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Abstract: Pipe Link, which is a pencil-and-paper puzzle introduced by Japanese puzzle publisher Nikoli, is played
on a rectangular grid of squares. We studied the computational complexity of Pipe Link, and this paper shows that the
problem to decide if a given instance of Pipe Link has a solution is NP-complete by a reduction from the Hamiltonian
circuit problem for a given planar graph with a degree of at most 3. Our reduction is carefully designed so that we can
also prove ASP-completeness of the another-solution-problem.

Keywords: computational complexity, NP-complete, ASP-complete, pencil-and-paper puzzle, Pipe Link

1. Introduction and Definitions

Pencil-and-paper puzzles, which consist of figures or words on
paper, are solved by a person drawing on the figure with a pencil.
Pipe Link is one of many pencil-and-paper puzzles made popu-
lar by Nikoli [9], which is a famous Japanese publisher of such
puzzles. The Pipe Link puzzle is played on a rectangular grid of
squares with pieces of a path, and the objective of the puzzle is
to draw a single closed loop containing all the given path pieces
on the grid. In this paper, we examine the complexity of the Pipe
Link puzzle.

For many people, the fun of completing games and puzzles
comes from the difficulty in finding a solution. From this point
of view, the computational complexity of many games and puz-
zles has been widely studied, and it is known that many com-
monly played puzzles are NP-complete. For example, in 2009,
Hearn and Demaine [4] surveyed the computational complexi-
ties of combinatorial games and puzzles. Hashiwokakero [1],
Number Link [8], Kurodoko [7], Shikaku and Ripple Effect [11],
Yajilin and Country Road [5], Yosenabe [6], Shakashaka [3],
Fillmat [12], etc., are pencil-and-paper puzzles published by
Nikoli. Recent studies have shown that all of these are NP-
complete and/or ASP-complete. However, the complexity of
Nikoli’s pencil-and-paper puzzle named Pipe Link has not been
previously studied. Thus, in this paper, we study the computa-
tional complexity of deciding whether Pipe Link has a solution.

An instance of Pipe Link and its solution are shown in Fig. 1.
Pipe Link is played on a rectangular grid B of size m × n. Lines,
such as the ones shown in Fig. 2, are drawn in some of the squares
as input. We call these pre-given lines clue pieces for solving the
puzzle. The player’s task is to construct a single closed loop con-
taining all the clue pieces in B by drawing any of the candidate
lines shown in Fig. 2 in each blank square so that the following
rules (1) to (4) mentioned below are satisfied. The seven types of
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Fig. 1 Instance of Pipe Link and its solution.

Fig. 2 Types of lines drawn in squares.

candidates are shown in Fig. 2 and are called I1, I2, L1, L2, L3,
L4, and X pipes. Throughout this paper, blue colored pipes repre-
sent clue pieces and red colored pipes represent pipes placed by
the player in B (and/or gadgets). The rules of Pipe Link are as
follows.
( 1 ) A pipe must be placed in every blank square, which is a

square without clue pieces.
( 2 ) No lines can be added to the squares with clue pieces.
( 3 ) X pipes represent the three-dimensional intersection of two

straight lines.
( 4 ) The segments of the line loop run horizontally or vertically

between the center points of orthogonally adjacent squares.
We note that all squares have pipes in the solution shown in

Fig. 1, and all of the blue and red lines in Fig. 1 form a single
closed loop. The loop includes a crossover of two straight lines.
Of course, all solutions of instances do not need to include an X
pipe. In this paper, we mainly consider the decision problem of
Pipe Link, defined as follows.

Pipe Link Decision Problem
Instance: A rectangular grid B of size m × n, with some

squares having clue pieces.
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Question: Is there an arrangement of pipes on the blank
squares in B satisfying the above constraints
(1) to (4)?

We analyze the computational complexity of the decision prob-
lem above and the another-solution-problem (ASP) of Pipe Link,
and we show the following theorems in this paper (see Ref. [13]
for definitions of ASP and ASP-completeness).
Theorem 1. Pipe Link Decision Problem is NP-complete.

Theorem 2. The another-solution-problem of Pipe Link is ASP-

complete.

Theorem 1 is a direct corollary from both Theorem 2 and the
discussion in Ref. [13] (see Theorem 3.4 in Ref. [13]).

2. Proof of Theorems 1 and 2

We are now ready to state and prove our claim of NP-
completeness and ASP-completeness. Because it can be verified
whether a solution candidate is correct in polynomial time, it is
obvious that the problem to decide whether an instance of Pipe
Link has a solution is in NP.

To prove NP-hardness, we construct a reduction from the
Hamiltonian circuit problem (HCP) for a given planar graph with
a degree of at most 3 (i.e., restricted HCP). In restricted HCP, the
problem is deciding whether a given graph G = (V, E) has a cir-
cuit that visits every vertex v ∈ V exactly once. In Ref. [13], the
ASP variant of the Hamiltonian circuit problem has already been
shown to be ASP-complete (see also Ref. [10] for more details of
the proof). Moreover, that research also showed that Slither Link,
which is one of Nikoli’s pencil puzzles, is ASP-complete by con-
structing an ASP reduction from the restricted HCP (see Ref. [13]
for the definition of the term “ASP reduction”).

We prove Theorems 1 and 2 by constructing an ASP reduc-
tion from the restricted HCP with a technique similar to that in
Ref. [13]. Namely, our reduction is carefully designed so that
each solution of Pipe Link has a one-to-one correspondence with
a solution of the original instance of HCP. Therefore, the reduc-
tion also implies the result for the ASP of Pipe Link. The ASP
version of Pipe Link is defined as follows: Given an instance P

consisting of a grid B with clue pieces of Pipe Link and a solu-
tion s, find a solution s′ of P other than s. We use the following
known fact in Ref. [2] for our reduction.
Lemma 1. Reference [2] Any planar graph G = (V, E) with a

degree of at most 3 can be embedded in an O(|V | × |V |) grid in

polynomial time in |V |.
By using Lemma 1, we can transform a given graph G of the

restricted HCP into a graph G′ on the grid, as shown in Fig. 3.
We note that G′ has lattice points that do not correspond to
the vertices of graph G, and such points need not be visited in
Hamiltonian circuits of G′. The degree of such lattice points is
two. Throughout this paper, the white colored circles illustrated
in Fig. 3 represent points that do not correspond to the vertices of
graph G, and we call such points in G′ white vertices. Similarly,
the black colored circles represent lattice points that do corre-
spond to the vertices of G and thus must be visited in Hamiltonian
circuits of G′. We call such points in G′ black vertices.

We assume that an input graph G = (V, E) is embedded as a
graph G′ = (V ′, E′) with p = O(|V |) vertices in the vertical di-

Fig. 3 Conversion to a graph on the grid.

Fig. 4 Brief image of our reduction.

Fig. 5 Gadget for a white vertex in G′.

Fig. 6 Gadget for a black vertex with degree 2 in G′.

Fig. 7 Gadget for a black vertex with degree 3 in G′.

Fig. 8 Gadget for unchosen points in G′.

rection and q = O(|V |) vertices in the horizontal direction on the
grid. Thus, |V ′| ≤ p × q.

The brief image of our reduction is as follows. We construct
gadgets corresponding to the white and black vertices of G′, and
we place the gadgets according to the layout of graph G′ embed-
ded on the grid, as shown in Fig. 4. By considering the number
of degrees and the embedded way of edges, all necessary gadgets
for the white and black vertices can be shown on the left sides of
Fig. 5, Fig. 6, Fig. 7, and Fig. 8 (note that some points could be
neither white vertices nor black vertices). On the other hand, the
figures shown on the right sides of Fig. 5, Fig. 6, Fig. 7, and Fig. 8
are brief images of gadgets with blue auxiliary lines for imple-
menting the functions of the vertex gadgets. We will construct
four partial paths consisting of clue pieces in order to surround
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Fig. 9 Outline of vertex gadgets and gateways.

Fig. 10 Outline of our reduction.

the periphery of the gadgets.
In our construction of the vertex gadgets, we consider 7 × 7

squares to be the basic unit, as shown in Fig. 9. The vertex gad-
gets have gateways on the middle of the left, right, top, and bot-
tom sides of the 7 × 7 squares. The gateways depend on the exis-
tence or nonexistence of edges incident to the vertex, as shown in
Fig. 9. For example, the upper left gadget in the figure of Fig. 5 (a)
has clue pieces in the periphery of the gadget as auxiliary lines,
except for the middle squares of the right and top sides, as illus-
trated in the right figure of Fig. 9.

In the following section, we construct gadgets corresponding to
the white and black vertices of G′. We also construct some gad-
gets that connect auxiliary lines in the vertex gadgets as a single
loop; these gadgets are called wall gadgets.

2.1 Outline of Reduction and Wall Gadgets
An outline of our reduction is shown in Fig. 10. We put wall

gadgets around the vertex gadgets introduced in the previous sec-
tion, as illustrated in Fig. 10. Namely, we put gadgets S1, C2, S2o,
S2e, C3e/C3o, S+2o, S+2e, C4e/C4o, S3, and S4 in the clockwise direc-
tion with respect to wall gadget C1, which is set in the upper left
of Fig. 10. We call gadgets C∗ and S∗ corner-wall gadgets and
side-wall gadgets, respectively.

We next describe in more detail the arrangement of the wall
gadgets. As stated above, G is embedded as a graph G′ with p

vertices in the vertical direction and q vertices in horizontal di-
rection on the grid. In Fig. 11, q − 1 gadgets S1 are placed on
the top side, and gadgets S2o and S2e are placed alternately on the
right side. We note that gadget C3e is placed on the lower right if
p is odd; otherwise, C3o is placed on the lower right. Similarly,
S+2o and S+2e are placed alternately from right to left on the bottom
side. Gadget C4e is placed on the lower left if q is odd; otherwise,
C4o is placed on the lower left. After that, p − 2 gadgets S3 are
placed from the bottom up on the left side, and the last gadget S4

is placed on the left side, as illustrated in Fig. 11.
Each wall gadget is constructed to have partial paths consisting

Fig. 11 Layout of wall gadgets.

Fig. 12 Corner-wall gadget C1.

Fig. 13 Top side-wall gadget S1.

Fig. 14 Corner-wall gadget C2.

of clue pieces, as shown by the dark blue lines in Fig. 10. Thus,
all of the auxiliary lines in the vertex gadgets and the partial paths
in the wall gadgets construct a single closed loop (see the blue and
dark blue colored lines in Fig. 10).

The details of the corner-wall gadgets and the side-wall gad-
gets are shown in the figures of Fig. 12, Fig. 13, Fig. 14, Fig. 15,
Fig. 16, Fig. 17, Fig. 18. We note that gadgets S+2o and S+2e are
obtained by 90-degree rotation of S2o and S2e in the clockwise
direction, respectively. Moreover, all squares in the wall gadgets
are clue pieces, and thus all corner-wall gadgets and side-wall
gadgets satisfy rule (1).

2.2 White Vertex Gadget
In this section, we show the gadgets for the white vertices of

G′. These are called white vertex gadgets. Though the six types
of gadgets were introduced as necessary shapes in Fig. 5, due to
rotational symmetry, it is to sufficient to construct two types of
white vertex gadgets W1 and W2, as illustrated in Fig. 19 and
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Fig. 15 Right side-wall gadgets S2o and S2e.

Fig. 16 Corner-wall gadgets C3e and C3o.

Fig. 17 Corner-wall gadgets C4e and C4o.

Fig. 18 Left side-wall gadgets S3 and S4.

Fig. 19 White vertex gadget and its local solutions.

Fig. 20.
The gadget W1 in Fig. 19 has 7 blank squares, including two

yellow colored ones on the middle of the right and top sides. We
next consider the way to draw lines in the blank square at the mid-

Fig. 20 Another white vertex gadget and its local solutions.

dle of the top side. According to the clue pieces in the right and
left squares, we can put either the X or the I2 pipe on this blank
square. If we place the X pipe, the way to draw lines in the rest
of the blank squares is fixed as W1,1 in Fig. 19; otherwise, W1,2 is
fixed in Fig. 19. W1,1 consists of (i) the path associated with the
auxiliary lines, and (ii) the path connecting the two yellow col-
ored squares. On the other hand, W1,2 consists of only the path
associated with the auxiliary lines. These are expressed accord-
ing to whether the white vertex in the Hamiltonian circuits of G′

is visited.
W2 in Fig. 20 is also constructed similarly to W1. The gadget

W2 has 7 blank squares in a row and includes two yellow colored
squares on the middle of the right and left sides. In this case also,
the way to draw the lines is determined in two ways. We focus on
the square at the middle of the left side. We can put either the X
or the I1 pipe on this blank square, because the adjacent squares
above and below have clue pieces I1. If placing the X pipe, the
way to draw lines on the rest of the blank squares is fixed as W2,1

in Fig. 20; otherwise, W2,2 is fixed in Fig. 20. We note that these
drawings in W2 are expressed regardless of whether the white
vertex in the Hamiltonian circuits of G′ is visited.

We obtain the remaining types of gadgets shown in Fig. 5 by
rotating W1 and W2. For example, the type in the upper middle
of Fig. 5 (a) is obtained by 90-degree rotation of W1 in the clock-
wise direction.

2.3 Black Vertex Gadget
In this section, we show the gadgets for the black vertices of

G′. These are called black vertex gadgets. We introduced the ten
types of gadgets as necessary shapes in Fig. 6 and Fig. 7.

If we pay attention to the fact that the black vertices in G′ must
be visited in Hamiltonian circuits, we can divert the local solu-
tions W1,1 and W2,1 of the white vertex gadgets to the gadgets for
a black vertex with degree 2 by changing all red lines of W1,1 and
W2,1 to blue lines (i.e., clue pieces). Moreover, for the gadgets
of a black vertex with degree 3 (see Fig. 7), due to the rotational
symmetry, it is to sufficient to construct one type of black vertex
gadget, B1, as illustrated in Fig. 21.

The gadget B1 in Fig. 21 has 10 blank squares, including three
yellow ones at the middle of the left, right, and top sides, and a red
one at the center. We consider the way to draw lines in the blank

c© 2017 Information Processing Society of Japan 727



Journal of Information Processing Vol.25 724–729 (Aug. 2017)

Fig. 21 A black vertex gadget and its local solutions.

Fig. 22 Proof of correctness of the reduction.

square colored red at its center. Because the square below has
the clue piece L3, we can put the I1, L4, or L1 pipe in this blank
square. If we place the I1 pipe, the way to draw lines in the rest
of the blank squares is fixed as B1,1 in Fig. 21. Moreover, if we
place the L4 pipe, the way to draw lines for the gadget is fixed as
B1,2; otherwise, W1,3 is fixed, as in Fig. 21. B1,1, B1,2, and B1,3 in
Fig. 21 consist of (i) the path associated with the auxiliary lines,
and (ii) the path connecting any two squares of the three squares
colored yellow, as in the case of W1,1 of gadget W1 (also W2,1

of gadget W2). These three types (i.e., I1, L4, and L1 pipes) rep-
resent the way to pass the black vertex of G′ in the Hamiltonian
circuit.

In addition, we explain the gadgets shown in Fig. 8. The lat-
tice points are not expressed as white vertices or black vertices.
Therefore, we can use the local solutions W1,2 and W2,2 of the
white vertex gadgets by changing all red lines of W1,2 and W2,2

to blue lines (i.e., clue pieces).

2.4 Black Vertex Gadget for Connecting Two Closed Loops
In this section, we show the black vertex gadget with a special

feature. As stated in the previous sections, gadgets that act like
a white or black vertex could be constructed. However, in the
current situation, the rectangular grid B has two closed loops, as
illustrated in Fig. 22: (i) the first loop, which is colored blue and
dark blue, comprises auxiliary lines connecting the vertex gad-
gets and wall gadgets, and (ii) another loop, which is colored red,
corresponds to the Hamiltonian circuits of G′. This situation is
contrary to the rule of a single closed loop.

To overcome this deficiency, we show a special black vertex
gadget for connecting two loops. It is called the SB gadget. We

Fig. 23 SB gadget and its local solutions.

show the SB gadget corresponding to the B1 gadget in Fig. 23. As
in the case of B1, other types of SB gadgets can be obtained by the
rotation operation. The gadget SB in Fig. 23 has 10 blank squares,
including three yellow ones at the middle of the left, right, and top
sides, and a red one at the center. Because the square below the
square colored red has the clue piece X, we can put the L2, I1, or
X pipe in this blank square. The results are shown as SB1, SB2,
and SB3 in Fig. 23, respectively. We note that SB1, SB2, and SB3

in Fig. 23 connect (i) the path associated with the auxiliary lines
and (ii) the path expressing a way to visit the black vertex of G′

in the Hamiltonian circuits.
By replacing any one gadget for a black vertex with degree 3

with the SB gadget rotated as needed, our reduction is completed.
For example, in the reduction shown in Fig. 22, we replaced the
middle right gadget B1 by the gadget obtained by 270-degree ro-
tation of SB in the clockwise direction, as shown in Fig. 23.

3. Proof of Correctness of the Reduction

All the necessary gadgets we listed were constructed in the
previous section. In the way described in the previous section,
we obtain the instance of Pipe Link corresponding to G′ (that is,
G). This reduction can be done in the polynomial time of the
input size of the restricted HCP. The solution of Pipe Link cor-
responding to the Hamiltonian circuit of G is unique. Thus, we
constructed a polynomial time ASP reduction from the restricted
HCP for the Pipe Link puzzle. Therefore, the Pipe Link Decision
Problem is NP-complete, and the ASP version of Pipe Link is
ASP-complete.

4. Conclusions

In this paper, we studied the computational complexity of
Pipe Link and proved that Pipe Link is NP-complete and ASP-
complete by reducing the Hamiltonian circuit problem for a given
planar graph with a degree of at most 3.
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