
Journal of Information Processing Vol.25 854–865 (Sep. 2017)

[DOI: 10.2197/ipsjjip.25.854]

Regular Paper

Detection and Filtering System
for DNS Water Torture Attacks

Relying Only on Domain Name Information

Takuro Yoshida1,a) Kento Kawakami2 Ryotaro Kobayashi3 Masahiko Kato4

Masayuki Okada5 Hiroyuki Kishimoto6

Received: December 5, 2016, Accepted: June 6, 2017

Abstract: Water torture attacks are a recently emerging type of Distributed Denial-of-Service (DDoS) attack on Do-
main Name System (DNS) servers. They generate a multitude of malicious queries with randomized, unique sub-
domains. This paper proposes a detection method and a filtering system for water torture attacks. The former is an
enhancement of our previous effort so as to achieve packet-by-packet, on-the-fly processing, and the latter is an appli-
cation of our current method mainly for defending recursive servers. Our proposed method detects malicious queries
by analyzing their subdomains with a naı̈ve Bayes classifier. Considering large-scale applications, we focus on achiev-
ing high throughput as well as high accuracy. Experimental results indicate that our method can detect attacks with
98.16% accuracy and only a 1.55% false positive rate, and that our system can process up to 7.44 Mpps of traffic.

Keywords: DNS, DDoS, IPS, water torture attacks, pseudo-random subdomain attacks, naı̈ve Bayes classifier

1. Introduction

A key component of the Internet is the Domain Name Sys-
tem (DNS), which many services, including the World Wide Web
(WWW) and electronic mail, depend on. The most important
function of this system is name resolution, which refers to conver-
sion between human-memorable domain names and IP addresses

necessary to establish connections. Owing to its significance, the
DNS is a common target of cyber attacks.

Water torture attacks [1] are a type of Distributed Denial-of-
Service (DDoS) attack that aims to exhaust computational re-
sources, such as processors, memory, and collateral network
bandwidth capacity, by overwhelming DNS servers via a huge
number of random subdomain queries. Authoritative servers are
generally targeted, but secondary damage can be caused to recur-
sive servers relaying malicious queries.

The goal of this study is to provide a detection method for
water torture attacks together with a working prevention system.
During development, we expect the large-scale application of this
system. Such a system needs to detect and prevent malicious
queries sufficiently quickly and robustly under immense traffic

1 Graduate School of Engineering, Toyohashi University of Technology,
Toyohashi, Aichi 441–8580, Japan

2 Faculty of Engineering, Toyohashi University of Technology, Toyohashi,
Aichi 441–8580, Japan

3 Faculty of Informatics, Kogakuin University, Shinjuku, Tokyo 163–
8677, Japan

4 Department of Information Security, University of Nagasaki,
Nishisonogi, Nagasaki 851–2195, Japan

5 Japan Network Information Center, Chiyoda, Tokyo 101–0047, Japan
6 Comworth Co., Ltd., Ota, Tokyo 102–0071, Japan
a) yoshida2016@ppl.cs.tut.ac.jp

during attacks.
Several detection methods, including our previous one, have

been proposed. However, to the best of our knowledge, there
have been no practical prevention systems that selectively block
malicious queries. A further novel feature of our study is the
empirical testing of not only accuracy, but also throughput in a
near-real-world environment.

This study focuses on recursive servers. This is because sec-
ondary damage suffered by recursive servers is becoming a cru-
cial and urgent problem, especially among network operators
who manage massive servers accessed by many users. Fur-
thermore, prevention closer to the source of malicious queries,
namely at recursive servers, leads to reduced damage to author-
itative servers as well. Thus, recursive-server-side detection and
prevention systems are needed and meaningful.

This study is an expansion of our previous study [2] *1. Con-
tinuing to utilize the potential of the naı̈ve Bayes classifier, we
upgraded the detection method in terms of feature selection to
achieve better accuracy. Furthermore, our previous detection sys-
tem was re-designed to become a prevention system.

The rest of this paper is organized as follows. Section 2 intro-
duces the mechanism of water torture attacks and possible miti-
gation measures for them. Section 3 reports work related to water
torture attacks and other similar DNS threats and outlines the dif-
ferences from our previous study. Sections 4 and 5 describe the
rationale and implementation of our detection method and filter-
ing system, respectively. Section 6 clarifies the evaluation meth-
ods and environment of this study and its experimental results.

*1 We previously published preliminary results [3] of our current study.

c© 2017 Information Processing Society of Japan 854

Journal of Information Processing Vol.25 854–865 (Sep. 2017)

Fig. 1 Two phases of a water torture attack.

Based on this, Section 7 discusses the effectiveness and limita-
tions of our method and system. Finally, Section 8 concludes this
paper.

2. Water Torture Attacks

2.1 Background and Mechanism
Water torture attacks, also known as DNS slow-drip attacks

or (pseudo-)random subdomain attacks, were first reported in
2009 [4] and became widely recognized in early 2014 [1], espe-
cially among operators of large recursive servers. The funda-
mental concept of a water torture attack is quite simple: even
if each machine sends only a few queries, ultimately the snow-
balling number of queries will relentlessly torture and collapse
the targeted server.

Typically, queries for frequently appearing domains seldom
reach authoritative servers because intermediate recursive servers
often have cached previous data for the domains and can return
responses from their caches. Only when the recursive servers do
not have cached data does the query reach the appropriate au-
thoritative servers. In contrast, queries with randomized unique
subdomains may pass straight through to the authoritative servers.

Now, assume that an attacker is launching an attack on some
authoritative server. We consider an attack to have two phases,
illustrated in Fig. 1. First, the attacker organizes a botnet, a group
of remotely manipulated machines called bots, to be ready to be-
gin an attack. Then, the bots send malicious queries through open
resolvers, which are improperly configured, open-access recur-
sive servers. Note that each query in a water torture attack appears
normal and the amount that each bot sends is moderate, making it
difficult to distinguish malicious queries from legitimate queries.
One of their few characteristics is that they include random sub-
domains such as

ckyx5yxrkkp9.example.com
to ensure they reach the targeted authoritative server.

Although the traffic that each bot generates is not intensive, the
cumulative number of queries toward the targeted server becomes
a tremendous flood, eventually overloading the server until it be-
comes unresponsive. This is the attacker’s primary objective but
is only the first phase of the attack, as shown in Fig. 1 (a).

After the targeted authoritative server is exhausted, there is a
domino effect on relaying recursive servers. If a recursive server
receives a query for an uncached domain from a client, then the
server repeats this until it finally obtains the sought-after infor-

mation, which involves asking an appropriate authoritative server
and waiting for a response until a timeout expires. While waiting,
the recursive server needs to keep track of the contextual data of
the connection. If the requested authoritative server becomes un-
responsive but the bots continue to send queries, then the contex-
tual data stacks up in the recursive server, gradually consuming
resources and, finally, making the recursive server also unrespon-
sive as a result of overload. This is the second phase of the attack,
as shown in Fig. 1 (b). If this collateral damage strikes large recur-
sive servers, it could be a considerable disaster for many Internet
users, highlighting the need for recursive-server-side prevention.

2.2 Open Resolvers as Accidental Accomplices
Recursive servers are generally set up for a limited number of

users, usually on the same network, and should not respond to
external users. Open resolvers are improperly configured, open-
access recursive servers. They cause vulnerability to many types
of DNS threats, including water torture attacks and amplification
attacks [5].

There are roughly two types of open resolvers: badly config-
ured recursive servers and home routers that are vulnerable or
manufactured with improper initial settings. Although both act
like public recursive servers from the outside, their inner behav-
iors differ. Badly configured recursive servers are genuine re-
cursive servers, which means that they process recursive queries
step-by-step from a root server. In contrast, home routers with
improper settings do not execute that procedure; instead, they re-
quest another server to do it since they are mere DNS forwarders,
not complete recursive servers. The substitute server is usually a
server managed by an Internet service provider (ISP) with which
an owner of a router contracts. Bad routers therefore serve as
a proxy for their upstream servers. Eventually acting like open
resolvers, an ISP’s servers suffer the collateral damage of water
torture attacks, though the servers themselves are closed to the
public.

2.3 Mitigation Measures
Attacks exploit the specification of the DNS itself, and thus

complete prevention by simple rules is difficult. Thus, we explain
some measures for mitigation of such attacks. Note that the fol-
lowing description is from the perspective of defending recursive
servers.

One recursive-server-side mitigation measure for water torture

c© 2017 Information Processing Society of Japan 855

Journal of Information Processing Vol.25 854–865 (Sep. 2017)

attacks is Recursive Client Rate Limiting [6] *2. This function re-
stricts the maximum number of outstanding queries per domain
and/or server. Even if a recursive server receives a huge num-
ber of queries toward a certain authoritative server, the recur-
sive server relays only a limited number of them; the remaining
queries are treated as server errors. If this rate limiting approach
is unavailable for some reason (e.g., when using an older version
of server software), then another possible measure would be to
clarify the targeted domain and configure a server to deny queries
about it.

With these measures, the load on the recursive server is sup-
pressed to a certain extent, but it can also obstruct legitimate users
from fetching information that the attacked authoritative server
has. This essentially means that the attack has achieved its pri-
mary objective of making the targeted server difficult to access
or, at worst, completely inaccessible.

We believe that the subject to be denied should be the incom-
ing malicious queries themselves and not the victim domain and
the server. Therefore, to form an effective solution, we consider
that measures for water torture attacks should focus on the quality
of each query, rather than situational information like the number
of pending queries and the frequency of requests toward specific
servers.

3. Related Work

3.1 Detection of Water Torture Attacks
To the best of our knowledge, currently existing measures do

not aim to identify which queries are the cause. Rather, they try
to recognize occurrences of attacks by observing changes in com-
munication conditions or in the servers. For example, Alonso
et al.’s study [7] treats water torture attacks as a type of flood-
ing attack. The main purpose of their approach is to provide a
detection method for such attacks toward recursive servers. Their
method observes changes in correspondence relations between IP
addresses and domain names in DNS traffic, and carries out de-
tection using a ν-support vector machine (SVM) classifier. Their
method performs well for detection but not for prevention. That
is, occurrences of attacks can be identified, but the queries caus-
ing the attack cannot. In contrast, our method can perceive both
occurrences of attacks and the queries that cause them, and thus
it is suitable for a prevention system.

Cloudmark, Inc. provide a function to mitigate the damage
caused by a huge number of queries with randomized subdo-
mains exhausting server resources [8] *3. Their method observes
changes in tendency of some factors for every domain, such as
query-vs-response and success-vs-failure rates. Although sophis-
ticated, it is still a type of per-domain rate-limiting method and
so it has the problem of potential obstruction of legitimate users
trying to access domains being attacked.

*2 The most popular implementation of recursive client rate-limiting is
BIND, a major DNS server software. This function is available on ver-
sions 9.9.8 and above.

*3 Cloudmark, Inc. call these types of attacks resource exhaustion. We con-
sider water torture attacks to be a type of resource-exhaustion attack.

3.2 Detection of Automatically Generated Words
Fake account names used for spamming on social network sites

are typically generated from random strings or from a dictionary.
Freeman’s study [9] utilized a naı̈ve Bayes classifier with n-grams
of letters to reveal such fake accounts. Although we use similar
techniques in our study, we also employ additional features re-
garding the DNS and observe that our method works well for
water torture attacks.

Similar to water torture attacks, Kaminsky attacks also gen-
erate queries with random subdomains to the targeted recursive
server. Matsubara et al. [10] proposed two detection models for
Kaminsky-like attacks, both calculating a distance between two
consecutive queries. One uses the Euclidean distance of IPv4 ad-
dresses, each of which is split into four 8-bit parts and treated
as a four-dimensional vector, while the other uses the restricted
Damerau-Levenshtein distance, a type of edit distance, between
domain names of two consecutive queries. This study is of inter-
est, but did not report details of the accuracy of the results.

Domain names yielded by domain generation algorithms
(DGAs) are frequently seen in DNS traffic, and these are used
for botnet communication. Yadav et al. proposed a detection
method for these domains that combined multiple metrics related
to distributions of alphanumeric characters [11]. Schiavoni et al.’s
method [12] for detecting DGA-based domain names utilizes a
combination of dictionary- and n-gram-based approaches.

Ideas for the detection of generated words should also be ap-
plicable for water torture attacks. However, such ideas proposed
in earlier studies have mainly focused on accuracy while paying
less attention to processing speed, because the targeted threats
investigated in these studies, such as Kaminsky attacks and bot-
net communication, do not induce a large number of traffic. On
the other hand, as water torture attacks are a type of DDoS at-
tack, a detection mechanism for them requires sufficient capacity
to process a huge number of queries instantly. Our method was,
accordingly, developed with a deep consideration for processing
speed and tested as a practical prevention system. We thus con-
sider our method as being suitable for water torture attacks and
this differentiates it from methods for the mere detection of ran-
dom words.

3.3 Our Previous Study
Our previous effort [2] and the current study, each of which

provide a method and a system, aim to detect water torture attacks
based on a naı̈ve Bayes classifier. We place a strong emphasis on
accomplishing not only high accuracy but also high throughput to
make our system practical for real-world situations.
3.3.1 Conceptual Difference

The biggest difference between this study and our previous
study is a fundamental notion of how to cope with attacks. In
general, victims of DDoS attacks have limited means to withstand
them and thus should cooperate with ISPs; in particular, they are
completely helpless against bandwidth saturation attacks without
others’ help. We therefore considered it important to devise an
initial detection method with the actual prevention performed at
the higher-level network, according to the information retrieved
with the method.

c© 2017 Information Processing Society of Japan 856

Journal of Information Processing Vol.25 854–865 (Sep. 2017)

However, water torture attacks are not a type of amplification
attack. That is, the bandwidth capacity exhausted by an attack
does not matter. Instead, the source of the intensity is how many
packets are sent to the targeted server, namely, how much pro-
cessor and memory resources are consumed in name resolution
procedures *4. We thus constructed an at-the-front filtering sys-
tem as an effective way of suppressing water torture attacks.

The previous method had a great disadvantage with respect to
constructing such a system: it provided only delayed detection.
This meant that a system based on the method would take 10 min-
utes to detect an attack after a malicious query came. This delay
resulted from the existence of the time window used for calcu-
lating the number of occurrences of the same subdomain. The
method was thus not directly applicable to an on-the-fly preven-
tion system, in contrast to our new system.

Another difference is that the previous study targeted the au-
thoritative server whereas the current study targets the recur-
sive servers. Recursive servers relaying malicious queries suf-
fer from secondary damage, and there is therefore a demand to
shield recursive servers, especially large-scale ones provided by
ISPs. This study aims to meet this demand. Note that our cur-
rent system is designed for recursive servers, but does not depend
on them. The system would still be effective for authoritative
servers, although this is out of the scope of the current study.

Due to the differences in approach and implementation, our
previous and current methods are not comparable in identical con-
ditions. The comparisons of the accuracy given in Section 6 are
thus for reference only. In addition, since the functions of the
previous and current system are completely different, we do not
compare the two systems in this paper. Whereas the current sys-
tem detects and then filters malicious queries, the previous system
only detects them.
3.3.2 Differences in Implementation

A major difference from the previous method is that the current
method analyzes queries instead of responses in order to be able
to filter queries. Hence, we revised the selected features, detailed
in Section 4.3, for a naı̈ve Bayes classifier.

The previous method took the number of occurrences of the
same subdomain within a certain period of time as a feature, but
this impeded implementation of real-time detection. The current
method no longer uses this feature and instead instantly analyzes
each query and judges whether it is randomly generated. This
enables us to employ the method to construct a filtering system.

The feature of the label count was also deleted. Our new
method only focuses on the leftmost label, and thus the number
of labels is obviously meaningless.

We still use bigram-based features in this study but changed
the method of calculation. Whereas the previous method used the
sum of the probabilities of occurrence of each bigram, the current
method uses their product with Lidstone smoothing. This yields a
higher accuracy that is sufficient to compensate for the loss result-
ing from the disuse of the previously used time-window feature.
Moreover, this change allows our method to outperform the pre-

*4 Secure64 reports: As a side effect, our service provider customers are
seeing a spike in DNS traffic resulting in increased CPU and memory
usage [1].

vious one in terms of accuracy; in particular, the number of false
positives significantly decreases.

4. Detection Method

4.1 Approach
Our method judges whether each subject is a water torture

attack based on the presence or absence of a randomly gener-
ated subdomain. This decision relies on a naı̈ve Bayes classifier,
which we chose for its advantages in accuracy and speed.

Naı̈ve Bayes classifiers are well tested and famous for their
high accuracy despite their simplicity and computational effi-
ciency [13], [14], especially in the field of text classification [15]
(e.g., e-mail spam filtering [16]). For handling short texts,
the accuracy of naı̈ve Bayes classifiers outperforms that of the
SVM [17]. Moreover, implementations accelerated using a field-
programmable gate array (FPGA) and general-purpose graphics
processing unit (GPGPU) have already been developed [18], [19].

4.2 Multinomial Naı̈ve Bayes Classifier
Naı̈ve Bayes classifiers are a type of supervised learning al-

gorithm based on Bayes’ theorem as the name indicates. When
given a set of features of a subject, a classifier classifies subjects
according to estimated posterior probabilities. In this study, we
chose the multinomial model as an event model for our classifier
because it works well for text classification compared with other
models such as Bernoulli and Gaussian models [15], [20], [21].

Upon classification, we assume two classes: C0 for non-
random subjects and C1 for random subjects. Given a class
variable Ck and a feature vector x = (x1, . . . , xn), a probability
P(Ck |x) that a subject whose features are expressed as x belongs
to Ck, is calculated by Bayes’ theorem.

P(Ck |x) =
P(Ck)P(x|Ck)

P(x)
. (1)

Assuming that each feature is independent of each other, this
becomes:

P(Ck |x) =
P(Ck)

∏
i P(xi|Ck)

P(x)

∝ P(Ck)
∏

i

P(xi|Ck). (2)

The more probable class Ĉ is determined to be the class with
the higher probability:

Ĉ = arg max
k∈{0,1}

P(Ck)
∏

i

P(xi|Ck). (3)

Note that since P(x) is constant within a single input, P(x)
does not need to be calculated to compare probabilities of differ-
ent classes. As the equation above states, we need to seek a class
probability P(Ck) and a conditional probability P(xi|Ck), which
we estimate according to the maximum a posteriori (MAP) es-
timation. In the multinomial model, parameter estimates θk =

(θk0, . . . , θkn) are obtained by:

θki =
Nyi + α

Ny + αn
, (4)

where Nyi is the number of occurrences of the i-th feature and Ny
is the total number of all features for the class Ck in a training set.

c© 2017 Information Processing Society of Japan 857

Journal of Information Processing Vol.25 854–865 (Sep. 2017)

The probability P(Ck) can also be estimated in a similar manner,
as it is the quotient of the number of items belonging to the class
Ck and the total number of items in a training set.

In Eq. (4), α is a smoothing factor of Lidstone smoothing,
which significantly affects accuracy. This smoothing technique
is required to avoid the so-called zero-frequency problem. With-
out this technique, once a single subject has any unknown fea-
tures not in a training set, an estimated probability falls to zero.
If probabilities of both classes become zero, the classifier cannot
classify such a subject at all. This behavior apparently decreases
overall accuracy and should be avoided.

4.3 Feature Selection
In classification, our classifier only focuses on the leftmost la-

bel of analysis subjects, and extracts the following two types of
features from the label:
Length-based feature The length of the leftmost label.
Bigram-based feature Each bigram of letters of the leftmost

label.
Since random subdomains require a certain degree of length to

be unique, we consider the feature of length to be suitable. To
avoid oversensitivity to rare cases, we set a cutoff point to this
feature. This is the value determined to yield the best accuracy in
experiments.

A bigram of letters, hereafter called simply a bigram, is two
consecutive letters in a string. Furthermore, for more precise clas-
sification, strings are regarded to have phantom letters that signify
the head and the tail. For example, the word water can be decom-
posed into six bigrams: ˆw, wa, at, te, er, r$, where ˆ is a phantom
head-of-string letter and $ is a phantom tail-of-string letter. Bi-
grams are reported to be an effective factor for short-text classifi-
cation [9], and our experiments indicate that employing phantom
letters produces higher accuracy.

For example, a domain mail.example.com. has the following
seven features:
• 4 letters in the leftmost label and
• The following of five bigrams, each considered a feature: ˆm,

ma, ai, il, l$.
The classifier refers to frequency tables, created by learning

from a training dataset, for the relative frequencies of these seven
features and estimates probabilities for both random and non-
random cases.

5. Filtering System

5.1 Overview
As Fig. 2 shows, this system is assumed to be placed in front of

a recursive server, and it censors all packets to the server and only
relays legitimate queries and packets other than DNS queries.
That is, all malicious queries are dropped. To be more client-
friendly, the system should return responses signifying a server
error when dropping malicious queries. However, in the current
implementation, it does not do so because of limitations in the
employed network capture card with which we built our system.

5.2 Software and Hardware Specifications
Table 1 shows the specifications of the filtering system that

Fig. 2 How the system works.

Table 1 Software and hardware specifications of the fitering system.

OS Ubuntu 14.04.1 (64-bit version)
Compiler gcc 6.2.0

Processor 2 x Intel Xeon CPU E5520 (2.26 GHz, 4 cores)
Memory 16.0 GB
Network Fiberblaze fbC2XGhh [22]

capture card (Network card specialized for packet capturing)

we developed and examined. What we should point out is that
our system utilizes a hardware-accelerated network card that can
capture, process, and transmit a significant number of packets,
up to 10 Gbps, instantly by using APIs specially designed for the
card. The card and APIs provide a special way to receive and
transmit packets totally different from sockets provided by the
Linux OS and do not generate interruptions to processors in cap-
turing, which enables far faster packet I/O than ordinary network
interface cards and standard APIs. Since we hoped that our sys-
tem could be used along with large-scale recursive servers, this
advantage of the card is exactly what we needed, and thus we
employed it.

5.3 Implementation
The filtering program running on the system was written in

the C language and compiled with gcc version 6.2.0. Packet I/O
depends on the fbCAPTURE framework (APIs provided by the
manufacturer of the network card), and other parts of the pro-
gram, including packet analysis and classification, do not need
any libraries except for APIs provided by the OS.

A step-by-step explanation of the behavior of the system fol-
lows. First, before running as a filtering system, the system
must undergo learning. This learning stage involves creating fre-
quency tables for random and non-random subjects from a train-
ing dataset. Then, the system waits for queries and classifies them
using the proposed method as they arrive. The classification step
consists of acceptance of a set of features extracted from a re-
ceived query, probability estimation for both cases, and finally
comparison of the two probabilities. Only if the classifier judges
the query to be not malicious does the system pass it to a recursive
server.

In probability estimation, all intermediate calculations are per-
formed in a logarithmic scale, which has advantages for both ac-
curacy and speed. The main reason is to avoid underflows. Es-
timated values, represented by a floating-point type, tend to be-
come too big or too small, which linear-scale multiplication can-
not precisely handle. A secondary benefit is the speed of classi-
fication. Multiplication is converted to addition, which is a faster
calculation to process. To avoid repeated linear-to-logarithmic
conversions and vice versa, the frequency tables store probabil-
ities in a logarithmic scale. The classifier thus does not need to
convert calculations during the classification step.

c© 2017 Information Processing Society of Japan 858

Journal of Information Processing Vol.25 854–865 (Sep. 2017)

5.4 Whitelisting for Random but Legitimate Domain Names
To make our filtering system more practical and feasible in

the real world, the system should have a fail-safe function not
to block legitimate queries. For that, we consider a whitelist-
ing function. This is not related to the rationale of our detection
method, the naı̈ve Bayes classification, and therefore we treat the
function as a supplement.

There are several cases that some domain name is judged to
be random by the classifier but is actually legitimate and not re-
lated to water torture attacks. They include internationalized do-
main names (IDNs) and ones used by contents delivery services
(CDNs). In IDNs, multilingual (Unicode) characters are con-
verted to ASCII characters in accordance with the rule named
Punycode [23], and converted domain names themselves usu-
ally look random. (e.g., xn–eckwd4c7cu47r2wf.jp) In case of
CDNs, many domain names are assigned for one service for
the sake of load balancing, and those domain names sometimes
include random-looking, or serial, numbers (e.g., foobar-elb-

251771428.ap-northeast-1.elb.amazonaws.com.) In order that
the system does not filter these domain names out, it should be
desirable not to operate the detection and filtering mechanism in
case a queried domain name is such a domain name.

There are domain names that tend to have random-looking sub-
domain names, and thus our approach focuses on the second left-
most label of a domain name. Prior to analyzing a query, the
system checks whether the second leftmost label of the queried
domain name is on a whitelist, and if so, the query is soon judged
to be non-malicious without the naı̈ve Bayes classification. The
whitelist is a list of second leftmost labels whose neighbor on the
left tends to be random, and it is manually prepared beforehand.
For the sake of performance, the whitelist lookup is implemented
by utilizing the binary search algorithm.

The reason that the system analyzes only the second leftmost
label instead of all labels except the leftmost is to achieve accept-
able throughput.

We made a whitelist from the captured items in the datasets
used for the accuracy evaluation (Section 6.1.2). We extracted
second leftmost labels from items whose desired output is ran-
dom but legitimate in the datasets, and obtained the number of
occurrences for each label. Table 2 shows the top 10 frequent la-
bels that tend to have a random label as a child. According to our

Table 2 Top 10 frequent second leftmost labels that tend to have a random
label as a child.

Label
Domain

Frequency (%)
Cumulative

owner frequency (%)

www - *5 35.74 35.74
ap-northeast-1 Amazon.com, Inc. 9.68 45.42
cloudfront Amazon.com, Inc. 8.15 53.58
us-east-1 Amazon.com, Inc. 5.18 58.76
metric Google Inc. 4.78 63.53
googlevideo Google Inc. 3.56 67.10
openresolvertest (unidentified) 3.38 70.48
ns - *5 2.11 72.58
us-west-2 Amazon.com, Inc. 1.83 74.42
fc2 FC2, Inc. 1.59 76.00

*5 Some websites use domain names such as srv01.www.example.com.,
srv02.www.example.com., and srv03.www.example.com. The label ns
is also the same case.

own investigation, 35 items are needed on the whitelist for 90%
coverage of random items. Similarly, 89 items for 95%, and 427
items for 99%.

6. Evaluation

We evaluated the performance of our contributions through two
types of evaluation: accuracy evaluation for the detection method
and throughput evaluation for the filtering system.

6.1 Accuracy Evaluation
This section clarifies the details of the accuracy evaluation that

targets our detection method.
6.1.1 Metrics

Our primary metric for evaluating the performance of the clas-
sifiers is accuracy. We also regard false positive rates (FPR) as
important. A good classifier must yield not only high accuracy
but also low FPRs.

The two metrics are defined as:

Accuracy =
CT P +CT N

CT P +CT N +CFP +CFN
, (5)

FPR =
CFP

CFP +CT N
, (6)

where CT P, CT N , CFP, and CFN stand for the counts of true pos-
itives, true negatives, false positives, and false negatives, respec-
tively. True subjects are ones whose classification outcomes and
desired outputs correspond, while false ones are those where they
do not. Positive subjects are ones determined to be malicious and
negative ones are those found to be legitimate.
6.1.2 Datasets

To the best of our knowledge, there are currently no public
datasets dedicated to water torture attacks. We thus created four
datasets that simulated such attacks in order to conduct this eval-
uation. These datasets can be used for both training and testing.
As Table 3 shows, each item in the datasets is a set of values for
each feature and a desired output, namely whether this item is
random or not. Each item is either captured from actual traffic or
generated by a program, and as Table 5 shows, the proportion of
the two types in a single dataset is the same.

The four datasets differed in the acquisition dates of the cap-

Table 3 Example of a dataset.

Leftmost label Is this
Length random?

mail 4 No
www 3 No
www 3 No

7rizyrfkde 10 Yes
594hhag88gx22 13 Yes

. . .

Table 4 Example of a dataset (modified to neutralize the detection avoid-
ance).

Leftmost label Is this
Length random?

mail 4 No
www 3 No
www 3 No

www7rizyrfkde 13 Yes
www594hhag88gx22 16 Yes

. . .

c© 2017 Information Processing Society of Japan 859

Journal of Information Processing Vol.25 854–865 (Sep. 2017)

Table 5 Constituents of the datasets.

Dataset Captured Generated
Total

No. Non-random Random Random

1
3,390,068 503,495 3,893,563 7,787,126
(43.53%) (6.47%) (50.00%) (100.00%)

2
3,533,760 576,618 4,110,378 8,220,756
(42.99%) (7.01%) (50.00%) (100.00%)

3
3,361,443 534,404 3,895,847 7,791,694
(43.14%) (6.86%) (50.00%) (100.00%)

4
1,666,058 306,460 1,972,518 3,945,036
(42.23%) (7.77%) (50.00%) (100.00%)

tured parts of the items. The duration for capturing were all 24
hours but the starting times were different. For each of the entries
in the column Dataset No. in Table 5, the starting times are:
(1) Wednesday, June 8, 2016 at 0:00:00 a.m. JST
(2) Thursday, June 9, 2016 at 0:00:00 a.m. JST
(3) Friday, June 10, 2016 at 0:00:00 a.m. JST
(4) Saturday, June 11, 2016 at 0:00:00 a.m. JST

Captured items, corresponding to legitimate queries, were
made from actual DNS queries that asked for an address (A)
record *6. Desired outputs for the captured items were manually
determined, as even ordinary traffic includes a certain amount of
random queries, whether or not an attack is being carried out.

Intended to simulate malicious queries, the generated items
were randomly created and therefore the desired outputs for them
were always random. They all met the following conditions and
the distribution was uniform:
• The leftmost label has 10 to 19 letters, and
• Possible characters for labels are the lower-case letters, nu-

merals, and the hyphen (-).
We selected the candidate letters according to the Request for

Comments (RFC) for the DNS [24], and the label length based on
the implementation of the Metasploit Framework [25] *7, which
included a function to conduct Kaminsky attacks. As we pre-
viously noted, emerging queries during water torture attacks are
similar to those during Kaminsky attacks. We thus decided to
employ the same approach to generate imitated malicious domain
names in the evaluation.

We conducted cross-validation when calculating accuracy and
FPRs. When evaluating a classifier, we thus tested all possible
patterns of combinations of training and testing datasets and fi-
nally averaged all the results.
6.1.3 Comparison of Various Settings

The cutoff point for the length-based feature and the smooth-
ing factor are hyperparameters, which significantly affects the ac-
curacy of classifiers, and thus they should be deliberately deter-
mined. We therefore conducted a grid search: trying every pos-
sible hyperparameter and then choosing the one that achieves the
best accuracy.

The following shows the search ranges, where boldfaced val-
ues mean that a corresponding feature is disabled.
Cutoff point 1, 2, . . . , 62, 63; and
Smoothing factor 0, 10−5, 10−4, . . . , 103, 104.

Experimental results indicated the best cutoff point is 12 and

*6 The packets used for the captured items were captured at the edge router
in Toyohashi University of Technology.

*7 The Metasploit Framework is a well-known, open-source tool for pene-
tration tests.

Table 6 Confusion matrix of results obtained with the best hyperparame-
ters.

Predicted
Random Non-random

A
ct

ua
l Random

46,403,257 976,592
(55.75%) (1.17%)

Non-Random
555,801 35,298,186
(0.67%) (42.41%)

Accuracy 98.16%
Error rate 1.84%
FPR 1.55%

that the best smoothing factor is 10−3 (0.001). With these best
hyperparameters, the classifier achieved 98.16% accuracy and a
1.55% FPR. Table 6 details the classification results for this case.

Figure 3 and Fig. 4 illustrate how the hyperparameters affect
the performance.

Figure 3 shows the results when the cutoff point was varied
with the smoothing factor fixed at 0.001, omitting results when
the value was more than 20 because a similar tendency continues
until a value of 63. There appeared to be a limit to improvement
of performance at higher cutoff points. This evaluation showed
that the best cutoff point was 12, but cutoff points greater than 12
also produced acceptable outcomes.

Figure 4, meanwhile, shows the results when the smoothing
factor was varied with the cutoff point fixed at 12. We found that
the smoothing technique apparently improved accuracy, but that
an excessive smoothing factor caused extreme deterioration.
6.1.4 Comparison to Our Previous Method

We applied our previous method to the datasets described in
Section 6.1.2. Table 7 shows the detection results. In order to
adjust conditions, the feature of the number of occurrences of
the same domain names, which is the feature that the previous
method used, was disabled.
6.1.5 Durability against Detection Avoidance by Attackers

If attackers notice that some mechanism works to prevent at-
tacks and that the mechanism is based on bigrams, they may try to
deceive the system by adding common words, namely frequently
used as a domain name like www, to queried domain names.

e.g., wwwqawsedr.example.com.

To neutralize this trick, it is effective to embed such common
words into generated items in a dataset. For example, the datasets
alter Table 3 to Table 4.

We examined how well this treatment works. Although there
are many words common as a domain name, in order to simplify
this evaluation, we chose www, presumably the most common
word in domain names, as an embedded word. In this evalua-
tion, a training dataset was either one: (A) the original version
of Dataset No.1 or (B) a modified version of Dataset No.1. www

is embedded to each generated items in the modified version. A
testing dataset was Dataset No.2 that 0, 3, 6, 9, 12, or 15 letters
of w are embedded into.

Figure 5 shows the results of this evaluation. We observed ob-
vious deterioration in accuracy with the training dataset A, and
the more the repetition of w increased, the more the accuracy de-
creased (97.94% → 63.12%). On the other hand, the worst ac-
curacy was obtained when the number of w was 0 (97.48%), and
the more the repetition of w increased, the more the accuracy also

c© 2017 Information Processing Society of Japan 860

Journal of Information Processing Vol.25 854–865 (Sep. 2017)

Fig. 3 Results when varying the cutoff point.

Fig. 4 Results when varying the smoothing factor.

Table 7 Confusion matrix of results obtained by the previous method.

Predicted
Random Non-random

A
ct

ua
l Random

45,880,665 1,499,184
(55.12%) (1.80%)

Non-Random
2,838,246 33,015,741

(3.41%) (39.67%)

Accuracy 94.79%
Error rate 5.21%
FPR 7.92%

Fig. 5 Accuracy deterioration when an attacker tries to avoid detection.

increased (97.74% at 15). FPRs differed depending on the used
training dataset. We achieved the lower rate (0.71%) with the
dataset B, while the FPR was 1.38% when we used the dataset
A. Note that the number of the repetition of w is not related to
FPRs, because all of the generated items are labeled to be random

Fig. 6 Throughput evaluation.

and errors that treat actual random items as non-random are false
negatives.

6.2 Throughput Evaluation
This evaluation aimed to test the entire system to obtain

throughput with generated traffic. In this study, we primarily
focus on packet rates, instead of bit rates, as throughput of the
system, because water torture attacks do not intend to saturate
network bandwidth capacity.

In this section except for Section 6.3, the whitelisting was dis-
abled. The hardware and software specifications of the system
are detailed in Section 5.2.
6.2.1 Method

In the throughput evaluation, the system and a traffic genera-
tor (Xena C1-M2SFP+) were directly connected with 10 Gigabit
Ethernet (Fig. 6). Although the system was originally designed
to work as a filtering system, in the evaluation, it was set only to

c© 2017 Information Processing Society of Japan 861

Journal of Information Processing Vol.25 854–865 (Sep. 2017)

Fig. 7 Experimental results of the throughput of the system.

analyze queries and not to filter out malicious queries. That is, all
analyzed queries were sent back.

The generator observed returned packet rates, which we re-
garded as throughput. In addition to throughput when the system
acted as a detection system, we also obtained throughput when
the detection function was disabled, in order to discuss process-
ing time for detection.

Each experiment constituting this evaluation lasted for two
minutes (Fig. 6), and during an experiment, the generator trans-
mitted queries at a constant rate. The transmission bit rate was
always 10 Gbps among all the experiments, but because of the
difference of packet size, resulting from the length of queried do-
main names, transmission packet rates differed according to each
experiment.

Each packet that the generator transmits was a DNS query con-
structed on an IPv4 UDP packet, which consisted of only one
question section of an A record. Among the experiments, queries
concerning domain names differed but the other parameters were
the same. The queried domain names were one-label strings
whose length ranged from 0 (the root domain) to 63, which con-
dition came from the RFC 1035 [24]. Due to the limitation of the
generator, all the letters of the queried domain names are a. (e.g.,
aaaaa.)

One minute of the first half was a break-in and then we
recorded received packet rates every second for one minute of
the last half. Finally, we treated an average value of the recorded
packet rates as throughput in a current condition. Because we
observed that received packet rates did not fluctuate significantly
after the one-minute break-in, we consider that one minute is long
enough to evaluate throughput.
6.2.2 Results

Figure 7 shows the effects on throughput when the detection
function was enabled, when detection was disabled, and lengths
of the leftmost label. The best throughput of 7.44 Mpps (million
packets per second) was achieved at 0 letters (queries for the root
domain), and the worst throughput of 4.69 Mpps was obtained at
60 letters.

6.3 Influence of the Whitelisting
The whitelisting aims to suppress legitimate queries from

wrong blocking, but it brings about throughput deterioration.
This subsection shows how throughput decreased by imple-

Fig. 8 Throughput deterioration caused by the whitelisting.

menting the whitelisting explained in Section 5.4. In this eval-
uation, a queried domain name of transmitted queries was (7 let-
ters).(6 letters) (i.e., aaaaaaa.aaaaaa.) in order to obtain average
throughout. The numbers of the label lengths were the averages
that we obtained by analyzing our captured data.

Figure 8 shows deterioration in throughput when the whitelist-
ing was activated. The throughput decreased according to the
number of items registered on a whitelist.

Considering applying our system to large recursive servers, we
should also obtain throughput in the worst condition and confirm
whether the system is applicable to such servers. Therefore, we
changed the experiment condition so that the throughput would
be degraded the most. The number of the whitelist items was still
640, but the form of the queried domain name was changed to
(63 letters).(63 letters). Then, we obtained the worst throughput
of 1.34 Mpps.

7. Discussion

7.1 Detection Accuracy
7.1.1 Accuracy Obtained with the Best Hyperparameters

Table 6 shows that the classifier tends to generate more false
negatives than false positives. A subject prone to generating false
negatives is a combination of existing words and random strings,
for example, ldr-elb-ext-reader-264821303 and events-endpoint-

c-394794954. Although these domain names tend to be classified
as random, they may not be treated as malicious. The reason
is that content delivery network (CDN) providers sometimes use
such random-looking domain names. To solve this problem, we
propose the whitelisting described in Section 5.4.

On the other hand, false-positive domain names are often short
in length and composed of the following kinds of words:
• non-frequent, abbreviated words (e.g., xmlrpc, ipv4only),

and
• non-English, or Romanized Japanese, words (e.g., mtfuji,

hokkaido-np).
Most non-random domain names come from English words,

and these words should have specific tendencies of frequent bi-
grams different from these types of domain names.
7.1.2 Correlation between Accuracy and Hyperparameters

As Fig. 3 and Fig. 4 indicate, both features generate similar re-
sults when varied. Although this variation hardly affects the num-
bers of true positives and false negatives, it causes significantly
more true negatives and fewer false positives, which contributed

c© 2017 Information Processing Society of Japan 862

Journal of Information Processing Vol.25 854–865 (Sep. 2017)

to the overall accuracy. However, the exception is that an exces-
sive smoothing factor deteriorates accuracy.

Figure 3 shows the accuracy of the length-based feature. It is
clear that enabling the length-based feature yields better perfor-
mance than when it is disabled, showing that adopting this feature
is worthwhile. The feature appears to act as a bias that mitigates
false positives and false negatives to some extent, as described in
Section 7.1.1. This improvement in accuracy demonstrates that
the combination of the label-based feature and bigram-based fea-
tures works well.

However, considering that a too high cutoff point does not yield
a proportional improvement in performance and also requires
more memory resources, the cutoff point should be as small as
is sufficient for accuracy.

According to Fig. 4, an excessive smoothing factor signif-
icantly deteriorates detection performance. The reason for
this behavior is that in calculations of parameter estimates
θki = (Nyi + α)/(Ny + αn), the actual feature values Nyi and Ny
would be respectively overcome by the values of α and αn se-
lected for smoothing. The best smoothing factor value therefore
would be determined according to the number of items listed in a
training set, and this value should be experimentally sought.
7.1.3 Comparison to Our Previous Method

As Table 6 and Table 7 show, although several features were
removed in the current method, the current method outperforms
the previous method in both accuracy and FPR. In particular, as
an automatic filtering system, denying legitimate users should be
avoided as much as possible, and therefore this noticeable im-
provement in the number of false positives is meaningful.

This desirable outcome arises from the change in the way
that bigram-based features are calculated. Whereas the previous
method summed up all bigram-based features for a fast and un-
complicated way to avoid the zero-frequency problem, the current
method adopts a more accurate measure.
7.1.4 Durability against Detection Avoidance by Attackers

It is obviously effective to embed common words, which at-
tackers may try to use to avoid the filtering system, into a training
dataset. In the evaluation, although we embedded only one com-
mon word www, it would be also effective to use more than one
word such as mail and ns. It is difficult for attackers to know
which words are measured, namely embedded, from outside, and
thus this treatment brings about more complexity to achieving at-
tacks than the system without the treatment.

However, we would need further discussion about the effects of
the treatment on the length-based feature. This treatment makes
short-length domain names tend to judge to be non-random due
to the length-based feature. This effect is the cause of the im-
provement of the FPR of the training dataset B, but we think that
this is just a fortunate case.

Besides this treatment, it would be possible to simply trim
off common words in queried domain names before naı̈ve Bayes
classification.

7.2 System Throughput
The throughput effectively decreases with the label length. An

unnatural drop is seen at 45, which would be a characteristic of

the network card card installed in this system.
The major cause of throughput degradation with the label

length, however, is the computation of probability estimates re-
garding bigram-based features, which requires that the whole of
the leftmost label is sought. On the other hand, the calculation of
probabilities regarding the length-based feature is fast because a
DNS packet itself contains the length of each label.

Even when detection was disabled, the throughput was greatly
decreased from transmission rates, which suggests there was a
bottleneck at a point unrelated to the detection function. The sys-
tem is currently single-threaded but appears to need more threads
to process a large number of queries. We consider that our method
fortunately has a high affinity for multi-threading implementa-
tion. After the learning stage, the frequency tables, which are
used in probability calculation, are only referred to and no longer
rewritten, and thus the procedure of query analysis does not re-
quire exclusive control of table access.

Although experimental results hint that we require further im-
provement in execution performance, we believe that our system,
even as it stands now, has sufficient capacity against massive wa-
ter torture attacks. A report from Nominum, Inc. states that a
large server held by a North American ISP underwent approxi-
mately 0.8 Mpps of queries when an attack occurred [26]. The
capacity of our system far exceeds the scale of this attack even
in its worst condition. The throughput that our system achieved
should therefore be fast enough to withstand massive water tor-
ture attacks on large-scale recursive servers.
7.2.1 Whitelisting

Enabling this function surely deteriorates the throughput, but
even in the worst condition, the obtained throughput exceeded
0.8 Mpps, the observed record of the intensity of an attack [26].
We therefore consider that the whitelisting version of the system
is also able to counteract large-scale water torture attacks.

8. Conclusion

In this paper, we presented a detection method and a filtering
system for water torture attacks, a type of DDoS attack on DNS
servers that features random subdomains. Considering large-
scale applications, we developed the method and associated sys-
tem with a deep consideration for high throughput and adopted a
naı̈ve Bayes classifier, a fast but high-accuracy supervised learn-
ing algorithm.

Experimental results showed that our method can detect mali-
cious queries with 98.16% accuracy and a 1.55% false positive
rate, and that our filtering system achieved 7.44 Mpps of through-
put in the best case and 4.69 Mpps even in the worst condition if
rough whitelisting was disabled. This capacity should be suffi-
cient for most recursive servers.

This study established the fundamentals of detection of water
torture attacks based on naı̈ve Bayes classification. For future
work, in order to attain more reliable detection, special handling
would be needed for random-looking but non-malicious domain
names such as used in CDNs and IDNs.

c© 2017 Information Processing Society of Japan 863

Journal of Information Processing Vol.25 854–865 (Sep. 2017)

References

[1] Secure64 Software Corporation: Water Torture: A Slow Drip DNS
DDoS Attack, Secure64 Software Corporation (online), available from
〈https://blog.secure64.com/?p=377〉 (accessed 2015-11-30).

[2] Takeuchi, Y., Yoshida, T., Kobayashi, R., Kato, M. and Kishimoto,
H.: Detection of the DNS Water Torture Attack by Analyzing Features
of the Subdomain Name, Journal of Information Processing, Vol.24,
No.5, pp.793–801 (online), DOI: 10.2197/ipsjjip.24.793 (2016).

[3] Yoshida, T., Takeuchi, Y., Kobayashi, R., Kato, M. and Kishimoto, H.:
Study on Filtering Method for the DNS Water Torture Attack Utiliz-
ing the Naive Bayes Classifier (in Japanese), IPSJ SIG Notes, 2016-
CSEC-74, No.26, pp.1–7 (2016).

[4] Yuchi, X., Wang, X., Lee, X. and Yan, B.: A New Statistical Ap-
proach to DNS Traffic Anomaly Detection, pp.302–313 (online), DOI:
10.1007/978-3-642-17313-4 30, Springer Berlin Heidelberg (2010).

[5] US-CERT: DNS Amplification Attacks — US-CERT, United States
Computer Emergency Readiness Team (online), available from
〈https://www.us-cert.gov/ncas/alerts/TA13-088A〉 (accessed 2016-10-
18).

[6] Almond, C.: Recursive Client Rate limiting in BIND 9.9.8 and 9.10.3,
Internet Systems Consortium (online), available from 〈https://kb.isc.
org/article/AA-01304/0/Recursive-Client-Rate-limiting-in-BIND-
9.9.8-and-9.10.3.html〉 (accessed 2016-10-11).

[7] Alonso, R., Monroy, R. and Trejo, L.: Mining IP to Domain Name In-
teractions to Detect DNS Flood Attacks on Recursive DNS Servers,
Sensors, Vol.16, No.8, p.1311 (online), DOI: 10.3390/s16081311
(2016).

[8] Cloudmark, Inc.: Cloudmark Security Platform for DNS Solution
Guide, Cloudmark, Inc. (online), available from 〈https://www.
cloudmark.com/releases/docs/solutionguides/dns-solution-guide-
2014-october.pdf〉 (accessed 2016-10-08).

[9] Freeman, D.M.: Using naive bayes to detect spammy names in social
networks, Proc. 2013 ACM Workshop on Artificial Intelligence and Se-
curity - AISec ’13, pp.3–12 (online), DOI: 10.1145/2517312.2517314
(2013).

[10] Matsubara, Y., Musashi, Y., Sugitani, K. and Moriyama, T.: Open
DNS Resolver Activity in Campus Network System, 2015 8th Inter-
national Conference on Intelligent Networks and Intelligent Systems
(ICINIS), pp.145–148 (online), DOI: 10.1109/icinis.2015.30 (2015).

[11] Yadav, S., Reddy, A.K.K., Reddy, A.N. and Ranjan, S.: Detecting al-
gorithmically generated malicious domain names, Proc. 10th annual
conference on Internet measurement - IMC ’10, pp.48–61 (online),
DOI: 10.1145/1879141.1879148 (2010).

[12] Schiavoni, S., Maggi, F., Cavallaro, L. and Zanero, S.: Phoenix: DGA-
Based Botnet Tracking and Intelligence, pp.192–211 (online), DOI:
10.1007/978-3-319-08509-8 11, Springer Science + Business Media
(2014).

[13] Domingos, P. and Pazzani, M.: On the Optimality of the Simple
Bayesian Classifier under Zero-One Loss, Machine Learning, Vol.29,
No.2/3, pp.103–130 (online), DOI: 10.1023/a:1007413511361 (1997).

[14] Rish, I.: An empirical study of the naive Bayes classifier, IJCAI
2001 Workshop on Empirical Methods in Artificial Intelligence, Vol.3,
No.22, pp.41–46, IBM New York (2001).

[15] McCallum, A. and Nigam, K.: A Comparison of Event Models for
Naive Bayes Text Classification, Learning for Text Categorization:
Papers from the 1998 AAAI Workshop, pp.41–48 (1998).

[16] Sahami, M., Dumais, S., Heckerman, D. and Horvitz, E.: A Bayesian
Approach to Filtering Junk E-Mail, Learning for Text Categorization:
Papers from the 1998 Workshop (1998).

[17] Wang, S. and Manning, C.D.: Baselines and Bigrams: Simple, Good
Sentiment and Topic Classification, Proc. 50th Annual Meeting of the
Association for Computational Linguistics: Short Papers - Volume 2,
ACL ’12, pp.90–94 (2012).

[18] Choi, S.-W. and Lee, C.H.: A FPGA-based parallel semi-naive Bayes
classifier implementation, IEICE Electronics Express, Vol.10, No.19,
pp.20130673–20130673 (online), DOI: 10.1587/elex.10.20130673
(2013).

[19] Andrade, G., Viegas, F., Ramos, G.S., Almeida, J., Rocha, L.,
Goncalves, M. and Ferreira, R.: GPU-NB: A Fast CUDA-Based Im-
plementation of Naı̈ve Bayes, 2013 25th International Symposium on
Computer Architecture and High Performance Computing, pp.168–
175 (online), DOI: 10.1109/sbac-pad.2013.16 (2013).

[20] Schneider, K.-M.: A comparison of event models for Naive Bayes
anti-spam e-mail filtering, Proc. 10th Conference on European Chap-
ter of the Association for Computational Linguistics - EACL ’03,
pp.307–314 (online), DOI: 10.3115/1067807.1067848 (2003).

[21] Metsis, V., Androutsopoulos, I. and Paliouras, G.: Spam Filtering with
Naive Bayes - Which Naive Bayes?, CEAS, pp.27–28 (2006).

[22] Fiberblaze: fb2XGhh@V7 series, Fiberblaze A/S (online), available
from 〈http://www.fiberblaze.com/product-details/fb2xg-dual-sfp-
port-card-supporting-2x1ge10ge-half-height-pcie-gen-3-x8-lanes/〉

(accessed 2015-11-30).
[23] Costello, A.: Punycode: A Bootstring encoding of Unicode

for Internationalized Domain Names in Applications (IDNA),
The Internet Engineering Task Force (online), available from
〈http://www.ietf.org/rfc/rfc3492.txt〉 (accessed 2017-03-31).

[24] Mockapetris, P.: DOMAIN NAMES - IMPLEMENTATION AND
SPECIFICATION, The Internet Engineering Task Force (online),
available from 〈http://www.ietf.org/rfc/rfc1035.txt〉 (accessed 2015-
11-30).

[25] Rapid7, Inc.: GitHub - rapid7/metasploit-framework: Metasploit
Framework, Rapid7, Inc. (online), available from 〈https://github.com/
rapid7/metasploit-framework〉 (accessed 2016-09-27).

[26] Waber, R.: Random Subdomain Attacks Plaguing the Internet,
Nominum, Inc. (online), available from 〈https://indico.uknof.org.uk/
materialDisplay.py?contribId=15&materialId=slides&confId=31〉
(accessed 2016-11-24).

Takuro Yoshida received his B.E. degree
in Computer Science and Engineering
from Toyohashi University of Technology
in 2015 and is currently a master’s student
at the same university. His research inter-
ests include network security.

Kento Kawakami is currently a bache-
lor’s student at Toyohashi University of
Technology. His research interests in-
clude network security.

Ryotaro Kobayashi received his B.E.,
M.E., and D.E. degrees from Nagoya Uni-
versity in 1995, 1997, and 2001, respec-
tively. He had been a research assistant
at Nagoya University from 2000 to 2008,
a lecturer at Toyohashi University from
2008 to 2015, and an associate professor
at Toyohashi University in 2016. He is

currently an associate professor at Kogakuin University. His re-
search interests include computer architecture, parallel process-
ing, and network security.

Masahiko Kato received his B.E. and
M.E. degrees in Engineering from
Toyohashi University of Technology and
D.E. degree in Systems and Information
Engineering from University of Tsukuba
respectively. He is now a professor at
University of Nagasaki. He is currently
interested in network security.

c© 2017 Information Processing Society of Japan 864

Journal of Information Processing Vol.25 854–865 (Sep. 2017)

Masayuki Okada works in the Engineer-
ing Department at JPNIC. He experienced
a BGP operation of an academic network
since 2000. Mr. Okada joined JPNIC
in 2004 and is responsible for the devel-
opment and operation of the IP resource
management system related to routing and
JPIRR research, as well as the use of IRR.

In recent years, he has focused his efforts on outreach about RPKI
technology and its operational deployment. He finished his Ph.D.
in 2016 in Computer Science.

Hiroyuki Kishimoto received his B.E.
and M.E. degrees from Hosei University
in 1988, 1990, respectively. He is now
working for ComWorth Co., Ltd. since
1991. He is currently interested in high
speed network DPI and lossless packet
capturing method under 40G/100G envi-
ronment.

c© 2017 Information Processing Society of Japan 865

