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Abstract: There have been proposed protocols to achieve causal consistency with a distributed data store that does
not make safety guarantees. Such protocols work with an unmodified data store if it is implemented as middleware or
a shim layer while it can be implemented inside a data store. But the middleware approach has required modifications
to applications. Applications have to explicitly specify data dependency to be managed. Our Letting-It-Be protocol
to the contrary, handles all implicit dependency naturally resulting from data accesses even though it is implemented
as middleware. Our protocol does not require any modifications to either data stores or applications. It works with
them as they are. It trades performance for the merit to some extent. Throughput declines from a data store alone
were 21% in the best case and 78% in the worst case without multi-level management of dependency graph, which is
a performance optimization technique.
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1. Introduction

Geo-replication is one of the primary features of distributed
data stores whereby a client of a data store can access data with
small latency by choosing nearby replicas. But geo-replication
usually trades stronger consistency models for its merits [6], [10]
and then such distributed data stores maintain a consistency
model such as eventual consistency [5], [8], [15], that does not
make safety guarantees.

There have been attempts to add support for stronger consis-
tency models to such distributed data stores while preserving
their merits. Causal consistency has been the target of those at-
tempts. There are two approaches to this: a data store approach
and a middleware approach. In the former approach a protocol to
achieve causal consistency is implemented in a data store itself.
In the latter approach a middleware over a data store implements
a protocol.

The middleware approach has an advantage over the data store
approach in that it works with an unmodified data store. But the
middleware approach involves management of large dependency
graphs. The existing protocol taking the middleware approach [4]
reduces the size of the graphs by making data store clients ex-
plicitly specify the dependency to be managed. This means the
middleware approach has required modifications to applications.
On the contrary, our Letting-It-Be protocol handles all the im-
plicit dependency naturally resulting from data accesses though
it is implemented as middleware. Our protocol does not require
any modifications to either data stores or applications (Fig. 1).

This paper is an extended version of our previous work [17].
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Fig. 1 Approaches to achieving causal consistency.

The differences include a performance optimization technique
(Section 3.5) and its evaluation (Section 4.3)

This paper is organized as follows. Section 2 provides prior
knowledge by introducing related consistency models and exist-
ing protocols. Section 3 describes our protocol. Section 4 shows
experimental results of performance measurement and discusses
them. In Section 5, we summarize our contributions.

2. Background

This section provides dependency representation for the fol-
lowing section, and existing approaches and protocols.

2.1 Causal Consistency
Causal consistency is a consistency model in which all writes

and reads of data items obey causality relationships between
them. If a write or read operation influences a subsequent op-
eration, a client that observed the second can always observe the
first [1], [12]. Consider a social networking site as an example of
a real-world application. Note that the following example has the
same structure as an example shown in Bolt-on Causal Consis-
tency paper [4]. Alice posts update A: “My research paper could
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Fig. 2 Example of write and read sequences, and causality
relationships between operations.

Fig. 3 Dependency graph in case of Fig. 2.

not be accepted.” After Alice posts A, she is notified that the no-
tification of rejection was a false alarm. She edits A, resulting A*:
“My paper has been accepted!.” Bob observes A* and posts status
B in response: “Congratulations!” If causality is not maintained,
another user, Carol, could see A and B but not A*. She might
then think Bob is pleased to hear of the rejection. Accordingly,
a causally consistent data store guarantees that any user that can
observe A* if the user observes B.

Causality relationships between write and read operations are
defined as follows. Here W(xi) and R(xi) signify a write operation
and a read operation of xi. xi indicates the version i of the key x.
A version number increases one by one when a write updates a
value of the key. op(xi) and just op j signify a write or read opera-
tion. Suppose that an operation op1 influences another operation
op2. The relationship is called op1 happens-before op2 and de-
noted by op1 → op2. The following four rules yield a causality
relationship between two operations.

Rule 1 A client reads xi and then writes y j.
R(xi)→ W(y j) on the same client holds.

Rule 2 A client writes xi and then writes y j.
W(xi)→ W(y j) on the same client holds.

Rule 3 A client writes xi and then the client or another client
reads xi.
W(xi)→ R(xi) on the same client or different clients holds.

Rule 4 If op(xi) → op(zk) and op(zk) → op(y j) hold, then
op(xi)→ op(y j) holds.

Figure 2 shows an example of operation sequences performed
by client 1, 2 and 3. Arrows represent causality relationships re-
sulting from the rule 1, 2 and 3 and they form a graph

It is a graph of operations and can be transformed to a graph of
data items, strictly a graph of versions of keys. The transforma-
tion takes the rule 4 about transitivity into consideration. Figure 2
results in Fig. 3, which is the dependency graph of v3.

In a dependency graph, we define levels. A version of a key
that is the source of the dependencies is the level 0 vertex. Ver-
sions of keys that level i vertex directly depend on are level i + 1
vertices. In Fig. 3, v3 is the level 0 vertex. x1, y2 and z1 are level
1 vertices. u4 is a level 2 vertex.

If the source of the dependencies (level 0 vertex, v3 in Fig. 3)
is a target of a write operation, level 1 vertices, that the source di-
rectly depends on, are one of the following. Our protocol utilizes
this fact as described in Section 3.2.
( 1 ) The last write which is a version of a key written just before

the source by the same client (x1 in Fig. 3)
( 2 ) Reads following the last write — versions of keys read after

the last write by the same client (y2 and z1 in Fig. 3)
2.1.1 Explicit Specification of Causality Relationships

Causality relationships occur spontaneously when data items
are written and read. But an application may not require all
the relationships to be maintained. It depends on the applica-
tion. In that case the amount of the relationships can be re-
duced by making the application explicitly specify relationships
to be maintained. The existing protocol taking the middleware
approach [4] requires such explicit specification to reduce the
amount of causality relationships it handles.

The explicit specification works as long as the application can
identify and specify causality relationships that the application
requires. On the other hand, such a protocol cannot be adopted in
cases where an application cannot identify the requisite causality
relationships or cannot be modified.

2.2 Eventual Consistency
There have been distributed data stores emerging whose goals

are scalability on numbers of servers while keeping their avail-
ability. In compensation for scalability and availability, they have
looser requirements for data consistency and their major target
has been eventual consistency [5], [8], [15]. Eventual consistency
is a consistency model in which all replicated data items converge
to the same value eventually. It is a liveness guarantee and does
not make the safety guarantees, that causal consistency makes.

A data store can be eventually consistent by just guaranteeing
that a write will propagate to all the replicas. All the replicas
choose their last value along the same predetermined policy and
they converge. An example of such a policy is “last-writer-wins”
in which a value with the largest time stamp is chosen as the last
value. It is not required to consider the order of write operations
when propagating and applying them. Such lack of concern for
the order violates causal consistency.

2.3 Existing Protocols and Related Work
This section describes existing protocols for maintaining

causal consistency with a distributed data store that does not make
safety guarantees, thereby presenting our contributions.

Existing protocols took one of the two approaches: a data store

approach and a middleware approach. A protocol taking the data
store approach is implemented in a data store itself and then re-
quires modifications to a data store. A protocol taking the middle-
ware approach is implemented as a middleware that works over
a bare data store and does not require modifications to the data
store itself.

Examples of the data store approach are COPS [13], Eiger [14],
ChainReaction [2] and Orbe [9]. Bolt-on Causal Consistency [4]
took the middleware approach.

An advantage of the data store approach is that it allows
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dependency resolution when writing, that we call resolution-on-

write. A protocol taking the data store approach works as fol-
lows. When receiving a replica update of xi, before writing xi,
the protocol confirms that the data items that xi directly depends
on have already been written. For each data item, for example xi,
the protocol maintains pointers to other data items that xi directly
depends on. The pointers enable the dependency confirmation.

The middleware approach does resolution-on-read because it
cannot implement the resolution-on-write. The resolution-on-
write requires changes to a replication mechanism inside a data
store. More specifically, it must capture all replica updates that
happen inside a data store. The middleware approach cannot
adopt the resolution-on-write because it does not make changes
to a data store itself.

The resolution-on-read involves the problem of overwritten

dependency graph, that is called overwritten histories by Bailis
et al. [4]. If a protocol lacks an adequate treatment for the prob-
lem, part of a dependency graph can be overwritten and lost, even
though the entire graph is still required. In Fig. 3, if z1 has been
just replaced by z2, a client that tries to read v3 cannot find z1.
Resolution cannot finish.

The resolution-on-write does not involve this problem. A pro-
tocol taking the resolution-on-write can confirm a version of a
key has been resolved by a means such as vector clocks between
replicas kept by different local sets. With resolution-on-write, a
version has been resolved if it has been written. This fact enables
the confirmation by a means such as vector clocks such that the
version 1 of z has been already resolved because the version is 2.
If resolution finishes in failure, a protocol can defer application
of the replica update. For example, a protocol applies a replica
update of v3 after observing z1.

To address the problem of overwritten dependency graph, the
existing protocol taking the middleware approach [4] maintains
an entire dependency graph for each data item. In Fig. 3, the ex-
isting protocol keeps the entire graph consists of v3, x1, y2, z1 and
u4 for a data item v3. This treatment enables the protocol to check
the entire graph for v3 even if z has been updated to z2.

But this treatment involves large dependency information that
a middleware must maintain. Accordingly, the existing protocol
reduces the amount of dependency information to be kept by ex-
plicit specification described in Section 2.1.1. The explicit spec-
ification requires an application to identify and specify causality
relationships that it requires. The existing protocol does not work
if an application cannot identify the requisite relationships or can-
not be modified.

3. Causal Consistency for Distributed Data
Stores and Applications as They Are

In contrast to the existing protocols, our Letting-It-Be proto-
col takes the middleware approach and handles all the implicit
causality relationships. Therefore, it does not require any modifi-
cations to either data stores or applications (Fig. 1). It works with
them as they are.

Section 3.1 shows the system model assumed in the follow-
ing description of our protocol. In succeeding Sections 3.2, 3.3
and 3.4, we propose the protocol. Section 3.5 introduces an op-

Fig. 4 Supposed system model.

tional performance optimization technique.

3.1 System Model
Figure 4 depicts a system model assumed in the following de-

scription of our protocol. Application instances, middleware in-
stances and a cluster running a data store are located at the same
site and these form a local set of servers. There are a number
of such local sets providing the same service to users. Such lo-
cal sets are geographically distributed and usually each set serves
nearby users. In the real world, a data center hosts a single or
several local sets of servers.

An application instance accesses only its paired local data store
cluster. Each cluster holds all the data items, that are available lo-
cally in a local set. To achieve it, a data item has to be replicated
to all the local sets.

A middleware instance mediates between applications and a
data store cluster and maintains causal consistency. A local set
can run an arbitrary number of middleware instances. Note that
middleware instances do not communicate each other unless a
protocol requires this. Our protocol performs mutual exclusion
between middleware instances in a local set (Section 3.4), but our
current implementation involves no communication between the
instances. Mutual exclusion is carried out with a compare-and-
swap (CAS) feature of underlying data stores.

A data store is eventually consistent and its policy to choose
the last value is the “last-write-wins,” in which a value with the
largest time stamp is chosen as the last value (Section 2.2).

3.2 The Base Letting-It-Be Protocol
This section describes a simplified version of our Letting-It-

Be protocol that handles neither concurrent multiple clients nor
the problem of overwritten dependency graph depicted in Sec-
tion 2.3. The following Section 3.3 shows treatment for the prob-
lem and Section 3.4 shows techniques to handle concurrent over-
writes by multiple clients.

When a middleware instance receives a write request, that is
a pair of a key and a value, from a client, it embeds dependency
information of the received key in the received value. The em-
bedded dependency information consists of an updated version
number of the received key and a set of versions of keys that the
received key directly depends on. They are level 0 and 1 vertices
of a dependency graph. In Fig. 3, a middleware instance receiv-
ing a write request to v embeds 3 as the version of v, x1, y2 and
z1 in the value of v. And then the middleware instance writes the
processed value with the requested key to a data store.

This embedding process requires a middleware instance to
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maintain level 0 and 1 vertices for all the keys it has. As described
in Section 2.1, level 1 vertices are the last write (x1) just before
the write to the source of the dependency graph and reads (y2 and
z1) that follow the last write. A middleware keeps a history that
consists of the last write (x1) and the following reads (y2 and z1).
These are just level 1 vertices and the middleware embeds them.

As described in Section 2.3, in the existing protocol [4], a mid-
dleware maintains an entire graph for each key. It requires much
storage. In contrast to it, in our protocol, a middleware instance
maintains only level 0 and 1 vertices for each key. By limiting the
levels it keeps, a middleware instance can handle all the implicit
dependency naturally resulting from data accesses. The amount
of dependency information that a middleware instance keeps is
the product of the number of keys it has and the average length
of a histories. The average length of histories depends on the rate
of writes and reads in a workload. A read-heavy workload yields
longer histories because a history starts at the last write. Any-
way the length is definitely limited as long as there is a write. If
there is no write, then there are no causality relationships and no
dependency graph is formed.

When a middleware instance receives a read request, that is a
key, from a client, it reads a value corresponding to the key from
a data store. The read value is accompanied by dependency infor-
mation which is a history. The middleware instance starts resolv-
ing dependency based on the dependency information. It reads
values of level 1 keys from a data store to obtain level 2 vertices,
reads values of level i keys to obtain level i + 1 vertices, and then
traverses the entire graph. An entire graph is available locally in a
cluster of servers running a data store because a cluster in a local
set, usually located in a data center, has at least one replica of all
data items (Section 3.1).

Resolution-on-read finishes in a success if values of all the ver-
tices of the entire graph are available, and the middleware in-
stance replies the value after stripping the dependency informa-
tion from the value. If a value of a vertex is not available, resolu-
tion finishes in failure. In that case a middleware implementation
has options. one option is waiting for the entire graph to become
available. Another option is returning a previous version of the
requested key that has already been resolved. Our current imple-
mentation returns an error to a client.

A middleware instance marks a version of a key when the de-
pendency resolution for it succeeds. Making these marks prevent
repeated resolution.

3.3 Problem of Overwritten Dependency Graph
The base protocol does not treat the problem of overwritten

dependency graph depicted in Section 2.3. The base protocol as-
sumes that there is a single client accessing a data store sequen-
tially but succeeding writes by the same client can overwrite part
of a graph even without multiple clients.

Here we extend the base protocol to handle the problem. In
the base protocol, a key is accompanied by dependency informa-
tion for a single version of the key. The extension lets a key be
accompanied by dependency information for multiple versions of
the key. In Fig. 3, a write to z overwrites z1 by z2 in the base pro-
tocol. Now the value of z holds dependency information for both

versions z1 and z2 with the extension. A middleware instance em-
beds them in the value such that z1 depends on u4 and z2 depends
on its dependency destinations. This treatment prevents z1 from
being overwritten.

Even with the extension, the amount of dependency informa-
tion is smaller than the existing protocol [4], that keeps an entire
dependency graph for each key. The existing protocol keeps the
same dependency information for multiple keys duplicatedly. In
Fig. 3, the graph for v3 includes dependency information such as
that z1 depends on u4. Graphs for other keys depending on z1 also
include the same information duplicatedly. In our protocol, de-
pendency information such as that z1 depends on u4 appears once
in a data store in a local set.

Old dependency information that no key refers to should be
wiped out after it becomes unnecessary. A mechanism such as
garbage collection in programming systems serves this function.
There is a trade-off between garbage collecting techniques such
as mark and sweep and reference counting. Comparison between
them is still an open problem, although this should have little ef-
fect on access performance because they run in the background.

3.4 Concurrent Overwrites by Multiple Clients
Assuming the case where multiple clients concurrently access

a data item, the dependency information might be lost even with
multiple versions.

In case multiple clients try to update dependency information
of a key, it is possible for an update to be overwritten by other
updates. Suppose that client A and B concurrently try to update
dependency information of a key z. After both clients read de-
pendency information of z1, they try to write updated dependency
information. Client A writes z2 with dependency information and
then client B writes z′2 with different dependency information. So
the dependency information of z2 is lost.

There are a variety of options for this type of concurrency prob-
lem. Here, We adopt a write-time solution in a local set (Sec-
tion 3.1) and a read-time solution between local sets. Mutual ex-
clusion takes place in a local set and multiple versions are main-
tained for each local set.

A local set can utilize any technique for mutual exclusion such
as locking and these are effective. Our current implementation
utilizes an optimistic technique, that is compare-and-swap (CAS).
The implementation utilizes the CAS feature of an underlying
data store.

Mutual exclusion tends to be costly if it is carried out between
local sets. It involves communication between local sets in ei-
ther cases of optimistic techniques or pessimistic techniques such
as locking. Communication between local sets can get across
boundaries of data centers, that are supposed to host local sets,
and it involves a large latency. In our protocol, write and read
operations do not involve any communication between local sets.
In a data store, a key has distinct versions for each local set. For
example, a key z has distinct versions, z LS 1 and z LS 2, for local
sets LS1 and LS2. A middleware instance writes only onto the
version for the local set it belongs to. Overwriting a key for other
local sets does not take place.

All versions for all the local sets are replicated to all the lo-
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cal sets by replication feature of an underlying data store (Sec-
tion 3.1). The local sets LS1 and LS2 eventually have updated
dependency information of z LS 1 and z LS 2. When reading,
a protocol has to determine which is the last one written be-
tween distinct versions for local sets, for example, between z LS 1
and z LS 2. We choose to maintain causal consistency here and
use vector clocks [12] for the purpose. Dynamo [8] and Riak [5]
adopt the same policy and technique. After system trouble in-
volving network partitions, a middleware occasionally finds con-
current conflicting values between the distinct versions. Causal
consistency allows it to return any value of them. Our current
implementation chooses one of the concurrent values based on
identifiers of local sets.

Distinct versions for each local set respectively consume space
in a data store. They eliminate communication between local sets
but take up much space. There is a trade-off and the best boundary
between mutual exclusion and distinct versions for each local set
depends on applications and especially the network environment.

The overall picture of our protocol is as follows. By vector
clocks, a middleware instance captures the causality relationships
between distinct versions of a key for each local set such as z LS 1
and z LS 2. By using dependency graphs, it captures causality re-
lationships between different keys such as x, y and z.

3.5 Multi-level Management of Dependency Graph — Per-
formance Optimization

While the above sections described the complete protocol, this
section introduces a performance optimization technique. It is
optional. Section 4.3 shows its effect on performance.

Our protocol traverses an entire dependency graph to accom-
plish resolution-on-read as described in Section 3.2. A middle-
ware instance reads values of level i keys from a data store to
obtain level i + 1 vertices. In that case, a middleware can is-
sue in parallel all the read requests for all the level i vertices.
Traversal of a dependency graph with up to level n repeats such
possibly parallel reads of level i vertices n times. The traversal
process possesses parallelism for the number of vertices on the
same level and the length of the critical path of the process is the
highest level number of a graph, n. Thus a higher graph involves
larger processing time due to a longer critical path.

It is possible to shorten the critical path and increase paral-
lelism by embedding multiple levels together in a value. In the
base protocol, the version number of the level 0 vertex and level
1 vertices are embedded. If multiple levels up to level k are em-
bedded, this enables possibly parallel reads of all vertices from
level 1 to level k and shorten the critical path to �n/k�.

This optimization requires a middleware instance to construct
and embed a dependency subgraph up to level k in a value. A
middleware instance can do these tasks by keeping dependency
subgraphs up to level k − 1 for all the level 1 vertices. Level 1
vertices are the last write and reads that follow it, and they con-
struct a history (Section 3.2). For this optimization, a history is
extended to keep dependency subgraphs up to level k − 1 for all
the elements in the history in addition to the elements themselves.
A middleware instance can obtain the subgraphs at the time of the
last write and the following reads. There is no need for additional

communication to obtain them.
This optimization can improve performance of dependency

resolution but involves dependency management costs due to
larger dependency information. Section 4.3 shows results of per-
formance measurement.

4. Performance Evaluation

The contribution our work provides is a protocol that maintains
causal consistency with no modification to either applications or
a data store. Nevertheless the amount of performance overhead
should be acceptable in exchange for the benefits obtained. This
depends on the application but anyway this section shows exper-
imental results of performance measurement.

Section 4.2 shows performance overheads of the protocol. Sec-
tion 4.3 shows performance improvement by multi-level manage-
ment of dependency graph.

4.1 Implementation and Benchmark Conditions
Our implementation of the proposed protocol described in Sec-

tion 3 consists of 3,000 lines of Java code. It uses Google’s Proto-
col Buffers 2.5.0 for data serialization and Google’s Snappy 1.1.2
for data compression. The target of performance measurement in
this paper is this implementation.

The implementation is based on Apache Cassandra 2.1.0 [3],
[11], which is a production-level and widely deployed dis-
tributed data store. Cassandra is compatible with the sys-
tem model described in Section 3.1 as follows. It provides a
function to place replicas of a data item in every data center
(NetworkTopologyStrategy). All the replicas converge to the
same value because Cassandra adopts eventual consistency.

The current implementation performs mutual exclusion using
compare-and-swap (CAS) (Section 3.4). Cassandra provides the
feature. We implemented the protocol as a library for a client in
the same way as the existing protocol taking the middleware ap-
proach [4] though it is possible to implement as software serving
clients via a network.

We use Yahoo! Cloud Serving Benchmark (YCSB) [7] to mea-
sure performance of the implementation. It is a framework im-
plementation to benchmark distributed data stores and compares
them fairly. It has been widely used in a variety of research on
cloud storage [16]. YCSB issues write and read queries to a target
data store continuously and measures access latency or namely
the round trip time, of each write and read operation. A user of
YCSB can specify the ratio of write and read operations, distri-
bution of accesses to data items and the target of throughput that
is the number of queries in a unit time.

We impose two diverse workloads, write-heavy and read-
heavy, on the implementation. Table 1 shows parameters of the
two workloads. Accessed data are chosen along a Zipfian distri-
bution. This is a probability distribution, which means that access
frequency of each data item is determined by its popularity and

Table 1 YCSB workloads used in Section 4.

Workload Write Read Access distribution
Write-heavy 50% 50% Zipfian distribution
Read-heavy 5% 95% Zipfian distribution
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Table 2 Server configuration.

OS Ubuntu 12.04.3
with Linux 3.2.0

CPU 2.40 GHz Xeon E5620 × 2
Memory 32 GiB RAM

Java Virtual Machine Java SE 7 Update 4

not by freshness.
Nine servers emulate a data center and and two sets of the

servers emulate two data centers. All the 18 servers run Cas-
sandra and compose a cluster of Cassandra. Another server runs
YCSB to access other 18 servers. Table 2 shows the config-
uration of the servers. All the servers are on the same LAN
but communication latency between the data centers is emu-
lated by imposing 50 milliseconds of latency with a tool named
tc. We configure the Cassandra cluster to have one replica in
each emulated data center by setting the replication strategy as
NetworkTopologyStrategy and consistency level as ONE. By
that, each of the two emulated data centers has its own replica.
These settings correspond to a situation in which each of the two
data centers hosts a local set.

4.2 Read and Write Performance
The number of data items is 10,000,000 and the size of a data

item is 1 KiB. The total amount of the data items is about 10 GiB
or more with their metadata such as schema information. After
loading all the data items into the Cassandra cluster, we warm up
the cluster with the same workload as the following measurement.
And then we measure performance.

We examine overheads imposed by the proposed protocol by
performance comparisons with Cassandra alone. It is interesting
to examine performance of the existing protocol taking the mid-
dleware approach [4]. But the existing protocol is designed to be
able to handle only explicitly-specified dependency, not all the
implicit dependency, which is our target. Explicit specification of
dependency allows the existing protocol to run but it is not our
target and our protocol does not support it.

Figures 5 and 6 show access latency with the write-heavy
workload. At 3 and 7 Kbps of throughput, with our implementa-
tion, the write latencies are 5.2 and 6.6 milliseconds. Read laten-
cies are 3.9 and 7.2 milliseconds. Without our implementation,
write latencies are 0.9 and 0.9 milliseconds. Read latencies are
1.2 and 1.4 milliseconds. Thus overheads in write latencies are
4.3 and 5.7 milliseconds, and overheads in read latencies are 2.7
and 5.8 milliseconds. The maximum throughput with our imple-
mentation is 78% lower than Cassandra alone.

Figures 7 and 8 show access latencies with the read-heavy
workload. At 3 and 7 Kbps of throughput, with our implementa-
tion, write latencies are 4.2 and 4.2 milliseconds. Read latencies
are 1.4 and 1.4 milliseconds. Without our implementation, write
latencies are 1.0 and 1.0 milliseconds. Read latencies are 1.2 and
1.2 milliseconds. Thus overheads in write latencies are 3.2 mil-
liseconds, and overheads in read latencies are 0.2 milliseconds.
The maximum throughput with our implementation is 21% lower
than Cassandra alone.

The read-heavy workload showed smaller overheads than the
write-heavy workload. Figure 9 shows the maximum through-

Fig. 5 Write latencies with write-heavy workload.

Fig. 6 Read latencies with write-heavy workload.

Fig. 7 Write latencies with read-heavy workload.

Fig. 8 Read latencies with read-heavy workload.

puts with different ratios of read and write operations. A larger
ratio of read operations exhibits better throughput.

Dependency resolution should greatly contribute to the over-
head because it involves multiple accesses to a data store. An
access to a data store involves communication over a network
and then involves a large latency. The read-heavy workload re-
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Fig. 9 Maximum throughput with each read/write ratio.

Fig. 10 Write latencies with write-heavy workload with
multi-level management.

quires larger number of dependency resolutions than the write-
heavy workload because our protocol performs resolution when
reading. But if a version of a key has been marked as resolved,
then further traversal of a dependency graph is not required as de-
scribed in Section 3.2. More frequent reads yield more marks and
reduce the number of accesses to a data store. In summary, more
reads increase the number of dependency resolution but decrease
the number of accesses to a data store in dependency resolution.
It seems that the latter effect is greater in the Zipfian distribution
that YCSB produces.

An application enjoys the merits of the protocol by accept-
ing the performance overhead. Performance overheads heavily
depend on a workload. The application developer must judge
whether it is acceptable or not. The results here should help make
such a judgment because the key property of application work-
loads is the ratio of write and read operations and it dominates
performance.

4.3 Multi-level Management of Dependency Graph
We examine the effect of multi-level management of depen-

dency graph described in Section 3.5. This section shows ac-
cess latencies with different heights of a subgraph embedded to a
value. The examined heights k are 1, 2 and 4.

Figures 10 and 11 show access latencies with the write-heavy
workload. Latencies in case k = 2 are better than those in case
k = 1. But a further larger k as 4 did not improve latencies, and
even showed slightly worse latencies than k = 2 when writing.
The effect of the optimization of multi-level management looks
to be saturated by k = 2.

Figures 12 and 13 show access latencies with the read-heavy
workload. Larger k showed worse latencies. As demonstrated

Fig. 11 Read latencies with write-heavy workload with
multi-level management.

Fig. 12 Write latencies with read-heavy workload with
multi-level management.

Fig. 13 Read latencies with read-heavy workload with
multi-level management.

in Section 4.2, with the read-heavy workload, access reduction
effect by marking a resolved version of a key took place very
well even in case k = 1 without the optimization. The optimiza-
tion does not take effect for already resolved and marked keys.
Moreover, finding the best parameter k for a variety of workloads
makes sense for real-world deployment of the optimization.

5. Conclusion

We present a protocol Letting-It-Be for maintaining causal
consistency over an existing production-level eventually consis-
tent data store. Our protocol is unique in that it handles all the im-
plicit dependency naturally resulting from data accesses though it
is implemented as middleware. Namely, it does not require any
modifications to either a data store or applications. It works with
them as they are.

Performance overheads of the proposed protocol heavily de-
pend on the workload. Throughput declines from Cassandra
alone were 21% in the best case and 78% in the worst case. A
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performance optimization technique or namely multi-level man-
agement of dependency graphs, proves effective for write-heavy
workloads though establishing a method for finding the best pa-
rameter is a topic for future study.

Future work includes performance measurement with vari-
ous workloads including real-world ones though YCSB emulates
them. Forms of dependency graphs have an effect on performance
of resolution as pointed out in Section 3.2 and it is worthwhile to
investigate how workload properties affect the forms.

Investigating the following trade-offs and relationships are
open problems.
• A trade-off between the number of middleware instances,

and access performance (Section 3.1)
• The relationship between the lengths of histories and work-

load properties (Section 3.2)
• The best boundary between mutual exclusion and distinct

versions for each local set (Section 3.4)
• Other distributions than Zipfian (Section 4.2)
Our protocol expands applicability of such a protocol provid-

ing stronger consistency by eliminating the necessity of any mod-
ifications to a data store and applications. Causal consistency
looks a good target for such a protocol. But it does not deny the
possibility of existence of better consistency models for layers of
a system including applications, middleware and a data store. A
good consistency model involves less modification to each layer,
less costs, less and simple interaction between layers, easier ex-
traction of consistency relationships from an application.
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