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Abstract: Hitori is a popular “pencil-and-paper” puzzle defined as follows. In n-hitori, we are given an n×n rectangu-
lar grid in which each square is labeled with a positive integer, and the goal is to paint a subset of the squares so that the
following three rules are satisfied: Rule 1) No row or column has a repeated unpainted label; Rule 2) Painted squares
are never (horizontally or vertically) adjacent; Rule 3) The unpainted squares are all connected (via horizontal and ver-
tical connections). The grid is called an instance of n-hitori if it has a unique solution. In this paper, we introduce hitori
number and maximum hitori number which are defined as follows: For every integer n, hitori number h(n) is the min-
imum number of different integers used in an instance where the minimum is taken over all the instances of n-hitori.
For every integer n, maximum hitori number h̄(n) is the maximum number of different integers used in an instance
where the maximum is taken over all the instances of n-hitori. We then prove that �(2n− 1)/3� ≤ h(n) ≤ 2�n/3�+ 1 for
n ≥ 2 and �(4n2 − 4n + 11)/5� ≤ h̄(n) ≤ (4n2 + 2n − 2)/5 for n ≥ 3.
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1. Introduction

“Pencil-and-paper” puzzles are those which require the use of
a pencil and paper. Sudoku is one of the most famous “pencil-
and-paper” puzzles. There are many studies on Sudoku from the
viewpoint of mathematics. Since there are so many instances of
Sudoku, one may wonder how many patterns of solutions of 9×9
Sudoku exist. Jarvis [4] shows that there are about 5.5×109 essen-
tially different solutions of 9 × 9 Sudoku. There is another piece
of research concerning the construction of instances. In Sudoku,
the fewer the number of given hints the harder the instance be-
comes. Then one may wonder what is the minimum number of
given hints. McGuire et al. [5] show that 17 is the minimum num-
ber of given hints over all instances of 9 × 9 Sudoku.

In this paper, we study Hitori which is similar to Sudoku
from the viewpoint of mathematics. Hitori is also a “pencil-and-
paper” puzzle proposed by Takeyutaka in 1990, and popularized
by a Japanese publisher Nikoli [1]. In n-hitori, we are given an
n × n grid in which each square is labeled with an integer. (See
Fig. 1 (a).) We often call such a grid an n-hitori. The goal is to
paint a subset of the n2 squares so that the following three rules
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are satisfied:
Rule 1 (No Repeated Labels, NRL):

No row or column has a repeated unpainted label;
Rule 2 (Isolated Painted Squares, IPS):

Painted squares are never (horizontally or vertically) adja-
cent;

Rule 3 (Connected Unpainted Squares, CUS):
The unpainted squares are all connected (via horizontal and
vertical connections).

The grid is called an instance of n-hitori if it has a unique so-
lution. Note that there is no instance of 1-hitori. Figure 1 (b)
illustrates the unique solution for the instance in Fig. 1 (a) while
the paints in Fig. 1 (c), (d), and (e) are not solutions. As proved
in Ref. [3], it is NP-complete to decide whether a given n-hitori
has a solution or not. Gander and Hofer [2] give an algorithm that
solves hitori by using a SAT solver.

In this paper, we introduce and investigate new combinatorial
characteristics of Hitori, named hitori number and maximum hi-

tori number. See two instances of 12-hitori given in Fig. 2 (a) and
(b). Each of the two instances has a unique solution displayed
as gray squares, but, the numbers of different integers used in
grids have a great difference. One in Fig. 2 (a) uses nine differ-
ent integers while the other in Fig. 2 (b) uses 108 different inte-
gers. Considering many instances, we can observe that there are
a large variety of the numbers of different integers used in in-
stances. We then have the following question: what is the small-
est (largest) number of different integers that can be used to con-
struct an instance?

Clearly, we cannot make an instance with few integers. Con-
sider, for example, a simple case where n = 4. Figure 3 (a) il-
lustrates an 4-hitori with only one integer. Since there are four
squares labeled with ‘1’ in the top row, Rule 1 (NRL) implies
that we must paint at least three of them. However, any such
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Fig. 1 (a) An instance of 4-hitori. (b) The solution for (a). (c) The paint
violates Rule 1 (NRL), because there are two unpainted ‘1’s in the
top row. (d) The paint violates Rule 2 (IPS), because there are two
adjacent painted squares in the top row. (e) The paint violates Rule 3
(CUS), because the rightmost unpainted square in the bottom row is
isolated.

Fig. 2 Instances of 12-hitori. The gray squares display the unique solutions.
(a) An instance with nine different integers. (b) An instance with 108
different integers.

paint clearly violates Rule 2 (IPS), and hence this grid has no so-
lution. Similarly, we can show that any 4-hitori with only two
different integers has no solution. On the other hand, the instance
in Fig. 3 (b) consists of three different integers, and has a unique
solution as in Fig. 3 (c).

Fig. 3 (a) The 4 × 4 grid with only one integer. (b) An instance with three
different integers. (c) The solution for (b).

Fig. 4 (a) An instance with 12 different integers. (b) The solution for (a).
(c) The 4 × 4 grid with 13 integers. (d)(e) Two solutions of (c).

Based on this observation, we define hitori number h(n) for ev-
ery positive integer n, n ≥ 2, as the minimum number of different
integers used in an instance, where the minimum is taken over
all the instances of n-hitori. Recall that there is no instance of 1-
hitori. By the above discussion, we have h(4) = 3. In this paper,
we give lower and upper bounds on h(n):

⌈
2n − 1

3

⌉
≤ h(n) ≤ 2

⌈n
3

⌉
+ 1

for every integer n, n ≥ 2. In other words, there is no instance of
n-hitori using less than �(2n−1)/3� different integers, while there
is an instance of n-hitori using 2�n/3�+ 1 different integers. Note
that for any integer n ≥ 2, the gap between our upper and lower
bounds is at most two, and hence these bounds are very close.

On the other hand, Fig. 4 (a) illustrates a 4-hitori with 12 inte-
gers, and has a unique solution as in Fig. 4 (b). On the other hand,
a grid in Fig. 4 (c) with 13 integers has at least two solutions as
in Fig. 4 (d) and (e). In fact, we cannot make an instance of 4-
hitori with 13 integers. Recall that any instance of n-hitori must
have a unique solution. Similarly, we cannot make an instance of
4-hitori with more than 13 integers.

Based on this observation, we define maximum hitori number

h̄(n) for every positive integer n, n ≥ 2, as the maximum number
of different integers used in an instance, where the maximum is
taken over all the instances of n-hitori. By the above discussion,
we have h̄(4) = 12. In this paper, we give lower and upper bounds
on h̄(n); we prove that

⌈
4n2 − 4n + 11

5

⌉
≤ h̄(n) ≤ 4n2 + 2n − 2

5

for every integer n, n ≥ 3. In other words, there is no instance of
n-hitori using more than (4n2 + 2n− 2)/5 different integers, while
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there is an instance of n-hitori using �(4n2 − 4n+ 11)/5� different
integers.

The results on hitori number and maximum hitori number
imply the following interesting fact. For 100-hitori, we have
67 ≤ h(100) ≤ 69 and 7,924 ≤ h̄(100) ≤ 8,000. Thus, we can
say that there is an instance of 100-hitori using 69 different inte-
gers, while there is an instance of 100-hitori using 7,924 different
integers.

The rest of this paper is organized as follows. In Section 2,
we define some terms relating to Hitori. In Section 3, we first
present the lower bound of a hitori number, and then give the up-
per bound. In Section 4, we first present the upper bound of a
maximum hitori number, and then give the lower bound. In Sec-
tion 5, we conclude with some remarks.

2. Definitions

For each positive integer n, we denote {0, 1, . . . , n − 1} by [n],
and [n]× [n] by [n]2. In n-hitori, we are given an n×n grid where
each square is labeled with an integer. We often call such a grid
an n-hitori. For each pair of i ∈ [n] and j ∈ [n], we denote by (i, j)
the square on the ith row and the jth column of the grid, and by
Hi, j the integer in (i, j). We say a square is in the outer perimeter

if the square is in the 0th row, the (n − 1)th row, the 0th column,
or the (n − 1)th column. (See Fig. 5.) We call the squares (0, 0),
(0, n−1), (n−1, 0), (n−1, n−1) the corner squares. A square is a
side square if the square is in the outer perimeter but not a corner
square.

Let S = (SP, SU ) be a partition of [n]2. We say that S is a feasi-

ble partition for an n × n grid if S satisfies the rules 2 (IPS) and 3
(CUS) by painting square (i, j) for every (i, j) ∈ SP and unpaint-
ing square (i, j) for every (i, j) ∈ SU . We say that S is a solution

for the grid if S satisfies the three rules by painting square (i, j) for
every (i, j) ∈ SP and unpainting square (i, j) for every (i, j) ∈ SU .
Let S be a feasible partition. For each (i, j) ∈ SU , we say that (i, j)
is paintable if S′ = (SP∪{(i, j)}, SU \ {(i, j)}) is also a feasible par-
tition. Let S be a solution. For each (i, j) ∈ SP, we say that (i, j)
is decolorable if S′ = (SP \ {(i, j)}, SU ∪ {(i, j)}) is also a solution.

Fig. 5 Notation for the squares of a grid H. The squares in the outer perime-
ter are colored in gray.

An n × n grid is called an instance of n-hitori if it has a unique
solution. Note that there is no instance of 1-hitori. We defineHn

as the set of the instances of n-hitori.
For an instance H, we define α(H) as the number of different

integers used in H; that is

α(H) = |{Hi, j | (i, j) ∈ [n]2}|.
We define the hitori number h(n) as

h(n) = min
H∈Hn

α(H).

We define the maximum hitori number h̄(n) as

h̄(n) = max
H∈Hn

α(H).

3. Hitori Number

In this section, we prove that �(2n− 1)/3� ≤ h(n) ≤ 2�n/3�+ 1.
In Sections 3.1 and 3.2, we give the lower bound and the upper
bound, respectively.

3.1 Lower Bound
In this section, we prove the following theorem.

Theorem 1. For every integer n, n ≥ 2, every instance H ∈ Hn

satisfies

α(H) ≥
⌈

2n − 1
3

⌉
. (1)

Let H be an arbitrary instance in Hn, and let S = (SP, SU ) be
the solution for H. If we have

|SU | ≥ 2n2 − n − 2
3

, (2)

then the pigeonhole principle implies that at least one row of the
n rows has at least⌈

(2n2 − n − 2)/3
n

⌉
=

⌈
2n − 1

3
− 2

3n

⌉

unpainted squares. Since S is a solution for H, the unpainted
squares in the same row must have different integers from each
other. Thus at least �(2n−1)/3−2/3n� different integers are used
in H. For any integer n ≥ 2, we have

⌈
2n − 1

3
− 2

3n

⌉
=

⌈
2n − 1

3

⌉
,

and hence Eq. (1) holds.
In the rest of the proof, we verify Eq. (2). For every (i, j) ∈ [n]2,

let A(i, j) = {(i′, j′) | (i′, j′) is adjacent to (i, j) horizontally or
vertically}. We then have 2 ≤ |A(i, j)| ≤ 4. For every pair of
(i, j) ∈ [n]2 and (i′, j′) ∈ A(i, j), we say that the boundary between
(i, j) and (i′, j′) is a wall if either “(i, j) ∈ SP and (i′, j′) ∈ SU” or
“(i, j) ∈ SU and (i′, j′) ∈ SP.” We denote by w(i, j) the number of
walls around (i, j). Consider the undirected graph G having SU as
its vertex set, and the following edge set:

E = {((i, j), (i′, j′)) | (i, j) ∈ SU , (i
′, j′) ∈ SU , (i

′, j′) ∈ A(i, j)}.
Note that, Rule 3 (CUS) guarantees that G is connected. Let T be
an arbitrary spanning tree of G. (See Fig. 6.) For each (i, j) ∈ SU ,
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Fig. 6 (a) Solution S = (SP, SU ). (b) The graph G = (SU , E). (c) A spanning
tree T of G.

let d(i, j) be the degree of (i, j) in T . Since T is a tree, the number
of edges in T is |SU | − 1. Thus, we have∑

(i, j)∈SU

d(i, j) = 2|SU | − 2. (3)

Clearly we have w(i, j) ≤ 4−d(i, j) for each (i, j) ∈ SU , and hence
Eq. (3) implies that the total number of the walls is at most∑

(i, j)∈SU

w(i, j) ≤
∑

(i, j)∈SU

(4 − d(i, j))

= 4|SU | − (2|SU | − 2)

= 2|SU | + 2. (4)

On the other hand, Rule 2 (IPS) implies that for every (i, j) ∈ SP,
w(i, j) = |A(i, j)|. Note that for each side square |A(i, j)| = 3 and
for each corner square |A(i, j)| = 2. Since there are at most 2n− 2
painted squares in the outer perimeter, and at most four of these
are corner squares, we have that the total number of the walls in
H is at least∑

(i, j)∈SP

w(i, j) =
∑

(i, j)∈SP

|A(i, j)|

≥ 4|SP| − (2n − 2) − 4

= 4|SP| − 2n − 2. (5)

Clearly we have∑
(i, j)∈SP

w(i, j) =
∑

(i, j)∈SU

w(i, j), (6)

and hence Eqs. (4)–(6) imply that

4|SP| − 2n − 2 ≤ 2|SU | + 2. (7)

Since |SP| + |SU | = n2, Eq. (7) implies that

4(n2 − |SU |) − 2n − 2 ≤ 2|SU | + 2,

4n2 − 2n − 4 ≤ 6|SU |,
2n2 − n − 2

3
≤ |SU |.

Thus Eq. (2) holds.

3.2 Upper Bound
In this section, we prove the following theorem.

Theorem 2. For every integer n, n ≥ 2, there is an instance

H ∈ Hn such that

α(H) ≤ 2
⌈n
3

⌉
+ 1. (8)

We prove this theorem by constructing a desired instance H

that satisfies Eq. (8). In the case where 2 ≤ n ≤ 6, we can con-
struct H as described in Fig. 7. It is easy to verify that every

Fig. 7 Instances H that satisfy Eq. (8) for 2 ≤ n ≤ 6. The gray squares dis-
play the unique solutions. (a) α(H) = 2. (b) α(H) = 3. (c) α(H) = 3.
(d) α(H) = 4. (e) α(H) = 5.

Fig. 8 (a) The subsets Ua of [n]2, 0 ≤ a ≤ 2n − 2. (b) The subsets T0, T1,
and T2 of [n]2. (c) Solution S for H. Squares with a letter “A” belong
to XA and ones with a letter “B” belong to XB.

instance in Fig. 7 satisfies Eq. (8).
Consider below the case where n ≥ 7. To simplify our proof,

we give a proof only for the case where n ≡ 0 (mod 3). We can
easily extend our proof to the other cases.

We first give a partition S = (SP, SU ) of [n]2, and show that S

is a feasible partition i.e., S satisfies Rules 2 (IPS) and 3 (CUS).
Then, we construct a desired instance H for which S is the unique
solution.

We focus on the sum of indices i and j of a row and a column.
For every 0 ≤ a ≤ 2n − 2, let

Ua = {(i, j) | i + j = a}.

(See Fig. 8 (a).) We then define the following three sets T0, T1

and T2 as follows:

Tk = {(i, j) | i + j ≡ k (mod 3)}
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where k ∈ {0, 1, 2}. (See Fig. 8 (b).) Moreover, we define sets XA

and XB. Figure 8 (c) illustrates the squares in XA and XB. The set
XA contains the square (3, 0) and the squares (i, j) at two horizon-
tal and one vertical step where i + j ≤ n. The set XB contains the
square (n/3 + 3, 2n/3) and the squares (i, j) at one horizontal and
two vertical step where i+ j ≤ 2n− 3. More formally, the sets XA

and XB are defined as follows:

XA =

{(
a
3
+2,

2a
3
−2

)
∈ T0

∣∣∣∣∣∣ 3≤a≤n, a ≡ 0 (mod 3)

}
(9)

and

XB =

{(
2a − n

3
+ 1,

a + n
3
− 1

)
∈ T0

| n + 3 ≤ a ≤ 2n − 3, a ≡ 0 (mod 3)}. (10)

We define

X = XA ∪ XB.

The desired partition S = (SP, SU ) is defined as

SP = T0 \ X and SU = T1 ∪ T2 ∪ X.

Then S gives the paint displayed in Fig. 8 (c).

The partition S is a feasible partition as in the following propo-
sition:
Proposition 1. S = (SP, SU ) is a feasible partition.

Proof. We first show that S satisfies Rule 2 (IPS). A square (i, j)
touches at most the following four squares: (i − 1, j), (i + 1, j),
(i, j − 1), and (i, j + 1). Since SP ⊆ T0, we have i + j ≡ 0 (mod 3)
for every (i, j) ∈ SP. We have (i− 1)+ j ≡ 2 (mod 3), (i+ 1)+ j ≡
1 (mod 3), i+ ( j−1) ≡ 2 (mod 3), and i+ ( j+1) ≡ 1 (mod 3), and
hence (i−1, j) ∈ T2 ⊆ SU , (i+1, j) ∈ T1 ⊆ SU , (i, j−1) ∈ T2 ⊆ SU ,
and (i, j + 1) ∈ T1 ⊆ SU . Thus S satisfies Rule 2 (IPS).

We then show that S satisfies Rule 3 (CUS). Let a be an ar-
bitrary integer such that 3 ≤ a ≤ 2n − 3 and a ≡ 0 (mod 3).
Since all the squares in Ua−2 and Ua−1 are in SU , all the squares
in Ua−2 ∪ Ua−1 are connected. Similarly, since all the squares
in Ua+1 and Ua+2 are in SU , all the squares in Ua+1 ∪ Ua+2 are
connected. Now we show that Ua−2 ∪ Ua−1 and Ua+1 ∪ Ua+2 are
connected via an element in X. Consider the following two cases.
Case 1: 3 ≤ a ≤ n.

Note that (a/3+ 2, 2a/3− 2) is contained in XA ⊆ X ⊆ SU , and
touches both (a/3+ 1, 2a/3− 2) ∈ Ua−1 and (a/3+ 2, 2a/3− 1) ∈
Ua+1. Thus all the squares in

Ua−2 ∪ Ua−1 ∪
{(

a
3
+ 2,

2a
3
− 2

)}
∪ Ua+1 ∪ Ua+2

are connected.
Case 2: n + 3 ≤ a ≤ 2n − 3.

Note that (2a/3 − n/3 + 1, a/3 + n/3 − 1) is contained in
XB ⊆ X ⊆ SU , and touches both (2a/3−n/3, a/3+n/3−1) ∈ Ua−1

and (2a/3 − n/3 + 1, a/3 + n/3) ∈ Ua+1. Thus all the squares in

Ua−2 ∪ Ua−1 ∪
{(

2a
3
− n

3
+ 1,

a
3
+

n
3
− 1

)}
∪ Ua+1 ∪ Ua+2

are connected.

Fig. 9 Construction of the desired instance H. (a), (b), (c), and (d) corre-
spond to Steps 1, 2, 3, and 4, respectively.

Thus we complete the proof. �
Now we construct H satisfying Eq. (8) for which S is the unique

solution by the following four steps:
[Step 1] For every (i, j) ∈ T1, we set

Hi, j =

⎧⎪⎪⎨⎪⎪⎩
2 ·

⌊
i+ j
3

⌋
+ 1 if

⌊
i+ j
3

⌋
< n

3 ;

2 ·
(⌊

i+ j
3

⌋
− n

3

)
+ 1 otherwise.

(11)

See Fig. 9 (a).
[Step 2] For every (i, j) ∈ T2, we set

Hi, j =

⎧⎪⎪⎨⎪⎪⎩
2 ·

⌊
i+ j
3

⌋
+ 2 if

⌊
i+ j
3

⌋
< n

3 ;

2 ·
(⌊

i+ j
3

⌋
− n

3

)
+ 2 otherwise.

See Fig. 9 (b).

[Step 3] For every (i, j) ∈ X, we set

Hi, j =
2n
3
+ 1.

See Fig. 9 (c).

[Step 4] For every (i, j) ∈ SP, we set

Hi, j =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

1 if 0 ≤ i ≤ 1;
H1, j if i ≥ 2， j ≡ 0 (mod 3);
H0, j if i ≥ 2， j ≡ 1 (mod 3);
H0, j if i ≥ 2， j ≡ 2 (mod 3).

(12)

In other words, we set

Hi, j =

⎧⎪⎪⎨⎪⎪⎩
1 if 0 ≤ i ≤ 1;⌊

2· j
3

⌋
+ 1 if i ≥ 2.

See Fig. 9 (d).
Clearly H satisfies Eq. (8). Now we prove that S is the unique

solution for H by the following Propositions 2 and 3. In Propo-
sition 2, we prove that S is a solution for H, that is, S satisfies
Rule 1 (NRL). In Proposition 3, we prove that H admits a unique
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solution.
Proposition 2. S = (SP, SU ) satisfies Rule 1 (NRL) for H.

Proof. It suffices to show that if (i, j) ∈ SU , then Hi, j � Hi, j′

for every (i, j′) ∈ SU \ {(i, j)}, and Hi, j � Hi′ , j for every (i′, j) ∈
SU \ {(i, j)}.

Suppose Step 1 gives integers such that Hi, j1 = Hi, j2 for
some i, j1, j2 ∈ [n] where j1 < j2. Since Eq. (11) implies that
Hi, j is monotonically increasing for �(i + j)/3 < n/3 and for
�(i+ j)/3 ≥ n/3, we have �(i+ j1)/3 < n/3 and �(i+ j2)/3 ≥ n/3.
Thus

2 ·
⌊ i + j1

3

⌋
+ 1 = 2 ·

(⌊ i + j2
3

⌋
− n

3

)
+ 1.

Since (i, j1) ∈ T1 and (i, j2) ∈ T1, we have (i + j1) ≡ 1 (mod 3)
and (i + j2) ≡ 1 (mod 3), and hence

i + j1 − 1
3

=
i + j2 − 1

3
− n

3
.

Therefore,

j2 − j1 ≥ n.

This contradicts the fact that j1, j2 ∈ [n]. Similarly, we can prove
that Steps 1 and 2 give integers so that no integer appears twice
in a row or column.

Since we have never set 2n/3 + 1 on any square in Steps 1 and
2 and X includes at most one square in each row and in each col-
umn, Step 3 gives integers so that no integer appears twice in any
row and in any column. Thus, we complete the proof. �
Proposition 3. S is the unique solution for H.

Proof. Let Ŝ = (ŜP, ŜU ) be an arbitrary solution for H. Below
we show that SP ⊆ ŜP. Then we prove that SU ⊆ ŜU .
Proof of SP ⊆ ŜP.

Consider first the square (0, 0) ∈ SP. Since H0,0 = H0,1 = H1,0,
Rule 1 (NRL) implies that either “(0, 0) ∈ ŜP” or “(0, 1) ∈ ŜP and
(1, 0) ∈ ŜP.” Thus, by Rule 3 (CUS), we have (0, 0) ∈ ŜP.

Consider next the squares in the 0th and 1st rows, that is,
(0, j) ∈ SP and (1, j) ∈ SP. Since (0, 0) ∈ ŜP, Rule 2 (IPS) implies
that we have (0, 1) ∈ ŜU and (1, 0) ∈ ŜU . Since H0,1 = H1,0 = 1,
Rule 1 (NRL) and Eq. (12) imply that for each of (0, j) ∈ SP and
(1, j) ∈ SP, we have

(0, j) ∈ ŜP and (1, j) ∈ ŜP, (13)

respectively.
Lastly, we consider the squares (i, j) ∈ SP such that 2 ≤ i ≤

n − 1 and j ∈ [n]. We deal with the following three cases.
Case 1: j ≡ 0 (mod 3).

In this case, since (0, j) ∈ ŜP by Eq. (13), Rule 2 (IPS) implies
that (1, j) ∈ ŜU . Thus, Rule 1 (NRL) and Eq. (12) imply that
(i, j) ∈ ŜP.
Case 2: j ≡ 1 (mod 3).

In this case, j− 1 ≡ 0 (mod 3). Thus we have (0, j− 1) ∈ ŜP by
Eq. (13), and hence Rule 2 (IPS) implies that (0, j) ∈ ŜU . There-
fore, Rule 1 (NRL) and Eq. (12) imply that (i, j) ∈ ŜP.
Case 3: j ≡ 2 (mod 3).

In this case, since (1, j) ∈ ŜP by Eq. (13), Rule 2 (IPS) implies
that (0, j) ∈ ŜU . Thus, Rule 1 (NRL) and Eq. (12) imply that
(i, j) ∈ ŜP.

Fig. 10 Painting the crossed square (4, 0) violates Rule 3 (CUS), because
(5, 0) is isolated.

Fig. 11 The instance H and its solution where n = 9.

Proof of SU ⊆ ŜU .
Let Z = SU \ ŜU . We prove that Z = ∅, that is, every square in

SU is not paintable.
Clearly (4, 0) � Z; otherwise the three squares (4, 0), (5, 1),

and (6, 0) are in ŜP, and hence (5, 0) ∈ ŜU is isolated. (See
Fig. 10.) Similarly, (n − 1, n − 3) � Z. Now we show that, for
every (i, j) ∈ SU \ {(4, 0), (n − 1, n − 3)}, (i, j) � Z. Recall that
SU = T1 ∪ T2 ∪ X.
Case 1: (i, j) ∈ T1 \ {(4, 0)}.

Since i + j ≡ 1 (mod 3), (i − 1, j) ∈ T0 or (i, j − 1) ∈ T0 is in
ŜP. If (i, j) ∈ Z, we violate Rule 2 (IPS), and hence (i, j) � Z.
Case 2: (i, j) ∈ T2 \ {(n − 1, n − 3)}.

Since i + j ≡ 2 (mod 3), (i + 1, j) ∈ T0 or (i, j + 1) ∈ T0 is in
ŜP. If (i, j) ∈ Z, we violate Rule 2 (IPS), and hence (i, j) � Z.
Case 3: (i, j) ∈ X.

Since SP = T0\X, Eqs. (9) and (10) imply that all the squares in
Ui+ j except (i, j) are in SP. Thus, if (i, j) ∈ Z, the squares in Ui+ j−1

and the squares in Ui+ j+1 are disconnected. Hence, (i, j) � Z.
By the above discussion, we have Z = ∅. �
Figure 11 illustrates the example of the desired instance H and

solution S where n = 9.

4. Maximum Hitori Number

In this section, we prove that �(4n2 − 4n + 11)/5� ≤ h̄(n) ≤
(4n2 + 2n − 2)/5. In Sections 4.1 and 4.2, we give the upper
bound and the lower bound, respectively.

4.1 Upper Bound
In this section, we prove the following theorem:

Theorem 3. For every integer n, n ≥ 2, every instance H ∈ Hn

satisfies

α(H) ≤ 4n2 + 2n − 2
5

. (14)
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For the case where n = 2, we have (4n2 + 2n − 2)/5 = 3.6
and Eq. (14) clearly holds. Therefore, in the rest of this subsec-
tion, we consider only the case where n ≥ 3. First, we prove the
following lemma:
Lemma 1. For every integer n, n ≥ 3, every instance H ∈ Hn

and its unique solution S = (SP, SU ) satisfy

α(H) ≤ |SU |. (15)

Proof. For the sake of contradiction, assume that α(H) > |SU |.
Since the number of different integers in H is more than the num-
ber of unpainted squares, there is an integer k such that (i, j) ∈ SP

for every (i, j) satisfying Hi, j = k. Let (ik, jk) be such a square
satisfying Hik , jk = k.

Now we show that (ik, jk) is decolorable, that is, S′ = (SP \
{(ik, jk)}, SU ∪ {(ik, jk)}) is also a solution of H. This contradicts
that S is the unique solution of H. Since S is a solution of H, we
show only that decoloring (ik, jk) does not violate any rules.
Rule 1 (NRL):

Since all other squares labeled with k are painted, k is never
repeated in S′.
Rule 2 (IPS):

Since decoloring (ik, jk) does not create a new pair of adjacent
painted squares, there is no pair of adjacent painted squares in S′.
Rule 3 (CUS):

Since decoloring (ik, jk) does not break the connectivity of un-
painted squares, all unpainted squares in S′ are connected.

Therefore, there are at least two solutions and this contradicts
that S is the unique solution of H. �

To prove Theorem 3, it suffices to verify

|SU | − (2n − 2) ≤ 4|SP|. (16)

Then, |SP| + |SU | = n2 and Eq. (16) imply

|SU | ≤ 4n2 + 2n − 2
5

. (17)

Then from Eq. (17) and Lemma 1, we can easily have Eq. (14).
In the rest of the proof, we show that Eq. (16) holds. Before we

verify Eq. (16), we define some terms. For a rectilinear grid, we
say that two squares are corner-adjacent if these squares share
exactly one intersection point of the grid. For a feasible partition
S = (SP, SU ), we say that two squares in SP are corner-connected

if we can reach from one square to the other by tracing corner-
adjacent squares each of which is in SP. We call a maximal set
of corner-connected squares a corner-connected component. Ob-
serve that SP can be uniquely partitioned into corner-connected
components. Let K be a corner-connected component in SP. We
say that K is touched if K includes at least one square in the outer
perimeter. We say that K is a small component if K is not touched
and |K| ≤ 2, otherwise we say that K is a large component. We
often say that K is small (large) if K is a small (large) compo-
nent, respectively. Let SPS and SPL be a partition of SP such that
each square in SPS is contained in a small component, and each
square in SPL is contained in a large component. In the rest of
the proof, we say that a square is (corner-)adjacent to K if it is
(corner-)adjacent to at least one of the squares in K.

Now we focus on some unpainted squares. Roughly, we want

Fig. 12 (a) Two small components. (b) Three large components. The mark
“B” indicates a square that is corner-adjacent to a corner-connected
component. The crossed squares are not paintable.

Fig. 13 The proof of Lemma 2.

to claim that an unpainted square is paintable if it is corner-
adjacent to a small component (see Fig. 12 (a)), and an unpainted
square may not be paintable if it is corner-adjacent to a large com-
ponent (see Fig. 12 (b)). More formally, we prove the following
lemmas:
Lemma 2. Let S = (SP, SU ) be a feasible partition. Let (i, j) ∈ SU

be a square in the outer perimeter. If (i, j) is not adjacent to any

square in SP and is not corner-adjacent to any square in SPL, then

(i, j) is always paintable.

Proof. Without loss of generality, we assume i = 0.
(i) (i, j) = (0, 0) or (i, j) = (0, n − 1).

We give a proof only for (i, j) = (0, 0). Since (0, 0) is not adja-
cent to a square in SP, (1, 0) and (0, 1) are in SU . Thus, painting
(0, 0) does not violate Rule 2 (IPS).

Next, we show that painting (0, 0) does not violate Rule 3
(CUS), that is, (1, 0) and (0, 1) are still connected after painting
(0, 0).

If (1, 1) is in SU , clearly (0, 0) is paintable because (1, 0) and
(0, 1) are connected via (1, 1).

Now we consider the case (1, 1) is in SP. Since (0, 0) does not
corner-adjacent to any square in SPL, (1, 1) is in the small com-
ponent {(1, 1)} or {(1, 1), (2, 2)}. Note that the corner-connected
components {(1, 1), (0, 2)} and {(1, 1), (2, 0)} are touched and thus
these are large components. If (1, 1) is in the small component
{(1, 1)}, (1, 0) and (0, 1) are connected with the path (2, 0), (2, 1),
(2, 2), (1, 2), (0, 2). (See Fig. 13 (a).) If (1, 1) is in the small com-
ponent {(1, 1), (2, 2)}, (1, 0) and (0, 1) are connected with the path
(2, 0), (2, 1), (3, 1), (3, 2), (3, 3), (2, 3), (1, 3), (1, 2), (0, 2). (See
Fig. 13 (b).)
(ii) (i, j) = (0, j), 1 ≤ j ≤ n − 2.

Since (0, j) is not adjacent to a square in SP, (0, j − 1), (1, j),
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Fig. 14 Painting (2, 3) does not violate Rule 3 (CUS).

and (0, j+1) are in SU . Thus, painting (0, j) does not violate Rule
2 (IPS). In the rest of proof, we show that painting (0, j) does
not violate Rule 3 (CUS), that is, (0, j − 1), (1, j), and (0, j + 1)
are still connected after painting (0, j). As in the case (i), we can
show this. (See Figs. 13 (c) and (d).) �
Lemma 3. Let S = (SP, SU ) be a feasible partition. Let (i, j) ∈ SU

be a square not in the outer perimeter. If (i, j) is not adjacent to a

square in SP and is corner-adjacent to at most one square in SPL,

then (i, j) is always paintable.

Proof. Since (i, j) is not adjacent to a square in SP, (i + 1, j),
(i − 1, j), (i, j + 1), and (i, j − 1) are in SU . Thus, painting (i, j)
does not violate Rule 2 (IPS).

Now, we show that painting (i, j) does not violate Rule 3
(CUS), that is, (i + 1, j), (i − 1, j), (i, j + 1), and (i, j − 1) are still
connected after painting (i, j).

We consider the following two cases.
(i) (i, j) is corner-adjacent to no square in SPL.

In this case, (i, j) may be corner-adjacent to only the squares
in SPS . In the same way as the proof of Lemma 2, we can show
that (i + 1, j), (i − 1, j), (i, j + 1), and (i, j − 1) are connected after
painting (i, j). (See Fig. 14 (a).)
(ii) (i, j) is corner-adjacent to one square in SPL.

Without loss of generality, we assume that (i + 1, j + 1) is a
square in SPL. In this case, the large component may be touched
and we cannot trace around the large component. However, since
(i, j+1) and (i−1, j), (i−1, j) and (i, j−1), (i, j−1), and (i+1, j)
are connected, (i, j + 1) and (i, j + 1) are always connected after
painting (i, j). (See Fig. 14 (b).) �

These lemmas imply that if a square in SU is not paintable, at
least one of the following conditions holds:
Condition 1: The square in SU is adjacent to a square in SP.
Condition 2: The square in SU is in the outer perimeter and
corner-adjacent to at least one square in a large component.
Condition 3: The square in SU is not in the outer perimeter and
corner-adjacent to at least two squares in large components.

Let S = (SP, SU ) be a feasible partition. For S and (i, j) ∈ SU ,
we define protected number p(S, (i, j)) as

p(S, (i, j)) = a(S, (i, j)) + 0.5 · b(S, (i, j)), (18)

where a(S, (i, j)) is the number of corner-connected components
to which (i, j) is adjacent, and b(S, (i, j)) is the number of squares
in SPL to which (i, j) is corner-adjacent. Note that if (i, j) is in the
outer perimeter and p(S, (i, j)) < 0.5 then (i, j) is paintable, and if
(i, j) is not in the outer perimeter and p(S, (i, j)) < 1 then (i, j) is
paintable.

Let K be a corner-connected component of SP. For K, let AK be

the set of the squares in K together with the ones that are adjacent
to K.

Now we define protecting number p′(S,K) for each corner-
connected component K as

p′(S,K) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
a′(S ,K) + 0.5

∑
(i, j)∈K b′(S , (i, j))

if K is large,
a′(S ,K) if K is small,

(19)

where a′(S ,K) is the number of unpainted squares adjacent to
K, and b′(S , (i, j)) is the number of unpainted squares corner-
adjacent to (i, j).

Let K1,K2, . . . ,Km be the corner-connected components of SP.
We will verify

∑
(i, j)∈SU

p(S, (i, j)) =
m∑

i=1

p′(S,Ki), (20)

m∑
i=1

p′(S,Ki) ≤ 4|SP|, (21)

and∑
(i, j)∈SU

p(S, (i, j)) ≥ |SU | − (2n − 2). (22)

From Eqs. (20), (21), and (22), we can easily verify Eq. (16) as
required.
Proof of Eq. (20).

To verify that Eq. (20), we show that the following two equa-
tions hold:

∑
(i, j)∈SU

a(S, (i, j)) =
m∑

i=1

a′(S ,Ki) (23)

and∑
(i, j)∈SU

b(S, (i, j)) =
∑

(i, j)∈SPL

b′(S , (i, j)). (24)

Remember that a(S, (i, j)) is the number of corner-connected
components to which (i, j) is adjacent and a′(S ,K) is the num-
ber of unpainted squares adjacent to K. Consider the graph
G = (V, E) defined as follows:
• V = Vc ∪ VU where Vc ∩ VU = ∅, |Vc| = m, |VU | = |SU | and

each vertex in Vc corresponds to each corner-connected com-
ponent and each vertex in VU corresponds to each unpainted
square.

• E = {(v, u) | v ∈ Vc, u ∈ VU }, such that a square in the corner-
connected component corresponding to v is adjacent to the
square corresponding to u.

Then both
∑

(i, j)∈SU
a(S, (i, j)) and

∑m
i=1 a′(S ,Ki) are equal to the

number of edges in G. Thus we have Eq. (23).
Remember that b(S, (i, j)) is the number of squares in SPL and

are corner-adjacent to (i, j), and b′(S , (i, j)) is the number of un-
painted squares that are corner-adjacent to (i, j). Consider the
graph G = (V, E) defined as follows:
• V = VP ∪ VU where VP ∩ VU = ∅, |VP| is the total number of

squares in SPL, |VU | = |SU | and each vertex in VP corresponds
to each square in SPL and each vertex in VU corresponds to
each unpainted square.

• E = {(v, u) | v ∈ VP, u ∈ VU ,
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Fig. 15 Figure (a) shows p′(S,K) = 4 for |K| = 1, and Figure (b) shows
p′(S,K) = 6 for |K| = 2. The mark “A” indicates a square that is
adjacent to the corner-connected components.

Fig. 16 Figure (a) shows p′(S,K) = 12 for |K| = 3, and Fig. (b) shows
p′(S,K) = 18 for |K| = 5. The mark “A” indicates a square that is
adjacent to the corner-connected component. The mark “B” indi-
cates a square that is corner-adjacent to a corner-connected compo-
nent.

the squares corresponding to v and u are corner-adjacent}.
Thus both

∑
(i, j)∈SU

b(S, (i, j)) and
∑

(i, j)∈SPL
b′(S , (i, j)) are equal to

the number of edges in G. Thus we have Eq. (24).
Proof of Eq. (21).

We verify that

p′(S,K) ≤ 4|K| (25)

holds for each corner-connected component K.
(i) K is small.

In this case,

p′(S,K) = a′(S ,K). (26)

Since K is not touched, p′(S,K) = 4 if |K| = 1 and p′(S,K) = 6
if |K| = 2. (See Fig. 15.) In both of the cases, Eq. (21) holds.
(ii) K is large.

Recall that

p′(S,K) = a′(S ,K) + 0.5
∑

(i, j)∈K
b′(S , (i, j)). (27)

First, we consider the case where |K| ≥ 3 and give an up-
per bound of a′(S ,K). Since K is a corner-connected compo-
nent, each square in K is corner-adjacent to another square in
K. Besides, two corner-adjacent squares in K are adjacent to ex-
actly two common unpainted squares. Since there are exactly
|K| − 1 pairs of corner-adjacented squares, we have a′(S ,K) ≤
4|K| − 2(|K| − 1) = 2|K| + 2. Next we give an upper bound
of

∑
(i, j)∈K b′(S , (i, j)). Since there are exactly |K| − 1 pairs of

corner-adjacented squares in K, we have
∑

(i, j)∈K b′(S , (i, j)) ≤
4|K| − 2(|K| − 1) = 2|K| + 2. Therefore, if |K| ≥ 3, p′(S,K) ≤
2|K|+ 2+ 0.5(2|K|+ 2) = 3|K|+ 3 ≤ 4|K| and Eq. (21) holds. (See
Fig. 16.)

Now we consider the case |K| ≤ 2. Since K is large, K is
touched.

When |K| = 1, the only square in K is in the outer perimeter.

Fig. 17 Figure (a) shows p′(S,K) = 2.5 ≤ 4|K| for |K| = 1, Fig. (b) shows
p′(S,K) = 4 ≤ 4|K| for |K| = 1, Fig. (c) shows p′(S,K) = 5.5 ≤ 4|K|
for |K| = 2, and Fig. (d) shows p′(S,K) = 7 ≤ 4|K| for |K| = 2.

Fig. 18 Instances H that satisfy Eq. (29) for 3 ≤ n ≤ 5. The gray squares
display the unique solutions. (a) α(H) = 7. (b) α(H) = 12. (c)
α(H) = 20.

If the square is at a corner, there are two adjacent squares and
one corner-adjacent square. Therefore, p′(S,K) ≤ 2.5 ≤ 4|K|.
(See Fig. 17 (a).) If the square is not at a corner, there are three
adjacent squares and two corner-adjacent squares. Therefore,
p′(S,K) ≤ 4 ≤ 4|K|. (See Fig. 17 (b).)

When |K| = 2, one of the squares in K is in the outer perimeter.
In any case, a′(S ,K) ≤ 5 and

∑
(i, j)∈K b′(S , (i, j)) ≤ 4. Therefore,

p′(S,K) ≤ 7 ≤ 4|K|. (See Fig. 17 (c) and (d).)
Proof of Eq. (22).

If S = (SP, SU ) is the unique solution, every square (i, j) in SU

should be not paintable. Thus, we have

p(S, (i, j)) ≥
⎧⎪⎪⎨⎪⎪⎩

0.5 if (i, j) is in the outer perimeter,
1 otherwise.

(28)

Since there are 4n−4 squares in the outer perimeter, even if all
the squares in the outer perimeter are in SU , Eq. (22) holds.

4.2 Lower Bound
In this section, we prove the following theorem.

Theorem 4. For every integer n, n ≥ 3, there is an instance

H ∈ Hn such that

α(H) ≥
⌈

4n2 − 4n + 11
5

⌉
. (29)

We prove this theorem by constructing a desired instance H

that satisfies Eq. (29). In the case where 3 ≤ n ≤ 5, we can con-
struct H as described in Fig. 18. It is easy to verify that every
instance in Fig. 18 satisfies Eq. (29).

Consider below the case where n ≥ 6. We show that we can
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Fig. 19 Partition of [n]2. (a) The squares with C (T, L, R, and B) are in Tc

(Tt , Tl, Tr , and Tb, respectively). (b) Desired partition S.

construct the desired instance H such that

α(H) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

4n2−4n+20
5 if n ≡ 0 (mod 5);

4n2−4n+15
5 if n ≡ 1 (mod 5);

4n2−4n+12
5 if n ≡ 2 (mod 5);

4n2−4n+11
5 if n ≡ 3 (mod 5);

4n2−4n+12
5 if n ≡ 4 (mod 5).

(30)

Then we can easily have Eq. (29).
To simplify our proof, we give a proof only for the case where

n ≡ 0 (mod 5). We can easily extend our proof to the other cases.
We first give a partition S = (SP, SU ) of [n]2, and show that

S satisfies Rules 2 (IPS) and 3 (CUS). Then, we construct the
desired instance H for which S is the unique solution of H.

To define S, we define five sets of squares. Let

Tc = {(i, j) ∈ [n]2 | i + 2 j ≡ 1 (mod 5)}, (31)

Tt = {(0, 6), (0, 11), . . . , (0, n − 4)},
Tl = {(3, 0), (8, 0), . . . , (n − 7, 0)},
Tr = {(6, n − 1), (11, n − 1), . . . , (n − 4, n − 1)} and

Tb = {(n − 1, 3), (n − 1, 8), . . . , (n − 1, n − 7)}.
See Fig. 19 (a). Note that these sets are pairwise disjoint. Let

To = Tt ∪ Tl ∪ Tr ∪ Tb.

The desired partition S = (SP, SU ) is defined as

SP = Tc ∪ To and (32)

SU = [n]2 \ SP. (33)

Then S gives the paint displayed in Fig. 19 (b).
The partition S satisfies Rules 2 (IPS) and 3 (CUS) as in the

following proposition:
Proposition 4. S = (SP, SU ) satisfies Rules 2 (IPS) and 3 (CUS).

Proof. We first show that S satisfies Rule 2 (IPS). Note that
(i, j), (i′, j′) ∈ [n]2 are adjacent if and only if

|i − i′| + | j − j′| = 1.

Let (i, j), (i′, j′) ∈ Tc. Then we have

|i − i′| + | j − j′| ≥ 3.

Thus, any two squares in Tc are not adjacent. Let (i, j), (i′, j′) ∈
To. Then we have

|i − i′| + | j − j′| ≥ 5.

Fig. 20 Construction of the desired instance H. (a), (b) and (c) correspond
to Steps 1, 2 and 3, respectively.

Now we show that each square in Tt is not adjacent to each square
in Tc. For each (0, 5 j + 1) ∈ Tt, (0, 5 j) � Tc, (1, 5 j + 1) � Tc, and
(0, 5 j + 2) � Tc.

Similarly we can show that each square in Tl, Tr, and Tb are
not adjacent to each square in Tc. Thus S satisfies Rule 2 (IPS).

We then show that S satisfies Rule 3 (CUS). We can easily
check that the four corner squares are connected to each other.
For any pair of the other unpainted squares, we need a corner-
connected component of at least three painted squares to discon-
nect them. However, no such corner-connected component exists.
Thus, Rule 3 (CUS) holds and we complete the proof. �

Now we construct H satisfying Eq. (30) for which S is the
unique solution by the following three steps.
[Step 1] We set distinct numbers to the squares in SU . See

Fig. 20 (a).
[Step 2] We set a number for every (i, j) ∈ SP satisfying i = 1,

2, 3 as follows:

Hi, j =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
H1,1 if i = 1 and j > 0;
H3,1 if i = 3 and j > 0;
H2,0 otherwise.

(34)

See Fig. 20 (b).
[Step 3] We set a number for every (i, j) ∈ SP satisfying i = 0

or 4 ≤ i ≤ n − 1 as follows:

Hi, j =

⎧⎪⎪⎨⎪⎪⎩
H1, j if j ≡ 2 (mod 5);
H2, j otherwise.

(35)

See Fig. 20 (c).
Since each square in SU has a distinct number, S satisfies Rule

1 (NRL). Thus, S is a solution for H.
Now we prove that S is the unique solution for H by the fol-

lowing proposition:
Proposition 5. S is the unique solution for H.

Proof. Let Ŝ = (ŜP, ŜU ) be an arbitrary solution for H. As in
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Proposition 3, below we show that SP ⊆ ŜP. Then we prove that
SU ⊆ ŜU .
Proof of SP ⊆ ŜP.

Consider the squares (1, 0), (3, 0) ∈ SP. Since H1,0 = H2,0 =

H3,0, Rule 1 (NRL) implies that at least two of (1, 0), (2, 0), and
(3, 0) must be painted. Thus, by Rule 2 (IPS), we have (1, 0),
(3, 0) ∈ ŜP.

Consider next the squares in the 1st row, that is, (1, j) ∈ SP.
Since (1, 0) ∈ ŜP, Rule 2 (IPS) implies that we have (1, 1) ∈ ŜU .

By Eq. (34), for every (i, j) ∈ SP in the 1st row except (1, 0),
we have set

Hi, j = H1,1.

Thus, for every (i, j) ∈ SP in the 1st row except (1, 0), we have

(i, j) ∈ ŜP. (36)

Similarly, we can show that every (i, j) ∈ SP in the 2nd and 3rd
rows are in ŜP.

Lastly, we consider the squares (i, j) ∈ SP such that i = 0 or
i ≥ 4. We deal with the following five cases.
Case 1: j ≡ 0 (mod 5).

By Eq. (31), we have (1, j) ∈ Tc ⊆ SP. By Eq. (36), (1, j) ∈ ŜP.
Then, Rule 2 (IPS) implies that (2, j) ∈ ŜU . By Eq. (35), Hi, j =

H2, j. Thus, by Rule 1 (NRL), (i, j) ∈ ŜP.
Case 2: j ≡ 1 (mod 5).

By Eq. (31), we have (2, j + 1) ∈ Tc ⊆ SP. As in the case 1,
we have (2, j) ∈ ŜU . By Eq. (35), Hi, j = H2, j. Thus, by Rule 1
(NRL), (i, j) ∈ ŜP.
Case 3: j ≡ 2 (mod 5).

By Eq. (31), we have (2, j) ∈ Tc ⊆ SP. As in the case 1, we
have (1, j) ∈ ŜU . By Eq. (35), Hi, j = H1, j. Thus, by Rule 1
(NRL), (i, j) ∈ ŜP.
Case 4: j ≡ 3 (mod 5).

By Eq. (31), we have (2, j − 1) ∈ Tc ⊆ SP. As in the case 1,
we have (2, j) ∈ ŜU . By Eq. (35), Hi, j = H2, j. Thus, by Rule 1
(NRL), (i, j) ∈ ŜP.
Case 5: j ≡ 4 (mod 5).

By Eq. (31), we have (3, j) ∈ Tc ⊆ SP. As in the case 1, we
have (2, j) ∈ ŜU . By Eq. (35), Hi, j = H2, j. Thus, by Rule 1
(NRL), (i, j) ∈ ŜP.
Proof of SU ⊆ ŜU .

Let Z = SU \ ŜU . We now prove that Z = ∅. Clearly (0, 1) � Z;
otherwise (0, 0) ∈ ŜU is isolated. Similarly, (1, n − 1), (n − 2, 0),
(n − 1, n − 2) � Z.

Since each (i, j) is adjacent to at least one square in SP, for ev-
ery (i, j) ∈ SU \{(0, 1), (1, n−1), (n−2, 0), (n−1, n−2)}, (i, j) � Z.
Thus, we have Z = ∅.

Finally, we show that H satisfies Eq. (30). The step 1 of our
construction implies that all squares in SU have distinct numbers.
Thus, we have

α(H) = |SU |.
Now we count squares in SU . By Eq. (32), we have

SU = [n]2 \ (Tc ∪ Tt ∪ Tl ∪ Tr ∪ Tb).

Then we have

|SU | =
∣∣∣[n]2 \ (Tc ∪ Tt ∪ Tl ∪ Tr ∪ Tb)

∣∣∣
= n2 −

(
n2

5
+

(n
5
− 1

)
+

(n
5
− 1

)
+

(n
5
− 1

)
+

(n
5
− 1

))

=
4n2 − 4n + 20

5
.

�

5. Conclusions

In this paper, we investigate new combinatorial characteristics
of Hitori, called hitori number h(n) and maximum hitori number
h̄(n). We prove that �(2n − 1)/3� ≤ h(n) ≤ 2�n/3� + 1 for every
integer n, n ≥ 2, and �(4n2−4n+11)/5� ≤ h̄(n) ≤ (4n2+2n−2)/5
for every integer n, n ≥ 3.

In other words, there is no instance of n-hitori using more than
(4n2 +2n−2)/5 different integers, while there is an instance of n-
hitori using �(4n2 − 4n+ 11)/5� different integers. For 100-hitori,
we have 7,924 ≤ h̄(100) ≤ 8,000. These results improved the
results mentioned in Ref. [6], 6,731 ≤ h̄(100) ≤ 8,911.

Although our upper and lower bounds of hitori number h(n)
are close, there is a large gap between the bounds of maximum
hitori number h̄(n). We think that tightening the gap on h̄(n) is an
interesting challenge.

5.1 Instances with a Moderate Number of Different Integers
Since our results imply that we can construct an instance H

with α(H) = 2n/3 + 1 and H′ with α(H′) = (4n2 − 4n + 11)/5,
readers may have the following natural question: Does there ex-
ist an instance H such that α(H) = i for each 2�n/3� + 1 ≤ i ≤
�(4n2−4n+11)/5�? We can give a positive answer to this question
by constructing desired instances.

For an instance H, the square (i, j) is called free if H remains
an instance even if we change the integer in (i, j) from Hi, j to
α(H)+1. A free square (i, j) is called multi if there exists another
square (i′, j′) � (i, j) such that Hi, j = Hi′ , j′ , otherwise, the free
square is called solo.

Figure 21 (a) is the instance H of 7-hitori obtained by the con-
struction we give in Section 3.2. Since (1, 1) in H is a multi free
square, we can obtain another instance H′ by changing (1, 1) from
2 to α(H)+1 = 7. (See Fig. 21 (b).) Obviously, α(H′) = α(H)+1.
In the same way, we can make an instance H′ from a given in-
stance H so that α(H′) = α(H) + 1 as long as there exists at least
one multi free square. (See Fig. 21 (c).)

Let (i∗, j∗) be a free square. Let x be an integer such that
x � Hi, j∗ and x � Hi∗ , j for each 0 ≤ i ≤ n − 1 and 0 ≤ j ≤ n − 1.
Then H clearly remains an instance even if we change the integer
in (i∗, j∗) from Hi∗ , j∗ to x.

Figure 22 (a) is the instance H of 7-hitori obtained by the con-
struction we give in Section 4.2. Since (6, 6) in H is a solo free
square, and 3 � Hi,6 and 3 � H6, j for each 0 ≤ i ≤ n − 1 and
0 ≤ j ≤ n − 1, the instance H′ obtained by changing (6, 6) from
36 to 3 is also an instance. (See Fig. 22 (b).) Since the number 3
is used in H, α(H′) = α(H)−1. In the same way, we can make an
instance H′ from a given instance H so that α(H′) = α(H) − 1 as
long as there exists at least one solo free square. (See Fig. 22 (c).)

Note that changing the integer in a multi/solo free square may
affect many other multi/solo free squares and decrease the num-
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Fig. 21 Four instances of 7-hitori. (a) α(H) = 6. (b) α(H) = 7. (c)
α(H) = 8. (d) α(H) = 33.

Fig. 22 Four instances of 7-hitori. (a) α(H) = 36. (b) α(H) = 35. (c)
α(H) = 34. (d) α(H) = 16.

ber of such squares by more than 1. For example, (0, 2) is a solo
free square in Fig. 22 (a) but not in Fig. 22 (b).

We can see that the instance H constructed in Section 3.2 has
many multi free squares. Furthermore, as hinted in Fig. 21 (d),
there is a way for applying the local change to H for increas-
ing α at least n2/2 times. Similarly, Fig. 22 (d) hints that we
can apply the other local change for decreasing α to the in-
stance constructed in Section 4.2 at least n2/2 times. There-
fore, there exists an instance H such that α(H) = i for each
2�n/3� + 1 ≤ i ≤ �(4n2 − 4n + 11)/5�.
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