graph G is a graph such that V(G′) ⊆ V(G),
and E(G′) ⊆ E(G), and we write G′ ⊆ G. A graph G′ ⊆ G is an
induced subgraph of G if it holds that E(G′) =

(
V(G′)

2

)
∩E(G), and

we also say that G′ is induced by V(G′). Given a graph G and a
set V ′ ⊆ V(G), we write G[V ′] for the subgraph of G induced by
V ′. In addition, for a subset V ′′ ⊆ V(G), we write G − V ′′ for the
graph G[V(G) − V ′′].

An independent set in a graph G is a set of pairwise non-
adjacent vertices. A graph G is bipartite if the set of vertices V(G)
can be partitioned into two non-empty subsets V1,V2 ⊆ V(G)
such that V1 and V2 are independent sets. A bipartite graph G

whose vertex set V(G) can be partitioned into a disjoint union
V1 ∪V2 is called complete if every two vertices u ∈ V1 and v ∈ V2

are adjacent.
Given a graph G, a matching M ⊆ E(G) is a subset of edges

such that each vertex in V(G) is incident to at most one edge in M.
A matching M ⊆ E(G) is perfect if it holds that V(M) = V(G).

A path is a graph P = ({v1, v2, . . . , vp}, {e1, e2, . . . , ep−1})
such that for i = 1, 2, . . . , p − 1, it holds that ei = vivi+1.
Such a graph P is also called a v1, vp-path. A path P =

({v1, v2, . . . , vp}, {e1, e2, . . . , ep−1}) such that vi � v j for 1 ≤ i � j ≤
p is called a simple path. Given two sets A, B ⊆ V(G), we call a
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path P ⊆ G an A, B-alternating path if for every edge e = uv ∈
E(P) it holds that u ∈ A, v ∈ B. Given a totally ordered set (R,≺),
where for vertices u, v ∈ R, u � v denotes that u ≺ v or u ≡ v, we
say that a v1, vp-path P = ({v1, v2, . . . , vp}, {e1, e2, . . . , ep−1}) obeys

the total order ≺ if for any two vertices vi, v j ∈ V(P) ∩ R, it holds
that if i < j then vi � v j.

Given a graph G and an edge weight function w : E(G) → R+,
we say that the graph G is weighted by w, and write (G, w). For
convenience, for any v ∈ V(G), we define that w(vv) = 0. For a
subset E′ ⊆ E(G), let w(E′) denote

∑
e∈E′ w(e). For brevity, for a

subgraph G′ of G, let w(G′) denote w(E(G′)).
A weighted graph (G, w) is called metric if the edge weight

function w satisfies the triangle inequality, that is, for all u, v, q ∈
V(G) it holds that

w(uv) ≤ w(uq) + w(qv). (1)

Given a total order ≺ over the vertex set V(G), we call the
weighted graph (G, w) a line with respect to ≺, if for any three
vertices u, v, q ∈ V(G) such that u ≺ v ≺ q it holds that

w(uq) = w(uv) + w(vq). (2)

2.2 Problem Models
Let C be the set of customers to which parcels need to be deliv-

ered, and let R be the set of points at which the delivery drone can
rendezvous with the truck along the truck’s predetermined route.
Let |R| = m and |C| = n. We can assume without loss of gener-
ality that the truck passes the points r1, r2, . . . , rm of the set R in
ascending order of their indices, and define a total order ≺ over
the set R to be ri ≺ r j if and only if i < j. The drone has unit
payload capacity, and it never visits two customers in the set C

consecutively. On the other hand, between two points in R, the
drone can “hitch a ride” on the truck. With this observation, we
introduce the following distance functions:
- d(u, v): the time it takes for the drone to travel between ren-

dezvous point u ∈ R and customer v ∈ C.
- t(u, v): the time it takes for the truck to move from point

u ∈ R to point v ∈ R along its predetermined route. By the
assumption that points in R appear along the truck’s route,
we have that for any three points u, v, q ∈ R, u ≺ v ≺ q, it
holds that

t(u, q) = t(u, v) + t(v, q). (3)

We say that a rendezvous point and a customer point are mu-

tually reachable if the drone is able to travel unobstructed be-
tween them. Further, the drone has unit payload capacity, and it
never delivers two parcels consecutively without rendezvousing
with the truck. An illustration of the problem scenario is depicted
in Fig. 1.

Recall that we named the scenario where the drone is required
to take off immediately carrying a parcel and only rendezvouses
with the truck to pick up the next parcel to be delivered, the Al-
ternating Last-Stretch Delivery Problem, or ALSDP for short.
The drone can rendezvous with the truck at the previous point
where it had picked up a parcel, or at some future rendezvous
point. Let E ⊆

(
R∪C

2

)
−
(
C
2

)
−
(

R
2

)
be the set of mutually reachable

Fig. 1 An illustration of the problem scenario. The truck’s predetermined
route is shown by solid arrows. The points at which the delivery
drone can rendezvous with the truck along the truck’s predetermined
route are illustrated as white circles. The customers to which parcels
need to be delivered are represented by black circles. Mutually
reachable pairs of a rendezvous point and a customer point are con-
nected by dashed lines.

pairs. We model the ALSDP by a bipartite graph G = (R ∪C, E),
where it holds that R ∩C = ∅. This graph is weighted by an edge
weight function w : E → R+ defined to be

w(uv) � d(u, v), for u ∈ R, v ∈ C, uv ∈ E. (4)

Thus, we get the following problem.
The Alternating Last-Stretch Delivery Problem - ALSDP

Instance: A bipartite graph G = (R ∪C, E) such that R ∩C = ∅,
a weight function w : E → R+, and a total order ≺ on R. Let
|R| = m and let r1 and rm be the unique minimum and maximum
elements of R with respect to ≺, respectively.

Feasible Solution: An R,C-alternating (not necessarily simple)
r1, rm-path P ⊆ G such that C ⊆ V(P), each c ∈ C is visited at
most once, and P obeys the total order ≺ over R.

Objective: Minimize w(P).
An illustration of the ALSDP is shown in Fig. 2 (a), while an

illustration of a feasible solution to this problem model is shown
in Fig. 2 (b).

In the second problem model we examine the case when the
truck is not allowed to wait for the drone at the previous ren-
dezvous point. Instead, the truck will proceed along its route
while the drone makes a delivery, and must intercept the drone at
a future rendezvous point. We call this problem, the No-Wait Al-
ternating Last-Stretch Delivery Problem, or NW-ALSDP for
short. Just like the ALSDP, we model the NW-ALSDP by a bi-
partite graph G = (R ∪ C, E), where it holds that R ∩ C = ∅,
and E ⊆

(
R∪C

2

)
−
(
C
2

)
−
(

R
2

)
is the set of mutually reachable pairs.

This graph is weighted by an edge weight function w : E → R+
defined as in Eq. (4).
The No-Wait Alternating Last-Stretch Delivery Problem -
NW-ALSDP

Instance: A bipartite graph G = (R ∪C, E) such that R ∩C = ∅,
a weight function w : E → R+, and a total order ≺ on R. Let
|R| = m, and let r1 and rm be the unique minimum and maximum
elements of R with respect to ≺, respectively.

Feasible Solution: A simple R,C-alternating r1, rm-path P ⊆ G
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Fig. 2 (a) An instance of the ALSDP corresponding to the scenario of Fig. 1.
The total order ≺ over the set R is expressed as an arrow under it. (b)
An R,C-alternating r1, rm-path that obeys the total order ≺, visits all
vertices in C exactly once, but some vertices in R are visited more
than once, as a feasible path for the given instance in (a).

Fig. 3 (a) An instance of the NW-ALSDP. The total order ≺ over the set
R is expressed as an arrow under it. (b) A simple R,C-alternating
r1, rm-path that visits all vertices in C exactly once and obeys the
total order ≺, as a feasible path for the given instance in (a).

such that C ⊆ V(P), and P obeys the total order ≺ over R.

Objective: Minimize w(P).
An illustration of the NW-ALSDP is shown in Fig. 3 (a), while

an illustration of a feasible solution to this problem model is
shown in Fig. 3 (b).

We call the problem arising under the assumption that the
drone may “hitch a ride” on the truck between consecutive de-
liveries the Last-Stretch Delivery Problem, or LSDP for short.

Fig. 4 (a) An instance of the LSDP. The total order ≺ over the set R is ex-
pressed as an arrow under it. (b) An r1, rm-path that obeys the total
order ≺, visits all vertices in C exactly once, but some vertices in R
are visited consecutively or multiple times, as a feasible solution to
the instance in (a).

In this problem model, the truck is allowed to wait for the drone to
return at the previous rendezvous point. We express the LSDP as
follows. We consider a graph G = (R∪C, E) such that R∩C = ∅,
it holds that E ⊆

(
R∪C

2

)
−
(
C
2

)
, and the graph G[R] induced by the

vertex set R is a simple path which obeys the total order ≺ over
the set R. We define a weight function w : E → R+ in this graph
to be

w(uv) �
⎧⎪⎪⎨⎪⎪⎩

d(u, v), for u ∈ R, v ∈ C,

t(u, v), for u, v ∈ R.
(5)

The Last-Stretch Delivery Problem - LSDP

Instance: A graph G = (R ∪ C, E) such that R ∩ C = ∅ and
E ⊆
(

R∪C
2

)
−
(
C
2

)
, a weight function w : E → R+, a total order ≺ on

R, where |R| = m, r1 and rm are respectively the unique minimum
and maximum elements of R with respect to ≺, and the graph
G[R] induced by the vertex set R is a simple r1, rm-path which
obeys the total order ≺ over the set R.

Feasible Solution: A not necessarily simple r1, rm-path P ⊆ G

such that C ⊆ V(P), each c ∈ C is visited at most once, and P

obeys the total order ≺ over R.

Objective: Minimize w(P).
An illustration of the LSDP is shown in Fig. 4 (a), followed by

an illustration of a feasible solution to this problem in Fig. 4 (b).
In the final problem model, which has a similar problem set-

ting with the LSDP, the truck is not allowed to wait for the drone
at the previous rendezvous point. The truck will proceed along
its route and only intercept the drone at a future rendezvous point
in the set R. We call this problem the No-Wait Last-Stretch De-
livery Problem, or NW-LSDP for short. Similar to the LSDP,
in the NW-LSDP we consider a graph G = (R ∪ C, E) such that
R ∩ C = ∅, it holds that E ⊆

(
R∪C

2

)
−
(
C
2

)
, and the graph G[R]

induced by the vertex set R is a simple path which obeys the total
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Fig. 5 (a) An instance of the NW-LSDP. The total order ≺ over the set R is
expressed as an arrow under it. (b) A simple r1, rm-path that obeys
the total order ≺, visits all vertices in C exactly once, but each ver-
tex in R is visited at most once, and some vertices in R are visited
consecutively, as a feasible solution to the instance in (a).

order ≺ over the set R. A weight function w : E → R+ in this
graph is defined as in Eq. (5).
The No-Wait Last-Stretch Delivery Problem - NW-LSDP

Instance: A graph G = (R ∪ C, E) where it holds that |R| > |C|,
R ∩ C = ∅, E ⊆

(
R∪C

2

)
−
(
C
2

)
, a weight function w : E → R+, a

total order ≺ on R, where |R| = m, r1 and rm are respectively the
unique minimum and maximum elements of R with respect to the
total order ≺, and the graph G[R] induced by the vertex set R is a
simple r1, rm-path which obeys the total order ≺ over the set R.

Feasible Solution: A simple r1, rm-path P ⊆ G such that
C ⊆ V(P), and P obeys the total order ≺ over R.

Objective: Minimize w(P).
An illustration of the NW-LSDP is shown in Fig. 5 (a), while an

illustration of a feasible solution to this problem model is shown
in Fig. 5 (b).

3. NP-hardness

We will first prove the NP-completeness of the recognition ver-
sions of the ALSDP and the NW-ALSDP by a reduction from the
s, t-Hamiltonian Path Problem (see e.g., Garey and Johnson [4]),
which is given a graph H and vertices s, t ∈ V(H), and asks if
there exists a simple s, t-path PH ⊆ H such that V(H) ⊆ V(PH).

Afterwards, we will show that the LSDP and the NW-LSDP are
NP-hard, even when the given edge weight function w only takes
values 1 and 2. In the recognition version, as opposed to asking
for an optimal path to a given instance of the ALSDP or the NW-
ALSDP, we simply ask if a feasible path exists or not. In this
sense, we omit the edge weight function from the input instance,
and the recognition versions of the ALSDP and the NW-ALSDP
are defined as follows.

Recognition version of the ALSDP

Instance: A bipartite graph G = (R ∪C, E) such that R ∩C = ∅,
and a total order ≺ on R. Let |R| = m, and let r1 and rm be the
unique minimum and maximum elements of R with respect to ≺,
respectively.

Question: Does there exist an R,C-alternating (not necessarily
simple) r1, rm-path P ⊆ G such that each vertex c ∈ C is visited
exactly once and P obeys the total order ≺ over R?
Recognition version of the NW-ALSDP

Instance: A bipartite graph G = (R ∪C, E) such that R ∩C = ∅,
and a total order ≺ on R. Let |R| = m, and let r1 and rm be the
unique minimum and maximum elements of R with respect to ≺,
respectively.

Question: Does there exist a simple R,C-alternating r1, rm-path
P ⊆ G such that C ⊆ V(P) and P obeys the total order ≺ over R?

Theorem 1 The recognition versions of the ALSDP and the
NW-ALSDP are NP-complete.
Proof. It is obvious that the recognition version of both the
ALSDP and the NW-ALSDP are in NP, as when given a path P

as a witness, it is straightforward to verify in polynomial time
whether the path P is feasible for the ALSDP or the NW-ALSDP.
Therefore, we proceed to show that they are also NP-hard, by a
reduction from the s, t-Hamiltonian Path Problem. We will first
focus on the recognition version of the ALSDP, and later give a
note that the same reduction is valid for the recognition version
of the NW-ALSDP as well.

Let (H = (V, A), s, t ∈ V) be an instance of the s, t-Hamiltonian
Path Problem, i.e., a simple undirected graph with a vertex set V ,
terminals s, t ∈ V , and an edge set A. Let |V | = n, and |A| = p,
as illustrated in Fig. 6 (a). We construct a recognition instance
I = (G = (R ∪ C, E),≺) of the ALSDP as follows. First, set
C = V . Fix an arbitrary total order a1, a2, . . . , ap of the edges
in A, and for each edge ai = uv ∈ A construct n − 1 vertices
r1

i , r
2
i , . . . , r

n−1
i . Set R to be

R � {r j
i | i = 1, 2, . . . , p, j = 1, 2, . . . , n − 1} ∪ {r0} ∪ {rp+1},

and E to be

E � {ur j
i | u ∈ V, ai = uv ∈ A, j = 1, 2, . . . , n − 1}

∪{r0s, trp+1}.

Finally, a total order ≺ over R can be introduced without any loss
of generality as follows.
(i) r0 ≺ r, for all r ∈ R − {r0},
(ii) r ≺ rp+1, for all r ∈ R − {rp+1},
(iii) r j

i ≺ rl
k, for i, k = 1, 2, . . . , p, and j, l = 1, 2, . . . , n − 1, if

and only if
(a) j < l, or
(b) j = l and i < k.

The above operations can be seen as adding a degree-2 vertex
on each edge a ∈ A as shown in Fig. 6 (b), and then, taking n − 1
copies of each of these new degree-2 vertices together with the
edges incident to them. The newly added degree-2 vertices form
the set R. Finally, we add to the set R a vertex r0 adjacent to the
vertex s in the set C and a vertex rp+1 adjacent to the vertex t in
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Fig. 6 A reduction from the s, t-Hamiltonian Path Problem to a recognition
instance I = (G = (R ∪ C, E),≺) of the ALSDP. (a) An arbitrary
instance of the s, t-Hamiltonian Path Problem, (H = (V, A), s, t ∈ V).
(b) Add a degree-2 vertex ri for each edge a ∈ A. (c) Add a start
vertex r0 adjacent to the vertex s in the set C, and a terminal vertex
rp+1 adjacent to the vertex t in the set C, and arrange the vertices in
R in a total order. (d) An s, t-Hamiltonian path in H. (e) A feasible
path in the transformed instance.

the set C, and arrange the vertices in R in the defined total order,
as shown in Fig. 6 (c).

We need to show that the constructed recognition instance
I = (G = (R ∪ C, E),≺) of the ALSDP has a feasible r0, rp+1-
path PALSDP if and only if the graph H admits an s, t-Hamiltonian
path, such as in Fig. 6 (d).

First, we demonstrate the “if” direction by showing how an
s, t-Hamiltonian path PH in H can be used to construct a feasible
r0, rp+1-path PALSDP in G. We start by numbering the vertices in
the vertex set V in the order in which they appear in PH , such
that PH = v1, v2, . . . , vn, where s = v1 and t = vn holds. Further-
more, assume without loss of generality that the edges of PH are
a1 = v1v2, a2 = v2v3, . . ., an−1 = vn−1vn. By the construction of the
graph G, for all ai, i = 1, 2, . . . , n − 1, and j = 1, 2, . . . , n − 1, all
edges vir

j
i and vi+1r j

i , are present in E. Then, we can construct a
feasible r0, rp+1-path PALSDP in G such that

V(PALSDP) = {r0, rp+1} ∪ {vi | i = 1, 2, . . . , n}
∪ {ri

i | i = 1, 2, . . . , n − 1}
and

E(PALSDP) = {r0s, trp+1} ∪ {viri
i | i = 1, 2, . . . , n − 1}

∪ {ri
ivi+1 | i = 1, 2, . . . , n − 1},

as shown in Fig. 6 (e).
Next, to show the opposite direction of the claim, we show

that a feasible r0, rp+1-path PALSDP in the graph G uniquely deter-
mines an s, t-Hamiltonian path PH in H. This follows from the
observation that each vertex r j

i ∈ R has degree 2, and its neigh-
bors, u, v ∈ C, are exactly the end vertices of the edge ai = uv ∈ A.
Therefore, since each v ∈ C appears exactly once in PALSDP,
each edge ai ∈ A can be chosen at most once, giving an s, t-
Hamiltonian path in H.

Notice that each vertex r j
i ∈ R has degree 2, and therefore there

does not exist a non-simple r0, rp+1-path that is feasible to the
ALSDP. Therefore, the recognition version of the NW-ALSDP
is also NP-hard. �

Following, we will argue the NP-hardness of the LSDP and
NW-LSDP.

Theorem 2 Both the LSDP and the NW-LSDP are NP-hard
even in complete bipartite graphs where all edge weights are re-
stricted to be 1 or 2.
Proof. We will focus on showing the NP-hardness of the LSDP,
and later note that this proof implies NP-hardness of the NW-
LSDP as well. By the result of Theorem 1 that the recognition
version of the ALSDP is itself NP-complete, we show a reduc-
tion from the recognition version of the ALSDP to an instance of
the LSDP with edge weights restricted to be 1 or 2.

Let IALSDP = (GALSDP = (R ∪ C, EALSDP),≺) be an arbitrary
instance of the recognition version of the ALSDP. Let |R| = m,
|C| = n, and r1 and rm respectively denote the unique minimum
and maximum elements in R with respect to the total order ≺. We
construct an instance ILSDP = (GLSDP = (R ∪ C, ELSDP), w,≺) as
follows. First, let

ELSDP = {uv | u ∈ R, v ∈ C} ∪ {riri+1 | i = 1, 2, . . . , n − 1},
and define the edge weight function w : ELSDP → {1, 2} to be
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w(e) �
⎧⎪⎪⎨⎪⎪⎩

1 if e ∈ EALSDP,

2 otherwise.

Notice that the number of edges in PLSDP is 2n. Then, the in-
stance IALSDP has a feasible path, i.e., is a “yes” instance, if
and only if the instance ILSDP has a feasible path PLSDP of cost
w(PLSDP) = 2n, that is, for each e ∈ E(PLSDP) it holds that
w(e) = 1.

Notice that a non-simple r0, rp+1-path in the transformed in-
stance as above cannot have a length of 2n or less, and the re-
quirement for a simple path of the NW-LSDP can be taken with-
out loss of generality. Therefore, the NW-LSDP is also NP-hard.

�

4. Polynomially Solvable Case of the NW-
ALSDP and the NW-LSDP

In this section we describe how an instance I = (G = (R ∪
C, E), w,≺) of the NW-ALSDP such that |R| = |C| + 1 can be
solved in polynomial time by reducing it to a minimum cost bi-
partite matching instance. Note that in this case, the NW-LSDP is
equivalent to the NW-ALSDP, in the sense that in both problems
a feasible path is R,C-alternating. Then, in the remainder of this
section, we will talk only about the NW-ALSDP, but the same
conclusions still hold for the NW-LSDP as well.

Observation 1 In any feasible path P, if a vertex v ∈ C is vis-
ited immediately after ri ∈ R, then ri+1 ∈ R is visited immediately
after v.

Observation 1 gives us the following procedure for construct-
ing a solution to an instance I = (G = (R ∪ C, E), w,≺) with
|R| = |C| + 1 and R ∩C = ∅ by a transformation to minimum cost
bipartite matching, given in Procedure Alternating Path I.

Procedure Alternating Path I

Input: An NW-ALSDP instance I = (G = (R∪C, E), w,≺) where
|R| = m, |C| = n, m = n + 1, R ∩ C = ∅, and G is a complete bi-
partite graph. Vertices in R are numbered as r1, r2, . . . , rm with
respect to the total order ≺.
Output: A simple R,C-alternating r1, rm-path P ⊆ G that obeys
the total order ≺ over R, and C ⊆ V(P).
1: Let G̃ := G − {rm};
2: Let an edge weight function w̃ : E(G̃)→ R+ be

w̃(riv) := w(riv) + w(vri+1), ∀ri ∈ R − {rm}, v ∈ C;

3: Compute a minimum cost perfect matching M in (G̃, w̃);

4: Let μ : R − {rm} → C be the bijection defined by the match-
ing M such that for any ri ∈ R − {rm} and v ∈ C, it holds that
v = μ(ri) if and only if riv ∈ M;

5: Let P be a simple path such that

P = (V(G), {riμ(ri), μ(ri)ri+1 | i = 1, 2, . . . , n});
6: return P.

Lemma 1 For an instance I = (G = (R ∪ C, E), w,≺) of the
NW-ALSDP such that |R| = |C| + 1, Procedure Alternating Path I
can be implemented to run in O(|C|3) time.

Proof. The procedure to find a minimum cost bipartite match-
ing M, which takes O(|C|3) time [8], dominates the runtime, from
which the claim follows. �

Observation 2 For an instance I = (G = (R ∪ C, E), w,≺) of
the NW-ALSDP such that |R| = |C|+1, let (G̃, w̃) be a transformed
bipartite graph as in Procedure Alternating Path I, M be a mini-
mum cost perfect matching in (G̃, w̃), and P be an output of Pro-
cedure Alternating Path I given the instance I as input. Assume
without loss of generality that vertices c1, c2, . . . , cn ∈ C appear
in P in that order. Also, assume that M = {rici | i = 1, 2, . . . , n}.
Then, for w(P) it holds that

w(P) =
∑

1≤i≤n

(
w(rici) + w(ciri+1)

)

=
∑

1≤i≤n

w̃(rici) = w̃(M). (6)

Theorem 3 For an instance I = (G = (R ∪ C, E), w,≺) of the
NW-ALSDP such that |R| = |C| + 1, let P∗ be an optimal path for
I. Let (G̃, w̃) be a transformed bipartite graph as in Procedure Al-
ternating Path I, and let M be a minimum cost perfect matching
in (G̃, w̃). Then, it holds that

w(P∗) = w̃(M). (7)

Proof. By Procedure Alternating Path I and Observation 2, we
know how to construct a feasible path P such that w(P) = w̃(M),
and therefore it holds that

w(P∗) ≤ w̃(M).

Next, we show the claim that

w̃(M) ≤ w(P∗),

which will prove the claim of the theorem. To derive a contradic-
tion, assume that w̃(M) > w(P∗). Let |C| = n, and r1, r2, . . . , rn+1

be numbered according to the total order ≺. Without loss of gen-
erality assume that P∗ = (V(G), {rici | i = 1, 2, . . . , n} ∪ {ciri+1 |
i = 1, 2, . . . , n}). Then, from P∗ we can obtain a perfect bipar-
tite matching M′ in G̃, as M′ = {rici | i = 1, 2, . . . , n}. By the
construction of (G̃, w̃), we have that

w̃(M′) =
∑

1≤i≤n

w̃(rici) =
∑

1≤i≤n

(
w(rici) + w(ciri+1)

)
= w(P∗).

Then, w(P∗) < w̃(M) would imply that w̃(M′) < w̃(M), which
contradicts the initial assumption that M is a minimum cost per-
fect matching in (G̃, w̃), and this completes the proof. �

Corollary 1 Both the NW-ALSDP and the NW-LSDP with
|R| = |C| + 1 can be solved in polynomial time.

5. Approximation Algorithms

As a result of Theorem 1, it is NP-complete to decide whether
there is a feasible solution or not for the ALSDP and the NW-
ALSDP. In this section, we limit our exposition to special types
of instances I = (G = (R ∪ C, E), w,≺) such that the graph G

includes the complete bipartite graph with bipartition R ∪ C as
a subgraph. To claim constant factor approximation ratio for the
ALSDP and the LSDP, we further assume that the weighted graph
(G, w) is metric and moreover, that the graph G[R] induced by the
set R is a line with respect to the total order ≺.

c© 2017 Information Processing Society of Japan 661



Journal of Information Processing Vol.25 655–666 (Aug. 2017)

5.1 Approximation algorithm for the ALSDP and the LSDP
First, we propose a heuristic for the ALSDP, summarized as

Procedure Alternating Path II. Next, we will show that the pro-
posed procedure is a 2-approximation algorithm in problem set-
tings with a metric edge weight. Then, we show that the proce-
dure produces a path that is feasible to both the ALSDP and the
LSDP, given a graph G = (R ∪ C, E) such that |R| ≥ |C| + 1,(

R∪C
2

)
−
(
C
2

)
−
(

R
2

)
⊆ E, and a total order ≺ on R.

Procedure Alternating Path II

Input : A weighted complete bipartite graph (G, w) with biparti-
tion R ∪ C and a total order ≺ over the vertex set R. Assume that
|R| = m, |C| = n, and r1, r2, . . . , rm ∈ R are numbered with respect
to the total order ≺.
Output: An R,C-alternating r1, rm-path P that obeys the total or-
der ≺ and C ⊆ V(P).
1: Let F ⊆ E be a minimum cost subset of edges such that

C ⊆ V(F); /* as shown in Fig. 7 (a) */
2: Let R′ := R ∩ V(F);
3: Let ϕ : C → R′ be a mapping such that for all v ∈ C, it holds

that u = ϕ(v) iff uv ∈ F;
4: Let c1, c2, . . . , cn ∈ C be numbered such that if i < j, then it

holds that ϕ(ci) � ϕ(c j);
5: Let P ⊆ G be a path such that

V(P) = R′ ∪C;

E(P) = {r1c1, cnrm}
∪ {ciϕ(ci) | i = 1, 2, . . . , n − 1}
∪ {ϕ(ci)ci+1 | i = 1, 2, . . . , n − 1};

/* as shown in Fig. 7 (b) */
6: return P.

Lemma 2 For an instance I = (G = (R ∪ C, E), w,≺) of the
ALSDP such that |R| = m and |C| = n, Procedure Alternating Path
II can be implemented to run in O(mn) time.
Proof. The procedure to compute a minimum weight edge set
F can be done in time O(mn). Then, a path P can be constructed
in O(n) time. The procedure for computing the edge set F domi-
nates the runtime, from which the claim follows. �

Before proceeding with analyzing the approximation ratio of
Procedure Alternating Path II, we give two technical lemmas
which are useful in the analysis.

Lemma 3 Let (G, w) be a weighted graph, R,C ⊆ V(G) be
two vertex sets such that R ∩ C = ∅, and ≺ be a total order on R.
Let PR ⊆ G[R] be the unique simple r1, rm-path visiting all and
only the vertices r1, r2, . . . , rm in the set R obeying the total order
≺. Let P∗ be an optimal path in G such that C ⊆ V(P∗) and P∗

obeys the total order ≺ over R. If w satisfies the triangle inequal-
ity, and in addition G[R] is a line with respect to the total order ≺,
then it holds that

w(PR) ≤ w(P∗). (8)

Proof. Let us assume without loss of generality that vertices
c1, c2, . . . , cn ∈ C appear in P∗ in that order, and that for all

Fig. 7 Procedure Alternating Path II. (a) A minimum weight edge set F
such that C ⊆ V(F). (b) An R,C-alternating r1, rm-path P obtained
in Procedure Alternating Path II.

k = 1, 2, . . . , n, the vertices rk and rk+1 appear immediately be-
fore and following ck in the path P∗, respectively. For w(P∗) we
get

w(P∗) =
∑

1≤k<n

(w(rkck) + w(ckrk+1)).

Notice that by the triangle inequality, for any two vertices,
ri, r j ∈ R such that ri ≺ r j, and for all c ∈ C, it holds that

w(rir j) ≤ w(ric) + w(r jc). (9)

By repeatedly using the fact that G[R] is a line with respect to
the total order ≺, it holds that

w(rir j) =
∑

i≤�< j

w(r�r�+1),

and therefore, for the cost

w(PR) =
∑

1≤i<m

w(riri+1)

it always holds that

w(PR) ≤ w(P∗)

as required. �
Lemma 4 Let (G, w) be a weighted graph, R,C ⊆ V(G) be

two vertex sets such that R ∩ C = ∅, and ≺ be a total order on
R. Let r1, r2, . . . , rm ∈ R be numbered according to the total order
≺. If w satisfies the triangle inequality, then for any three vertices
ri, r j ∈ R, c ∈ C, with ri � r j (possibly ri = r j), it holds that

w(ric) ≤ w(r jc) +
∑

i≤�< j

w(r�r�+1), (10)

and
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Fig. 8 Three vertices ri, r j ∈ R, and c ∈ C as in Lemma 4.

w(r jc) ≤ w(ric) +
∑

i≤�< j

w(r�r�+1). (11)

Proof. Let us observe three vertices, ri, r j ∈ R and c ∈ C, such
that it holds that ri � r j as shown in Fig. 8 (a). Notice that by the
triangle inequality, it holds that

w(r j−1c) ≤ w(r j−1r j) + w(r jc). (12)

We can repeat the observation for r j−2 and the edge r j−1, and in
general for r j−kc, until j − k = i. In total, we get

w(ric) ≤ w(r jc) +
∑

i≤�< j

w(r�r�+1). (13)

Similarly, for three vertices ri, r j ∈ R and c ∈ C, such that it
holds that ri � r j, as shown in Fig. 8 (b), we get

w(r jc) ≤ w(ric) +
∑

i≤�< j

w(r�r�+1), (14)

as required. �
Theorem 4 For an instance I = (G = (R ∪ C, E), w,≺) of the

ALSDP such that R ∩ C = ∅, let P∗ be an optimal path for I. If
w satisfies the triangle inequality, and in addition G[R] is a line
with respect to the total order ≺, then for a path P computed by
Procedure Alternating Path II given the instance I as an input, it
holds that

w(P) ≤ 2w(P∗). (15)

Proof. Notice that the degree of every vertex c ∈ C in the path
P∗ is 2, and E(P∗) contains two disjoint sets of edges F1 and F2

such that it holds that C ⊆ V(F1) and C ⊆ V(F2), and

w(P∗) = w(F1) + w(F2). (16)

By this observation, for the edge set F calculated in Procedure
Alternating Path II it holds that

w(F) ≤ min{w(F1), w(F2)} ≤ 1
2
w(P∗). (17)

Recall that in Line 4 of Procedure Alternating Path II, the ver-
tices c1, c2, . . . , cn ∈ C are numbered such that if i < j, then it
holds that ϕ(ci) � ϕ(c j). We can see that for the path P returned
by Procedure Alternating Path II it holds that

w(P) = w(r1c1) +
∑

1≤i<n

w(ciϕ(ci)) +
∑

1≤i<n

w(ϕ(ci)ci+1)

+w(cnrm). (18)

Let PR ⊆ G[R] be the unique simple r1, rm-path visiting all and

Fig. 9 (a) An optimal path P∗ with three vertices u, v ∈ R, q ∈ C, appearing
consecutively in the order u, v, q. (b) A path P′ obtained from P∗ by
shortcutting the vertex v. (c) An optimal path P∗ with three vertices
u, v ∈ R, q ∈ C, appearing consecutively in the order q, v, u. (d) A
path P′ obtained from P∗ by shortcutting the vertex v.

only the vertices r1, r2, . . . , rm in the set R obeying the total or-
der ≺ and V(PR) = R, as in Lemma 3. By using Eqs. (10) and
(11) from Lemma 4, for the values of w(r1c1), w(ϕ(ci)ci+1), and
w(cnrm) in Eq. (18), for w(P) we get

w(P) ≤ w(ϕ(c1)c1) +
∑

r1�r�≺ϕ(c1)

w(r�r�+1) +
∑

1≤i<n

w(ciϕ(ci))

+
∑

1≤i<n

⎛⎜⎜⎜⎜⎜⎜⎝w(ci+1ϕ(ci+1)) +
∑

ϕ(ci)�r�≺ϕ(ci+1)

w(r�r�+1)

⎞⎟⎟⎟⎟⎟⎟⎠
+w(ϕ(cn)cn) +

∑
ϕ(cn)�r�≺rm

w(r�r�+1)

=
∑

r1�r�≺rm

w(r�r�+1) + 2
∑

1≤i≤n

w(ciϕ(ci))

= w(PR) + 2w(F). (19)

Finally, by Eqs. (17) and (19), and Lemma 3, it holds that

w(P) ≤ 2w(P∗),

as required. �
According to Theorem 4, given an instance I of the ALSDP

that satisfies the necessary conditions, Procedure Alternating Path
II will deliver a path with weight at most twice optimal, and is
therefore a 2-approximation algorithm for the ALSDP. We pro-
ceed by investigating the performance of Procedure Alternating
Path II as a solution method to the LSDP.

Lemma 5 For an instance I = (G = (R ∪ C, E), w,≺) of the
LSDP, if the edge weight function w satisfies the triangle inequal-
ity, then there exists an R,C-alternating optimal path P in G.
Proof. Recall that |R| = m and |C| = n, and the vertices in R

are numbered r1, r2, . . . , rm according to the total order ≺. Let P∗

be an optimal path for the instance I. If there exist three vertices
u, v, q, such that u, v ∈ R, q ∈ C and they appear consecutively in
the path P∗ in the order u, v, q or q, v, u, then we can obtain a path
P′ from P∗ by replacing the edges uv and vq by a single edge uq,
as shown in Fig. 9. For the cost w(P′) of the path P′ we get
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w(P′) = w(P∗) − w(uv) − w(vq) + w(uq).

Then, from the triangle inequality we know that it holds that

w(uq) ≤ w(uv) + w(vq),

and therefore

w(P′) ≤ w(P∗).

We can repeat the above shortcutting procedure until no more
such triplets u, v, q of vertices exist. The resulting path from these
shortcuts is R,C-alternating. �

From Lemma 5, we know that if the edge weight function w
satisfies the triangle inequality, then there always exists an op-
timal path such that vertices in R and C appear alternately. As
a consequence, the result of Theorem 4 leads to the following
claim.

Corollary 2 For an instance I = (G = (R∪C, E), w,≺) of the
LSDP such that R ∩ C = ∅, let P∗ be an optimal path for I. If
w satisfies the triangle inequality, and in addition G[R] is a line
with respect to the total order ≺, then for a path P computed by
Procedure Alternating Path II given the instance I as an input, it
holds that

w(P) ≤ 2w(P∗). (20)

5.2 Approximation Algorithm for the No-wait Problem
Models

First, we propose a heuristic for the NW-ALSDP based on min-
imum cost bipartite matching. Our proposed procedure is sum-
marized as Procedure Alternating Path III. In fact, given a graph
G = (R ∪ C, E) such that |R| ≥ |C| + 1,

(
R∪C

2

)
−
(
C
2

)
−
(

R
2

)
⊆ E,

and a total order ≺ on R, the procedure produces a path that is
feasible to both the NW-ALSDP and the NW-LSDP. Afterwards,
we will show that in problem settings with a metric edge weight,
restricted such that G[R] is a line with respect to the total order ≺,
the proposed procedure is a 2-approximation algorithm.

Procedure Alternating Path III

Input: A weighted complete bipartite graph (G, w) with biparti-
tion R ∪ C, where |R| > |C| and R ∩ C = ∅, and a total order
≺ over the vertex set R. Assume that |R| = m, |C| = n, and
r1, r2, . . . , rm ∈ R are numbered with respect to the total order ≺.
Output: A simple R,C-alternating r1, rm-path P that obeys the
total order ≺ and C ⊆ V(P).
1: Compute a minimum cost matching M1 in (G − {r1}, w) such

that C ⊆ V(M1) ; /* as shown in Fig. 10 (a) */
2: Compute a minimum cost matching Mm in (G−{rm}, w) such

that C ⊆ V(Mm) ; /* as shown in Fig. 10 (b) */
/* Because it holds that |R| > |C|, such matchings exist */

3: Let M = argmin{w(M1), w(Mm)};
4: Let R′ := R ∩ V(M) be the set of vertices in R that are

matched by M;
5: Let μ : C → R′ be a bijection such that u = μ(v) holds iff

uv ∈ M;
6: Let c1, c2, . . . , cn ∈ C be numbered such that if i < j,

then it holds that μ(ci) � μ(c j);

7: if w(M1) ≤ w(Mm) then
8: Let P ⊆ G be a path such that

V(P) = R′ ∪C;

E(P) = {r1c1, cnrm}
∪ {ciμ(ci) | i = 1, 2, . . . , n − 1}
∪ {μ(ci)ci+1 | i = 1, 2, . . . , n − 1}

/* as shown in Fig. 10 (c) */
9: else /* w(Mm) < w(M1) */
10: Let P ⊆ G be a path such that

V(P) = R′ ∪C;

E(P) = {r1c1, cnrm}
∪ {ciμ(ci+1) | i = 1, 2, . . . , n − 1}
∪ {ciμ(ci) | i = 2, 3, . . . , n}

/* as shown in Fig. 10 (d) */
11: end if;
12: return P.

Lemma 6 For an instance I = (G = (R ∪ C, E), w,≺) of the
NW-ALSDP such that |R| = m and |C| = n, Procedure Alternating
Path III can be implemented to run in O(nm(n + log m)) time.
Proof. A minimum cost bipartite matching M ⊆

(
R∪C

2

)
−
(
C
2

)
−
(

R
2

)
such that C ⊆ V(M) can be computed via a max-flow algorithm
(see, e.g., Korte and Vygen [8]) which requires O(n) calls to a
shortest path algorithm, which in turn can be implemented to run
in time of O(mn + m log m). Thus, the minimum cost match-
ings M1 and Mm in Line 1 and Line 2 can be computed in
O(nm(n + log m)) time. Then, a simple r1, rm-path P can be con-
structed in O(n) time. The procedure to find the minimum cost
bipartite matchings dominates the runtime, from which the claim
follows. �

Theorem 5 For an instance I = (G = (R ∪ C, E), w,≺) of the
NW-ALSDP such that |R| > |C|, and R ∩ C = ∅, let P∗ be an
optimal path for I. If w satisfies the triangle inequality, and in
addition G[R] is a line with respect to the total order ≺, then for a
simple path P computed by Procedure Alternating Path III given
the instance I as an input, it holds that

w(P) ≤ 2w(P∗). (21)

Proof. Let us assume without loss of generality that

P∗ = ({r1, c1, r2, c2, . . . , ri, ci, ri+1, . . . , cn, rm},
{r1c1, c1r2, . . . , cnrm}).

Notice that E(P∗) contains two disjoint matchings

M′ = {r1c1, r2c2, . . . , rici, . . . , rncn}

and

M′′ = {c1r2, c2r3, . . . , ciri+1, . . . , cnrm},

such that it holds that C ⊆ V(M′) and C ⊆ V(M′′), and

w(P∗) = w(M′) + w(M′′). (22)
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Fig. 10 Procedure Alternating Path III. (a) A minimum cost bipartite match-
ing M1 in G − {r1} such that C ⊆ V(M1). (b) A minimum cost
bipartite matching Mm in G − {rm} such that C ⊆ V(Mm). (c) An
R,C-alternating r1, rm-path P obtained if w(M1) ≤ w(Mm). (d) An
R,C-alternating r1, rm-path P obtained if w(Mm) < w(M1).

Moreover, notice that it holds that rm � V(M′) and r1 � V(M′′).
By this observation, for the minimum cost matchings M1 and Mm

computed by Procedure Alternating Path III, it holds that

w(M1) ≤ w(M′′)

and

w(Mm) ≤ w(M′).

Based on these observations, it holds that

min{w(M1), w(Mm)} ≤ min{w(M′), w(M′′)} ≤ 1
2
w(P∗). (23)

Next, we will show the analysis for the case when w(M1) ≤
w(Mm). The analysis of the other case, when w(Mm) < w(M1), is
similar. We can see that for the simple path P returned by Proce-
dure Alternating Path III it holds that

w(P) = w(r1c1) +
∑
i≤i<n

w(ciμ(ci)) +
∑
i≤i<n

w(μ(ci)ci+1)

+w(cnrm). (24)

Let PR ⊆ G[R] be the unique simple r1, rm-path visiting all and
only the vertices r1, r2, . . . , rm in the set R obeying the total or-
der ≺ and V(PR) = R, as in Lemma 3. By using Eqs. (10) and
(11) from Lemma 4, for the values of w(r1c1), w(μ(ci)ci+1), and
w(cnrm) in Eq. (24), for w(P) we get

w(P) ≤ w(μ(c1)c1) +
∑

r1�r�≺μ(c1)

w(r�r�+1) +
∑

1≤i<n

w(ciμ(ci))

+
∑

1≤i<n

⎛⎜⎜⎜⎜⎜⎜⎝w(ci+1μ(ci+1)) +
∑

μ(ci)�r�≺μ(ci+1)

w(r�r�+1)

⎞⎟⎟⎟⎟⎟⎟⎠
+w(μ(cn)cn) +

∑
μ(cn)�r�≺rm

w(r�r�+1)

=
∑

r1�r�≺rm

w(r�r�+1) + 2
∑

1≤i≤n

w(ciμ(ci))

= w(PR) + 2w(M). (25)

Finally, by the assumption that w(M1) ≤ w(Mm) and Lemma 3, it
holds that

w(P) ≤ 2w(P∗),

as required. �
By Theorem 5, given an instance I of the NW-ALSDP that

satisfies the necessary conditions, Procedure Alternating Path III
will deliver a path with weight at most twice optimal, and is
therefore a 2-approximation algorithm for the NW-ALSDP. From
Lemma 5, we know that if the edge weight function w satisfies the
triangle inequality, then there always exists an optimal path such
that vertices in R and C appear alternately. As a consequence, the
result of Theorem 5 leads to the following claim.

Corollary 3 For an instance I = (G = (R ∪ C, E), w,≺) of
the NW-LSDP such that |R| > |C|, and R ∩ C = ∅, let P∗ be an
optimal path for I. If w satisfies the triangle inequality, and in
addition G[R] is a line with respect to the total order ≺, then for a
simple path P computed by Procedure Alternating Path III given
the instance I as an input, it holds that

w(P) ≤ 2w(P∗). (26)

6. Conclusion

In this work, we have investigated a scenario in which a drone
is used in tandem with a delivery truck for the last-stretch de-
livery of parcels to customers’ doorsteps. We introduced four
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models: the ALSDP, the NW-ALSDP, the LSDP and the NW-
LSDP as problems of finding a minimum-cost path of a special
structure in a graph. We showed that all of the graph problems
are NP-hard, even when the weights of all edges are restricted to
be 1 or 2. We identified a polynomially solvable instance type
of the NW-ALSDP and the NW-LSDP with |R| = |C| + 1. Fur-
ther, we proposed a polynomial-time approximation algorithm for
the graph problem, and showed that its approximation ratio is
bounded above by 2 in metric graphs.

As future work, it remains to investigate whether an approxi-
mation algorithm with an approximation ratio better than 2 exists
or not. Further, it would be interesting to analyze some extensions
of these routing problems, possibly in metric settings but with
edge weight bias to account for additional transportation effort
exerted by the drone when delivering a parcel [12], as well as to
examine a combinatorial optimization based model for a routing
problem including both the delivery truck and the drone [9], [10].
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