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Abstract: MapReduce is a framework for large-scale data processing proposed by Google, and its open-source im-
plementation, Hadoop MapReduce, is now widely used. Several language systems have been proposed to make devel-
oping MapReduce programs easier, for instance, Sawzall, FlumeJava, Pig, Hive, and Crunch. These language systems
mainly target applications that can be naturally solved by using a MapReduce-like programming model. In this study,
we propose a new MapReduce-program generator that accepts programs manipulating one-dimensional arrays. By
using the proposed generator, users only need to write sequential programs to generate Hadoop MapReduce programs
automatically. We applied some program optimization techniques to the generation of Hadoop MapReduce programs.
In this paper, we also report our experiment results that compare programs generated by the proposed generator with
hand-written MapReduce programs.
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1. Introduction

Efficient parallel programs on clusters are more difficult to de-
velop than sequential programs on single-node computers be-
cause we have to analyze the feasibility of parallel computing
and design an appropriate manner of parallel computing together
with synchronization and communication of intermediate results.

MapReduce [6] proposed by Google offers a programming
model for large-scale distributed data processing. Using MapRe-
duce to implement data processing on clusters is considered to be
easier than using traditional programming models such as MPI.
Actually, Hadoop MapReduce *1, which is an open-source im-
plementation of MapReduce, is now in industrial use *2. Thus,
MapReduce programming is widespread throughout the world.

To make it easier to develop MapReduce programs, many
higher-level languages and systems such as Sawzall [17], Flume-
Java [4], Pig *3, Hive *4, and Crunch *5 were developed. Most
of these programming models are so close to the MapReduce
model that their target applications are often limited to ones
that can be straightforwardly implemented on top of MapRe-
duce. Thus, they expose the MapReduce model to program-
mers and have programmers be aware of the MapReduce model.
When implementing applications that are far from the MapRe-
duce model, it becomes much cumbersome. In this work, we
have tackled this problem by studying MapReduce-oblivious pro-
gramming, in particular, by generating Hadoop MapReduce pro-
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grams from sequential programs. Our main contribution is that
we have developed a source-code generator from loop-based se-
quential programs that manipulate one-dimensional arrays to ef-
ficient MapReduce programs.

The organization of this paper is as follows: in Section 2, we
describe skeletal parallel programming, which is the conceptual
basis of our generator; in Section 3, we describe the MapReduce
model and outline Hadoop MapReduce, on which our generator
is based; in Section 4, we show an overview of our generator
through examples; in Sections 5 and 6, we describe the design
and implementation of our generator; in Section 7, we experimen-
tally evaluate the performance of MapReduce programs gener-
ated through our generator compared to that of hand-coded ones;
we discuss related work in Section 8 and conclude this paper in
Section 9.

2. Skeletal Parallel Programming

Parallel skeletons [5] are abstract computational patterns that
often appear in parallel and distributed programming. Skeletal
parallel programming is a methodology of parallel programming
in which we select and combine parallel skeletons for the target
problems.

In this chapter, we first review three parallel skeletons related to
the proposed generator, map, reduce, and scan, with their par-
allel algorithms. Then, we introduce the diffusion theorem [11]
that derives parallel programs by using those parallel skeletons.
We will denote programs in Haskell [2] in accordance with the
paper [11].

*1 http://hadoop.apache.org/
*2 https://wiki.apache.org/hadoop/PoweredBy
*3 http://pig.apache.org/
*4 https://hive.apache.org/
*5 https://crunch.apache.org/
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Fig. 1 The scanBSP algorithm.

2.1 Map
A parallel skeleton map applies a function k to each element

of a list and is defined informally as follows.

map k [x1, x2, . . . , xn] = [k x1, k x2, . . . , k xn]

Parallel implementation of the map skeleton is simple. Let the
input list be split into multiple sublists, and each processor inde-
pendently applies function k to each element in the sublist.

2.2 Reduce
A parallel skeleton reduce joins the elements of a list and re-

turns a value. The operator used in the reduce skeleton should
be associative to ensure the correctness of parallel computation.
Given an associative operator ⊕, the reduce skeleton is defined
informally as follows.

reduce (⊕) [x1, x2, . . . , xn] = x1 ⊕ x2 ⊕ · · · ⊕ xn

The parallel implementation of the reduce skeleton consists of
two steps. First, we join the elements of a sublist with the asso-
ciative operator independently in parallel (local reduce). Then,
we collect all the results on a processor and join them.

2.3 Scan
A parallel skeleton scan is an accumulative computation from

the head of a list, and the result forms a list whose elements are
the reduce of the prefix lists *6. Given an associative operator ⊕,
the scan skeleton is defined informally as follows.

scan (⊕) e [x1, x2, . . . , xn]

= [e, e ⊕ x1, e ⊕ x1 ⊕ x2, . . . , e ⊕ x1 ⊕ x2 ⊕ · · · ⊕ xn]

Note that the scan skeleton in this paper returns a list that has one
more element than the input list has. We will use the unit of ⊕ for
the initial value e unless otherwise mentioned.

There have been several algorithms for the parallel implemen-
tation of the scan skeleton. In this study, in accordance with the

*6 Therefore, it is also called prefix sums.

results of our prior work [15], we use an algorithm that is com-
monly used in the programming on the bulk synchronous parallel
(BSP) model.

BSP is a model of parallel computation: computation consists
of a sequence of supersteps separated by barrier synchroniza-
tions, and each process computes independently in a superstep.
The scan algorithm in this paper, named scanBSP, computes in
two supersteps. Figure 1 illustrates how the scanBSP algorithm
works, where the input list [3, 1,−4,−1, 5,−9, 2, 6,−5, 3, 5, 9] is
divided into three sublists. In the first superstep of the scanBSP
algorithm, each process applies reduce computation to a sublist
and sends the results to all the processes located on the right. In
the second superstep, each process first applies reduce computa-
tion to the received values to compute the initial value of scan of
the corresponding sublist and then computes scan locally starting
from the initial value (the final element of the local scan would
be dropped except for the last process).

2.4 Diffusion
Hu et al. [11] proposed the diffusion theorem stating that a re-

cursive function over a list could be written as a combination of
parallel skeletons if it satisfies some condition. The proposed
program generator decomposes a sequential program into a com-
bination of parallel skeletons based on the diffusion theorem and
then generates a MapReduce program. Here, we briefly introduce
only the theorem.

Theorem 1 (Theorem 1 in Ref. [11]) Let a function h over a
list be written in the following form.

h [ ] c = g1 c

h (a : x) c = k (a, c) ⊕ h x (c ⊗ g2 a)

If the operators ⊕ and ⊗ are associative and have unit ι⊕ and ι⊗,
the function h can be decomposed as follows.

h x c

= let cs′ ++ [c′] = map (c⊗) (scan (⊗) ι⊗ (map g2 x))
ac = zip x cs′

in reduce (map k ac) ⊕ g1 c′
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The keypoint of the theorem is: even if the computation on an
element depends on its forward elements (through the accumu-
lation parameter c of function h), we can compute in parallel by
applying the scan skeleton to yield those accumulation parame-
ters.

3. MapReduce

MapReduce [6] is a framework and also a programming model
for distributed parallel processing proposed by Google. In this
chapter, we review the MapReduce programming model. An
important characteristic of it is that the process consists of two
phases called Map and Reduce. The computation in the Map and
Reduce phases is specified by the user. Figure 2 illustrates the
programming model.

In MapReduce, the input data are split and stored on a dis-
tributed filesystem (each set of split data is also called a split), and
those split data are fed into the computation. In the Map phase,
each Map task performs computation on a split and outputs key-
value pairs as intermediate results. Then, the framework sorts
the results of all the Map tasks to group them by their keys. In
the following Reduce phase, each Reduce task computes on a set
of intermediate results grouped by their keys (or a user-specified
condition). The results of the Reduce phase are output as the final
results. It is worth noting that the tasks in the Map and Reduce
phases are executed independently of each other. To summarize,
MapReduce provides a simple programming model but limits the
computation that can be performed on it.

Hadoop MapReduce is a distributed-processing framework
based on the MapReduce programming model. An important fea-
ture of Hadoop MapReduce is that we can develop a large variety
of programs with many customization parameters and/or runtime
parameters.

The customization provided in Hadoop MapReduce includes
the FileInputFormat class that specifies the manipulation of
an input split, secondary sorting to control grouping and sorting,
extension of the Writable class, and so on. We observed in a
prior work that the extended Writable class for sending data in
bulk improved the performance when we sent a sequence between
Map/Reduce tasks or between MapReduce jobs [15].

Hadoop MapReduce has hundreds of runtime parameters in-
cluding the number of Map/Reduce tasks, upper bound of mem-
ory usage, condition of starting the Reduce phase, and size of
virtual memory space *7. We observed in a prior work that the
performance could be improved by setting appropriate values to

Fig. 2 Computation model of MapReduce.

the condition of starting the Reduce phase and the number of Re-
duce tasks [15].

4. Target Applications

The proposed program generator takes a sequential program
that manipulates a one-dimensional array as its input and gener-
ates a Hadoop MapReduce program. In this chapter, we specify
the input programs that the program generator accepts. We then
show two examples of the target applications: log filtering and
maximum number of concurrent users.

4.1 Specification of Input Programs
Table 1 shows the syntactic rules of the input programs.
We basically borrow the syntactic rules of Java to define those

of the input program of the proposed generator. The entry point of
the program is specified by the main function, and we can define
other functions used in a program.

To specify the input/output data, we need to specify the types
Input<Type> and Output<Type>, respectively, in the main
function. The input data from the user will be stored in the vari-
able declared with type Input<Type>. The output data in the
variable declared with type Output<Type> will be output into
a file as the results. These variables should be described in the
main function.

In a program, we can describe multiple loops that scan the
input one-dimensional array sequentially from the head. Those
loops should be described in the main function with for state-
ments, where the proposed generator requires the following con-
ditions.
( 1 ) Only unnested loops are available in the main function.
( 2 ) The loop variable should have type int and name i.
( 3 ) The range of the variable should be from 0 to the size of

input array input_array.length-1.
In addition to loops that apply independent computation to the

elements, we can describe loops that accumulate the values from
the head of the array. To describe such accumulations, we should
use a statement in the following form to update an accumulation
variable.
〈acc. variable〉 = 〈acc. variable〉 〈operator〉 〈expression〉

Here, we accepts associative binary operators (“+” and “*”) and
corresponding inverse operators (“-” and “/”, where “/” is not
available for integers) for the operator above. For the computa-
tion that accumulates the maximum or minimum value, we ex-
tract it separately from an if statement that does not satisfy this
condition.

We now show two examples that satisfy the specifications of
the input programs. In the following chapters, we will use a log-
filtering example (Section 4.2) as our running example to see how
the programs are transformed.

*7 Those hundreds of runtime parameters were introduced over the his-
tory of Hadoop MapReduce. The latest version of Hadoop MapReduce
is 2.7.x, and the internal processing mechanism and the job scheduler
changed from version 1.x.x to 2.x.x. Version 2.x.x has a lot of runtime
parameters to keep backward compatibility, and many of them would
have a large effect on the execution or performance.
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Table 1 Syntactic rules of input program (in EBNF).

program = ‘{’ , main , {function_def} , ‘}’ ;

main = ‘void’ , ‘main’ , ‘()’ , ‘{’ , input_decl , {var_decl} , output_decl , for_statement , ‘}’;

function_def = ? Function definition of a pure function interpreted as Java static method ?;

input_decl = ‘Input’ , ‘<’ , base_type , ‘[]’ , ‘>’ , input_identifier , ‘;’ ;

output_decl ::= ‘Output’ , ‘<’ , base_type , [‘[]’] , ‘>’ , identifier , ‘=’ , literal , ‘;’ ;

base_type = ‘int’ | ‘boolean’ | ‘double’ | ‘String’ | ... ;

var_decl = ? Declaration of a Java local variable ?;

for_statement ::= ‘for’ , ‘(’ , ‘int’ , ‘i’ , ‘=’ , ‘0’ , ‘;’ ,

‘i’ , ‘<’ , input_identifier , ‘.’ , ‘length’ , ‘;’ ,

‘i’ , ‘++’ , ‘)’ , ‘{’ , {statement} , ‘}’ ;

statement = (simple_assign | acc_assign | java_expr) , ‘;’ | if_statement ;

simple_assign = identifier [ ‘[’ , ‘i’ , ‘]’ ] , ‘=’ , java_expr ;

acc_assign = min_max | identifier , ‘=’ , identifier , assoc_op , java_expr ;

if_statement = ‘if’ , ‘(’ , <java_expr> , ‘)’ , ‘{’ , {statement} , ‘}’ ,

[ ‘else’ , ‘{’ , {statement} , ‘}’ | ’else‘ if_statement ];

java_expr = ? Expression interpreted in Java ?;

assoc_op = + | - | * | ... (* associative operators and corresponding inverse operators *);

min_max = ? if-statement that compares two variables and assigns either of them to the other ?;

input_identifier = identifier ;

identifier = ? identifier interpreted in Java ?;

4.2 Log Filtering
Let us extract logs of connection failures (the logs include

“false”) from a large amount of logs, where we would like to fil-
ter one from every ten occurrences. The following is a sequential
program that solves this log-filtering problem.

01: void main() {

02: Input<String[]> logs;

03: int count = 0;

04: Output<String> output = "";

05: for (int i = 0; i < logs.length; i++) {

06: if (cond(logs[i])) {

07: count = count + 1;

08: if (count % 10 == 0) {

09: output = output + logs[i];

10: }

11: }

12: }

13: }

14: boolean cond(String val) {

15: return val.indexOf("false") >= 0;

16: }

In this program, the variable logs denotes the input list of logs,
and the variable output denotes the user’s output. The variable
count denotes the number of “false” logs up to the position.

4.3 Maximum Number of Concurrent Users
Let us extract the logs of logins (lines including “login”) and

logouts (lines including “logout”) and compute the maximum
number of concurrent users who are online at a time. The fol-
lowing is a sequential program that solves this problem.

01: void main() {

02: Input<String[]> logs;

03: int count = 0;

04: Output<int> max = 0;

05: for (int i = 0; i < logs.length; i++) {

06: if (isLogin(logs[i])) {

07: count = count + 1;

08: } else if (isLogout(logs[i])) {

09: count = count - 1;

10: }

11: if (count > max) {

12: max = count;

13: }

14: }

15: }

16: boolean isLogin(String val) {

17: return val.indexOf("login") >= 0

18: }

19: boolean isLogout(String val) {

20: return val.indexOf("logout") >= 0

21: }

This program processes each element of the input logs in or-
der, and increments or decrements the variable count when the
element includes “login” or “logout,” respectively. Thus, the vari-
able count denotes the number of concurrent users at the posi-
tion. The program calculates the maximum value of count with
an if statement and stores it in the variable max.

5. Compilation Pipeline

The proposed program generator takes a sequential program
that manipulates a one-dimensional array (Section 4) and au-
tomatically generates a parallel program that runs on Hadoop
MapReduce. In this chapter, first, we briefly show the execution
of the output program generated from the input program in Sec-
tion 4.2 and then show the compilation pipeline of the generator.

5.1 Execution of Input and Output Programs
In this section, we show the execution of the Hadoop MapRe-

duce program generated from the input program in Section 4.2.
Figure 3 gives the outline of the execution of the output program.
(For simplicity, one “false” log is extracted for every three occur-
rences in Fig. 3. One log was extracted for every 10 occurrences
in Section 4.2.)

In the sequential program for the log-filtering problem, we
compute the values of count and extract a log to output simul-
taneously. We can compute count and output simultaneously in
sequential processing, but in parallel processing we cannot filter
logs until we know the number of forward “false” logs because
the input data are split and processed independently in parallel.
Therefore, in the generated program in Fig. 3, we first compute
count (the number of “false” logs) for all the elements, share the
results among the split data to obtain the count values for the
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Fig. 3 Computation of Hadoop MapReduce program for log-filtering problem.

whole data, and then filter the logs to output.
As we can see in Fig. 3, the first Map phase counts the “false”

logs for each split of the input data. This value is closed in each
split. Then, the number of “false” logs is sent to all the processes
that will manipulate split addressing later, and each process ob-
tains the number of “false” logs before the corresponding split.
The following Reduce phase recomputes the values of count,
which are correct over the whole data. By using the values of
count, the program selects the logs to be extracted. Finally, a
sequential program joins the logs extracted by the processes to
obtain the final result. What we have described so far is the out-
line of the Hadoop MapReduce program generated for the log-
filtering problem.

The proposed generator takes a file containing an input pro-
gram and outputs multiple files for Hadoop MapReduce programs
and a sequential program executed at the last step if needed. The
user then compiles the generated Hadoop MapReduce programs
using the commands in Hadoop 2.7.1 to generate a jar file, puts
the input data on the HDFS, and executes the jar file with the pa-
rameters specifying the input/output directories. If there exists
a sequential computation step as in Fig. 3, the user compiles the
sequential program with the Java compiler and executes it with a
parameter specifying the directory to which the Hadoop MapRe-
duce programs output the results.

5.2 Steps of Program Translation
A sequential program manipulating a one-dimensional array is

translated into a parallel program on the Hadoop MapReduce in
the following steps.
( 1 ) Analyze input program.
( 2 ) Decompose loop structures based on dependency among

variables.
( 3 ) Translate to MapReduce algorithms.
( 4 ) Generate Hadoop MapReduce programs.

In the first step, we parse the input program and generate an

abstract syntax tree (AST). We then analyze the program to ex-
tract data dependencies among the variables. We use existing
techniques for this analysis and briefly explain them later.

In the second step, we decompose a loop containing dependent
(not parallelizable) statements into multiple parallelizable loops.
For example, as we have seen in Section 5.1, the parallel program
for the log-filtering problem should compute count for all the el-
ements first and then compute the output using the results. The
loop in the input program that computes count and output si-
multaneously is divided into two loops: one for count and the
other for output.

In the third step, to compose MapReduce jobs, we assign a
Map phase and/or a Reduce phase for each of the loops decom-
posed in the second step. Then, we optimize the MapReduce jobs
by rearranging those phases.

Finally, in the fourth step, we generate Hadoop MapReduce
programs for the MapReduce jobs obtained in the third step. We
use the efficient programs studied in our prior work [15] as the
template for code generation.

5.3 Analysis of Input Program
We use existing common techniques to analyze the input pro-

gram. Here, we briefly review them.
To prepare to translate to the Hadoop MapReduce programs,

we extract control dependencies and data dependencies. Consider
a list of input data is split and computation is applied indepen-
dently to the splits. We cannot compute correctly if the computa-
tion depends on the value in other (forward or backward) splits.
In the log-filtering example, we cannot judge whether a “false”
log is 10th unless we know the number of “false” logs in the for-
ward splits. To obtain a parallel algorithm from a program that
sequentially scans a one-dimensional array, we need to perform
the computation with dependency (such as count) in advance.
We extract control dependencies and data dependencies from the
input program to judge the computation.
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Control dependency “statement t depends on condition s”
means that condition s determines whether statement t is exe-
cuted [8]. For example, the following program has a control de-
pendency “the statement in line 2 depends on the condition in line
1”.

1: if (a == 0) {

2: b = b * 10;

3: }

Data dependency “statement t depends on statement s through
variable w” means that variable w is defined at statement s and
is used at statement t [8]. For example, the following program
has a data dependency “the statement in line 2 depends on the
statement in line 1 through variable a.”

1: int a = 0;

2: int b = a + 4;

In this study, we extracted control dependencies and data de-
pendencies from the input program. We did not deal with circular
dependencies over multiple variables.

6. Translation to MapReduce Programs

In this chapter, we show how we translate an input sequential
program to Hadoop MapReduce programs.

6.1 Decomposing Loop Structures Based on Dependencies
among Variables

As we saw for the computation of count in the log-filtering ex-
ample, the computation depending on forward input elements can
be easily described by a sequential program but cannot easily be
described by a parallel program. In particular, the computation
of output depends on the values of count, and it requires the
number of “false” logs until each position over the whole input
data. In the sequential program, we described the computations
of count and output in a loop. In the parallel computation, we
required two steps of computation: computing count for each
split and then sharing the partial results among splits. By using
these partial results (numbers of “false” logs), we could compute
output to obtain the same results as the sequential program. As
we have seen, to compute problems similar to the log-filtering
problem in parallel, we need to decompose loops so that all the
computations with forward dependency are executed in advance.

Such computations with forward dependency are formalized as
accumulation over lists in functional programming, and the scan

skeleton is used as the parallel computational pattern for those
computations. The diffusion theorem [11] in Section 2 transforms
a linear recursive function over lists to a parallel program by ex-
tracting the scan skeleton. The proposed generator decomposes
loops based on the diffusion transformation with the dependen-
cies obtained from the analysis of the input program. In the fol-
lowing part of this section, we demonstrate how the generator
transforms the example program based on the diffusion transfor-
mation.
6.1.1 Decomposition of Loops Based on Computation Order

The diffusion theorem transforms a computation over lists de-

scribed in a certain form into a combination of three parallel
skeletons: map, reduce, and scan. The basic idea of the the-
orem is that if some computation depends on forward elements
and the values are used in later computation (like count in the
log-filtering problem), we compute the values in advance over
the whole input data.

The proposed generator finds the variables and their computa-
tion order by utilizing the dependencies among variables as fol-
lows.
( 1 ) Extract all the statements that update variables from a loop.
( 2 ) Compute the dependencies for each statement.
( 3 ) Extract statements that do not depend on other statements.
( 4 ) Create a loop structure for the statements extracted in step 3

with the program-slicing technique.
( 5 ) Remove the statements extracted in step 3 and go back to

step 2. Finish if all the statements have been extracted.
We demonstrate these procedures with the input program in Sec-
tion 4.2. First, we extract all the statements that update variables;
we obtain the statement in line 7 (updating count) and the one
in line 9 (updating output). We compute the dependencies for
the two statements. The statement in line 7 (updating count)
does not depend on the other statement, but the statement in line
9 (updating output) depends on the value of count through the
branch in line 8. With these pieces of information, we now know
that the values of count should be computed in advance.

Then, we create a loop structure to compute the values of
count in advance. To do this we use the program-slicing tech-
nique; more concretely, we extract the statements or conditions
that the statement depends on. For the statement in line 7 (updat-
ing count), we extract the for statement in line 5 and the if state-
ment in line 6 and construct a new loop for computing the val-
ues of count. Since the remaining statement (updating output)
refers to the value of count at each step, it is necessary to store
the values of count as an array. Therefore, we convert the vari-
able count to an array and put the unit of +, which is 0, as the
initial value in the array. The following is the result of program
slicing for the statement updating count.

01: int[] count;

02: count[0] = 0;

03: for (int i = 0; i < logs.length; i++) {

04: if (cond(logs[i])) {

05: count[i+1] = count[i] + 1;

06: } else {

07: count[i+1] = count[i];

08: }

09: }

After removing the statements related to count, we go back to
step 2. Since all the remaining statements are related to output,
we rearrange those statements to form a loop. As we did for
count, we put the unit of the updating operator + for output,
which is "", as the initial value. The following is the result of the
transformation.

01: Output<String> output = "";

02: for (int i = 0; i < logs.length; i++) {

03: if (cond(logs[i])) {

04: if (count[i+1] % 10 == 0) {
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05: output = output + logs[i];

06: }

07: }

08: }

6.1.2 Unification of Variable-Updating Statements
To apply the diffusion theorem, we need to linearize the recur-

sive calls, that is, we remove the if branches to unify the recursive
calls into a single call. In this study, we only deal with loops not
general recursive functions; the target statements to be linearized
are those updating variables in the loops.

Here, we look at the loop for the variable count. When
cond(logs[i]) is true, the value of count is incremented.
When it is false, the value of count does not change. There-
fore, by writing down all the update statements in the branches,
we obtain the following statements.

count[i + 1] = count[i] + 1

count[i + 1] = count[i]

The goal here is to represent all the statements as a single state-
ment. We move the if statements into functions so that the dif-
ferent parts are managed by the returned value of the functions.
Before moving the if statements into functions, we derive a uni-
fied form of those two statements as follows.

count[i + 1] = count[i] + 1

count[i + 1] = count[i] + 0

We can perform this transformation by searching the same ref-
erences or operators in the corresponding subtrees in the AST.
Here, we use the subtree corresponding to the first statement
count[i + 1] = count[i] + 1 as the initial template and
match it to the subtree corresponding to the second statement
count[i + 1] = count[i] + 0. We begin the matching at
the self-reference to the updated variable (count[i]). We com-
pare the AST nodes for operators. If the operators differ, we add
operators and the missing operands (the unit of the operator) to
the template, considering the priority of the operators. We con-
tinue this process until all the statements are in the form of the
template.

With the transformation so far, we know the position of values
that may differ in the if branches. For each of such values, we
create a function that includes the if statement of the original pro-
gram and returns the (possibly) different values. After creating a
function and replacing a value with a function call, we obtain the
following program.

01: int[] count;

02: count[0] = 0;

03: for (int i = 0; i < logs.length; i++) {

04: count[i + 1] = count[i] + func0(logs[i]);

05: }

06: int func0(String val0) {

07: if (cond(val0)) {

08: return 1;

09: }

10: return 0;

11: }

The function func0 shown above is created from the body of
the original loop, where updating statements are replaced with
statements returning the corresponding values. Note that we add

the parameter String val0 since it is used as the condition of
the if statement.

By applying the program transformations above, we can unify
the statements that update the same variable in a loop. Note that
those program transformations are variants of those applied to re-
cursive functions in the original diffusion transformation.

We expect that the programs obtained after decomposition of
loops are computed in parallel. The remaining task is to extract
associative operators for the scan and/or reduce skeletons. Since
we limited the updates of accumulation values only with asso-
ciative binary operators, we just extract those operators from the
AST nodes next to the self-reference to the variable in the RHS
of the statements.

For example, let the statement be count = count + 1; the
operator next to the self-reference to count in the RHS is +,
which is used in the computation of the corresponding reduce

and/or scan skeleton. If the statement is count = count - 1,
we use the operator “+” instead of the operator “-”. Similarly,
for the operators “/” and “*” in the programs, we use “*” for the
reduce and/or scan.

The loop for the variable output is transformed as follows.

01: Output<String> output = "";

02: for (int i = 0; i < logs.length; i++) {

03: if (cond(logs[i])) {

04: if (count[i+1] % 10 == 0) {

05: output = output

+ func1(logs[i], count[i+1]);

06: }

07: }

08: }

09: String func1(String var0, int var1) {

10: if (cond(val0)) {

11: if (val1 % 10 == 0) {

12: return val0;

13: }

14: }

15 return "";

16: }

The proposed generator outputs the implementation of opera-
tors. The following is the program corresponding to the operators
for count and output.

01: // operator for composing count

02: int countOp(int val0, int val1){

03: return val0 + val1;

04: }

05: // operator for composing output

06: String outputOp(String val0,

07: String val1){

08: return val0 + val1;

09: }

We can obtain the decomposed program by performing the
transformations so far:
( 1 ) decomposition of loops,
( 2 ) unification of variable-updating statements, and
( 3 ) identification of operators.
Although we had the fourth step that optimized the operators in
the original diffusion transformation, we have not implemented it
in the proposed generator.
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6.2 Transformation to MapReduce Algorithms
With the transformations in Section 6.1, we decomposed loop

structures so that we can compute them in parallel. In this section,
we show how we assign Map and/or Reduce phases for each loop
structure. We also optimize the structure of phases to improve the
performance on MapReduce.
6.2.1 Composing MapReduce tasks for Loop Structures

We compose MapReduce tasks for each of the two loop struc-
tures obtained in Section 6.1.2. We show the target loop structures
again for reference.

01: int[] count;

02: count[0] = 0;

03: for (int i = 0; i < logs.length; i++) {

04: count[i + 1] = count[i] + func0(logs[i]);

05: }

06: int func0(String val0) {

07: if (cond(val0)) {

08: return 1;

09: }

10: return 0;

11: }

01: Output<String> output = "";

02: for (int i = 0; i < logs.length; i++) {

03: if (cond(logs[i])) {

04: if (count[i+1] % 10 == 0) {

05: output = output

+ func1(logs[i], count[i+1]);

06: }

07: }

08: }

09: String func1(String var0, int var1) {

10: if (cond(val0)) {

11: if (val1 % 10 == 0) {

12: return val0;

13: }

14: }

15 return "";

16: }

6.2.2 Application to MapReduce
First, we categorize the loops based on the computation in

them. The first loop for count is the computation of the scan

skeleton because the computation of count[i+1] uses the value
in the previous step count[i] and count has values accumulated
from the head of the array. If the update of a variable depends on
its previous value, the computation in the loop is either reduce

or scan; the computation is scan if the accumulated values are
stored in an array. If the statement is count = count + 1, for
example, then the computation is reduce.

Consider the second loop for output. Looking at line 5, the
variable output is updated with the value of itself. Thus, the
computation in the loop is either reduce or scan. Since the re-
sult is stored in a single variable output, the computation in the
second loop is reduce.

We have categorized the computation in the loops. We now
compose MapReduce tasks for the computation in each loop.

Let us compose MapReduce tasks for the first loop (scan).
Figure 1 illustrates the computation of the scan skeleton. The
first superstep above the dashed line (including the judgment of
“false” logs with the cond function) can be implemented in a
Map phase. The arrows crossing the dashed line correspond to the

Shuffle&Sort phase after the Map phase. The number of “false”
logs in a split is sent to the later splits, and then all the splits
can compute the total number up to the split. By using this to-
tal number of “false” logs and the list of marks of “false” posi-
tions, we compute the scan in the split to obtain the values of
count. The computation below the dashed line is implemented
in a Reduce phase. Therefore, computation of a scan skeleton is
implemented in single Map and single Reduce phases (as in this
example of count).

Let us compose MapReduce tasks for the second loop (re-

duce). The computation of the reduce skeleton consists of two
steps: the values in each split are joined with an associative oper-
ator into a single value and the resulting values from all the splits
are then collected and joined. For the target loop, the first step is
to take a split of logs and filter logs based on the values of count.
This first step is implemented in the Map phase. The results of
output are transferred to a single process and concatenated. The
transfer of data is implemented in a Shuffle&Sort phase, where a
single key is used to collect data. The final join is implemented in
the Reduce phase. Therefore, computation of the reduce skeleton
is also implemented in single Map and single Reduce phases.
6.2.3 Optimization of MapReduce Tasks

As we stated in the previous sections, the proposed genera-
tor first decomposes a loop so that we can compute it in parallel
and then composes MapReduce tasks for each of the decomposed
loops. This means that the more loops we have after decom-
position the more MapReduce tasks we have. The MapReduce
framework brings a large cost for starting up the MapReduce jobs,
starting up the Map or Reduce phases, and the input and output.
Therefore, it is important to minimize the number of MapReduce
jobs/tasks for good performance. In this section, we show how
we optimize MapReduce tasks with our running example.

As we have seen in Section 6.2.2, the log-filtering problem was
implemented as a two-pass MapReduce program: the first pass is
for the scan skeleton for count, and the second pass is for the re-

duce skeleton for output. Here, we focus on the Reduce phase
in the first pass and the Map phase in the second pass. In the Re-
duce phase in the first pass, we compute the numbers of “false”
logs and store them in count. Note that the computation in the
following Map phase, joining logs locally based on the values
of count, can be executed simultaneously in the same Reduce
phase. With this fusion, the result of the first MapReduce pass
is joined logs (output) for each split. The remaining task is to
join these results. Note that the number of results after the first
MapReduce pass is just the number of splits, and we expect it
to be small enough. Therefore, the join of the results could be
implemented as a sequential program, which does not have the
overhead of the MapReduce framework. With these transforma-
tions, the program for the log-filtering problem is optimized from
a two-pass MapReduce program to a one-pass MapReduce pro-
gram with a sequential program.

6.3 Generating Hadoop MapReduce Programs
Finally, we generate Hadoop MapReduce programs based on

the MapReduce algorithms. As we briefly reviewed in Sec-
tion 3, we proposed an efficient implementation [15] for the pro-
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grams obtained by the diffusion transformation. In this study, we
use those implementation techniques as templates for generating
Hadoop MapReduce programs.

The proposed generator outputs the following six files.
DataFunction.java analyzes the input split and converts it into

an array. In the current implementation, we expect that a single
element is given in a line.

Function.java defines the functions used in the map, reduce,
and scan skeletons. These functions are generated from the trans-
formed programs where the types of variables are changed to
Writable types on Hadoop MapReduce.

HadoopMainProg.java is the main program executed on
Hadoop MapReduce. This program starts up MapReduce jobs
and controls the directories for input and output files.

MRSCode.java implements Mapper and Reducer functions
for the map, reduce, and scan skeletons. The structure of tasks
follows that in Section 6.2. This program also implements func-
tions that generates MapReduce jobs (these functions are called
in HadoopMainProg.java.).

CustomWritable.java provides a customized Writable class
used for transferring the input array and/or intermediate results
of map and scan skeletons (Hadoop MapReduce requires us to
implement a customized Writable class if we want to transfer
structures or values with different types between phases).

GlobalReduce.java joins the intermediate results of reduce

obtained from the MapReduce jobs for splits. It takes the direc-
tory where the intermediate results are stored.

The following programs are used in the above programs.
CustomPartitioner.java, CustomGroupingComparator.

java, CustomSortComparator.java, and CustomKeyWritable.
java: These programs implement the secondary-sort mechanism
on Hadoop MapReduce. Since the input array is order sensitive,
we use the secondary-sort mechanism to transfer data between
the Map and Reduce tasks keeping the order of splits.

SplitFileInputFormat.java and SplitFileRecordReader.
java: These programs are used to split the input data by the
specified size and execute a Map task for each split. In this study,
we assume that the elements of the input array are stored in a
file as one element in a line. These two programs support each
Mapper to take the corresponding input split as a list. In these
programs, LineReader reads the lines until the amount of read
data reaches the specified size and puts the elements into a List.
Then, a Mapper starts with a key-value pair where the key is the
position in a file and the value is the List.

7. Experiments

In this chapter, we evaluate our program generator experimen-
tally by comparing the performance of a generated program with
that of a hand-optimized one for solving the log-filtering problem
described in Section 4.2.

7.1 Experimental Setting
We used a 16-node cluster that consisted of 9 nodes with

Intel R© CoreTM i5-2500 (3.30 GHz) and 7 nodes with Intel R©
CoreTM i5 CPU 760 (2.80 GHz); all nodes were equipped with 8-
GB memory (DDR3-1333) and 500-GB SATA HDD (7,200 rpm)

Fig. 4 Execution time of MapReduce job for log-filtering problem.

Table 2 Execution time (in seconds) plotted in Fig. 4.

number of nodes 2 4 8 16

generated 333 148 75 59
hand-optimized 318 132 72 56

Table 3 Average execution time of Map, Shuffle, and Reduce tasks.

generated hand-optimized

Map 12 11
Shuffle 40 36
Reduce 26 4

and connected with 1000BASE-T. We used Hadoop 2.7.1 and
JDK 1.8.0.

The input file was 100 million lines of 6-GB random text bi-
ased such that about 20% lines contained false. A line of the file
corresponded to an element of the input array logs. The output
file was 2 million lines of 2% of the input file.

Regarding the parameters of Hadoop MapReduce, we set the
split size to 128 MB. The number of Map tasks created for this
split size was 47. As in the setting of our prior work [15], we
tuned other parameters so that Reduce tasks started to run after
90% of the Map tasks ended. The number of cores in the CPUs
was four and we limited the number of Map tasks and the number
of Reduce tasks to two.

7.2 Experimental Results
Figure 4 and Table 2 show the execution time of a pro-

gram generated through our system and a hand-optimized pro-
gram. These execution times include only the time for the single
MapReduce job of solving the log-filtering problem and exclude
that for the following sequential concatenation of distributed
output values.

Table 3 shows the averages of each execution time of Map,
Shuffle, and Reduce tasks with 8 computing nodes. The Map
phase took about 3 times the average Map task time because we
had 47 Map tasks. Note that Map tasks and Reduce tasks ran in
parallel, and the results in Table 3 do not include the waiting time.

7.3 Evaluation
As seen from Fig. 4, the generated program had almost the

same performance as the hand-optimized one. This is because
there the only difference of code between them was whether if
statements formed functions. The optimization of our system
brought the same construction of MapReduce jobs as the hand-
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optimized one. This has demonstrated that our system can gener-
ate efficient programs that consist of map, reduce, and scan such
as the one for solving the log-filtering problem.

8. Related Work

The advantages of MapReduce as a data processing tool are
summarized as the following three points [7]: fine-grained fault
tolerance of large-scale jobs; making data processing on hetero-
geneous distributed storage systems easy; enabling us to unre-
strictedly call complex functions that are not given in SQL in
databases. An offset of this unrestricted nature in programming
is the cumbersome programming of implementing even common
useful functions, which SQL natively supports, through the Map
and Reduce APIs. Therefore, systems that generate MapReduce
programs from higher-level languages and APIs were developed
to enable lightweight programming while preserving the first and
second advantages.

Sawzall [17] and Pig *8 were procedural domain-specific lan-
guage systems for ad hoc log analysis. Pig was designed to enable
us to specify the pipelines of primitives of relational databases.
Sawzall was designed to enable us to describe aggregate compu-
tations briefly through for loops. Sawzall is similar to our sys-
tem in the sense that for loops are central to language design.
However, our target loops iterate over one-dimensional arrays,
while Sawzall’s loops iterate over sets or collections. Therefore,
Sawzall did not deal with order-sensitive computations that scan

can represent.
FlumeJava [4] was a Java library that offers a programming

framework equipped with both pipelines of data processing and
loops over collections. Since FlumeJava was a Java library, it was
designed for more general-purpose use. As Sawzall, FlumeJava
did not deal with computations on one-dimensional arrays. As
its main feature, FlumeJava was equipped with optimizations by
dynamically transforming graphs of pipelines. Our optimization
described in Section 6.2.3 is orthogonal to the ones of FlumeJava.

Although Sawzall and FlumeJava did not deal with one-
dimensional arrays, it is possible in principle to address our tar-
get computations on top of them. Because they were able to
handle tables (i.e., key-value collections), we can encode order-
sensitive computations on arrays into the ones on tables through
tricky programming on keys. This tricky programming of en-
coding causes cumbersome low-level MapReduce programming,
which we would have liked to avoid. The main contribution of
our system is to provide both the advantages of MapReduce as
a data processing tool and high-level programming for computa-
tions on one-dimensional arrays.

Liu et al. [13], [14] developed two list skeleton libraries on top
of MapReduce; one [14] was based on list homomorphism [3],
which is a composition of map and reduce, and the other [13]
was based on accumulate [12], which is a composition of scan,
map, and reduce. These libraries assumed that the user gave
appropriate operators satisfying the algebraic conditions required
by these skeletons. In contrast, our system is designed to take
sequential loops described without caring about algebraic condi-

*8 http://pig.apache.org/

tions and parallelize them as much as possible. Thus, ours bur-
dens the user less.

A recent representative study on making MapReduce program-
ming easier was a tool developed by Smith and Albarghouthi [19]
for synthesizing MapReduce programs from given input-output
examples on the basis of search and verification. Their approach
first prepares a predefined set of data-parallel skeletons and op-
erator templates and then extends it gradually with their com-
positions while verifying whether generated instances satisfy the
specifications of given input-output pairs; eventually the desired
programs are obtained through this iteration. Our system also
generates programs after composing skeletons. However, they
limited targets to MapReduce programs containing aggregation
with associative commutative operators. Thus, they did not deal
with accumulative computations like scan. Their approach as-
sumed that the whole of a generated program would be a com-
position of skeletons. Our system extracts loops to be converted
to skeletons from a given loop and thus can generate a best-effort
parallel program even when we cannot represent the whole as a
composition of skeletons.

This work has an aspect of automatic parallelization, which
has a long history and was originated from PTRAN [1]. In fact,
program dependence graphs [8], which we used in this work, are
commonly used in the context of automatic parallelization. A re-
cent study on automatic parallelization was performed by Fon-
seca et al. [10]. Their compiler parallelized general Java pro-
grams by extracting task parallelism with dependence analysis.
It was able to parallelize recursive functions straightforwardly
because the generated programs were task-parallel programs as-
suming work-stealing schedulers. However, parallelization fo-
cusing on task parallelism is not appropriate for selectively par-
allelizing large-scale data processing that we would like to use
with MapReduce. In this work, we have focused only on massive
data parallelism for MapReduce. Therefore, by limiting targets to
loops over one-dimensional arrays, we developed a tool capable
of generating efficient MapReduce programs.

Prominent work on extracting reduce and scan in the con-
text of automatic parallelization was performed by Fisher and
Ghuloum [9]. Their approach formalizes a given loop body as a
function and parallelizes it by discovering a computation for con-
structing its composite functions. They succeeded in parallelizing
loops containing complicated conditionals by applying heuristic
search and pruning it. Their idea of parallelization was formal-
ized as quantifier elimination and generalized to cover recursive
functions by Morihata and Matsuzaki [16]. Sato and Iwasaki [18]
presented a lightweight method based on Fisher et al.’s paper [9]
that formalizes a given loop body as matrix multiplication over
semiring after extracting maximum operators. Complicated loops
of reduce and scan that these studies dealt with are not in the
scope of our system. A parallelization strategy of extracting loops
to be converted to skeletons, which we have adopted, has been
presented [18]. In this sense, our contribution to this work is not
on automatic parallelization techniques. In fact, our implementa-
tion of diffusion transformation [11] is so straightforward that it
has made no technical extension. Our contribution of this work
is, as mentioned before, tool development based on existing tech-
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niques for making MapReduce data processing easier.

9. Conclusion

In this paper, we have presented a system that takes an in-
put program manipulating a one-dimensional array and gener-
ates an efficient Hadoop MapReduce program. We also have
experimentally demonstrated that our generated program can
achieve the same performance as a hand-optimized one. Our pre-
sented system enables the user to describe computations on one-
dimensional arrays without caring about the MapReduce model
and handle large-scale data efficiently with the advantages of
Hadoop MapReduce such as fault tolerance.

A direction of future work is to relax the current restrictions on
input programs and improve the expressiveness of them. Many
miscellaneous restrictions will be removed by adding normaliza-
tion passes. Our system will become able to deal with manipu-
lation of multiple (a constant number of) one-dimensional arrays
by introducing a common list skeleton called zip. In such cases,
naturally independent tasks can occur and would bring room for
optimization of MapReduce programs. Not only for manually
described loops, it is worth introducing MapReduce-style primi-
tives such as groupByKey and filter and generating MapReduce
tasks that put it all together. We would then be able to evaluate
our system more practically with input examples of Sawzall and
FlumeJava.
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