Journal of Information Processing Vol.25 924-933 (Oct. 2017)

[DOI: 10.2197/ipsjjip.25.924]

Regular Paper

A Multipath OpenFlow Controller for Multiple TCP
Stream Applications

Cue HuanG!"® Cuawanar Nakasan!-?)

Hanmu Iiba

Kouer IcHIkKAWA

1,0) 1,d)

YASUHIRO WATASHIBA
Le)

Received: February 24, 2017, Accepted: April 17, 2017

Abstract: A large amount of data needs to be transferred from one site to another as fast as possible in the computa-
tional science fields. To achieve high-speed data transfer, many applications utilize multiple TCP streams. However,
since multiple TCP streams of applications are usually routed according to the default IP routing protocol, only a
single shortest path among the multiple paths can be utilized for the data transfer. This research proposes a multi-
path controller that increases the performance of data transfer by leveraging multiple paths simultaneously for parallel
TCP streams. For this purpose, we utilize the Software-Defined Networking (SDN) technology and its implementa-
tion, OpenFlow. Furthermore, we proposed a method to determine optimal numbers of parallel TCP streams to be
assigned for each path according to its own network condition. This paper presents the design and implementation of
the proposed system. As a case study, we applied our proposed system on GridFTP and evaluated the performance
improvement. The results demonstrate that our proposed system accelerates the data transfer of GridFTP in both a

virtual and a real global-scale environment.

Keywords: multipath, Software-Defined Networking, OpenFlow, data transfer

1. Introduction

High-speed data transfer from one site to another is a neces-
sary platform service for future Big Data and data-intensive sci-
ence [5]. With the rapid development of computer technology, the
amounts of data have been increased up to the petabyte and even
exabyte scale in the computational science research fields. In ad-
dition, in international environments for collaborative research
today, large-scale data is not stored only on one site; therefore,
high-speed data transfer between sites is very important.

To achieve high-speed data transfer in widely-distributed envi-
ronments, many applications utilize multiple TCP streams simul-
taneously to transfer data. Using multiple TCP streams in par-
allel can improve aggregate bandwidth over using a single TCP
stream by mitigating the negative effects of packet loss and ‘slow
start” mechanism of TCP. There have been a number of proposed
schemes designed for applications to use multiple TCP streams
such as XFTP[3], GridFTP [2], MultiTCP [24], PATTHEL [4],
Multipath TCP (MPTCP) [6], to increase the performance of data
transfer.

On the other hand, there are usually multiple network paths
(multipath) available between widely-distributed sites, however,
these multiple paths are not efficiently utilized by applications.

Graduate School of Information Science, Nara Institute of Science and
Technology, Ikoma, Nara 630-0192, Japan

¥ huangche @is.nasit.jp

Y chawanat.nakasan.cb5 @is.nasit.jp

9 ichikawa@is.naist.jp

9 watashiba@is.naist.jp

® iida@itc.naist.jp

© 2017 Information Processing Society of Japan

Because even if the applications use multiple TCP streams in par-
allel, those multiple TCP streams are basically routed according
to the default IP routing protocol, and only a single shortest path
among the multiple paths is used for the data transfer. The pri-
mary reason for this problem is that there is a gap between appli-
cation demands and the network architecture, and the applications
are unaware of the information on the network layer. Thus, there
is still much room for improvement in data transfer by apply-
ing some traffic engineering technologies using different multiple
paths simultaneously.

In this study, we propose a multipath controller that distributes
the parallel TCP streams of applications into multiple network
paths by utilizing Software-Defined Networking (SDN)-based
traffic engineering techniques. SDN is a newly emerged con-
cept that brings software programmability to networks and al-
lows us to control routing assignment of the entire networks from
the viewpoint of applications. Furthermore, to optimize the data
transfer performance, we developed a prediction model to deter-
mine optimal numbers of parallel TCP streams to be assigned for
each path according to its own network condition.

We have developed our system based on OpenFlow [18], which
is standardized by the Open Networking Foundation (ONF) [20]
and one of the most used standard protocols for SDN. We ap-
plied our proposed multipath controller to GridFTP as an actual
case study to demonstrate the effectiveness and practicality of our
proposed system, because GridFTP is one of the most common
data transfer services using multiple TCP streams and it is used
widely in the computational science research fields.

The rest of this paper is organized as follows. Section 2

924

Journal of Information Processing Vol.25 924-933 (Oct. 2017)

describes related existing researches on high-speed data trans-
fer using multipath. Section 3 explains our approach leverag-
ing different multiple paths using the SDN technology and how
we optimize the assignment of TCP streams in multipath rout-
ing. Section 4 describes the implementation of our system. Sec-
tion 5 shows evaluation results of the proposed system. Section 6
presents the conclusion of this paper and future works.

2. Related Work

There have been a number of proposed schemes for provid-
ing multipath to applications [26], [27], [28]. Some of them have
similar approach with our study. We describe several examples
as follows.

Kissel et al. developed a new session layer protocol, called
Phoebus, and made it available from the applications by tak-
ing advantage of the Dynamic Circuit Network (DCN), which
is deployed on national academic research networks such as In-
ternet2 [16]. Phoebus provides Phoebus Gateways (PGs), which
hide different transport layer protocols such as UDT [8] and TCP
behind the session layer, and offer an easy method to improve the
throughput for general applications.

In addition, Dan et al. extended the research idea of Kissel et
al. and proposed a system that improves the network through-
put by assigning multiple TCP streams to different multiple paths
brought on the conventional IP-based routing, the DCN provided
by Phoebus and the OS3E of Network Development and Deploy-
ment Initiative (NDDI) [9]. NDDI/OS’E is a service that builds
Layer 2 networks dynamically on their OpenFlow network infras-
tructure.

The research of Kissel et al. leveraged high-speed circuits
brought by the DCN of Internet2 and made the multiple transport
protocols available on the DCN. However, their method does not
provide an interface for the users to control routing paths inside
the Internet2. Once, a path is provided through the DCN, the pro-
vided path is just statically used for the multiple TCP streams of
application. Dan et al. use a Layer 2 network dynamically built
upon their OpenFlow network provided by NDDI/OS®E. How-
ever, the users cannot each control individual routing inside the
NDDI/OS?E. The routes for the Layer 2 network is determined at
the time it is created on the OpenFlow network. Therefore, Dan
et al.’s system also just assigns the multiple routes provided by
NDDI/OSE to the multiple TCP streams of application. There-
fore, those two approaches are not flexible enough to optimize
multiple paths between widely distributed sites.

However, recently, the optimization of the network layer based
on the requests from the application layer has been gathering
much attention with the development of the OpenFlow network.
The Research Infrastructure for large-Scale network Experiments
(RISE) service provided by Japan Gigabit Network eXtreme
(JGN-X) is one of the services that allow users to control indi-
vidual OpenFlow switches of the service [13], [15]. Considering
the recent trend of the research, it is necessary to optimize multi-
path assignment by controlling the individual switches under an
environment where OpenFlow switches are available for end-to-
end communication.

Although the above existing researches tried to generate mul-

© 2017 Information Processing Society of Japan

tiple TCP streams at the application level, a method generat-
ing multiple TCP streams at the system level, Multipath TCP
(MPTCP), has also been proposed recently. There is also a
research [25] that combines MPTCP and OpenFlow to achieve
high-speed data transfer. However, the research also did not con-
sider an environment where OpenFlow switches are available for
end-to-end communication. In terms of routing multiple TCP
streams, the difference between multiple streams of application
level and multiple streams of MPTCP does not matter essentially.
In this study, we evaluate our proposed method with application
level multiple streams using GridFTP, because GridFTP has al-
ready been widely used for multiple TCP streams while MPTCP
is not available widely.

3. Approach and Design

In this study, we proposed a multipath controller that improves
the data transfer performance by assigning parallel TCP streams
of an application to a number of different paths in the environment
where OpenFlow switches are available for end-to-end commu-
nication. By aggregating the available bandwidth from multiple
different paths, the performance of data transfer would be im-
proved drastically.

However, to achieve the best performance using multiple paths,
the strategy of how many TCP streams should be assigned for
each path is also an important factor. The simplest method is
to create many enough TCP streams and distribute these TCP
streams equally over the multiple paths. However, this is obvi-
ously inefficient in terms of resource usage. Therefore, it is nec-
essary to figure out the optimal combination of multipath and the
number of parallel TCP streams.

We therefore tried to develop a method to determine optimal
numbers of parallel TCP streams to be assigned for each path ac-
cording to its own network condition. There are many factors
affecting the transfer speed in a network connection; the two ma-
jor factors are the bandwidth and the latency. Since each network
path has different bandwidth and latency, the optimal number of
parallel TCP streams to get the best performance may be different
for each path. In order to develop a prediction model to determine
optimal numbers of TCP streams, we figured out the relationship
between the optimal number of TCP streams and network condi-
tions.

3.1 Multipath Controller

Figure 1 shows our proposed parallel transfer of applications
in an OpenFlow network. We aggregate multiple routes to in-
crease the available bandwidth by assigning each of multiple TCP
streams to different routes. In this study, we construct an Open-
Flow controller that dynamically calculates available paths us-
ing breadth-first search between sites and allocates the calculated
routes for applications.

‘We have designed general interfaces to request multiple routes
so that any applications can request multiple routes for their data
transfer. The following two functionalities are designed for the
purpose: 1) Searching the specified number of paths between
sites and setting aside the found paths for later use, 2) Installing
appropriate flow entries into OpenFlow switches in response to

925

Journal of Information Processing Vol.25 924-933 (Oct. 2017)

Multipath Controller

1

request i control path

v

TCP
Stream1

OpenFlow|

Switch

TCP Stream2

Cpentlow OpenFicw
Switch Switch

Host A Host B

TCP
Stream3

OpenFlo
Switch

Fig.1 The concept of multiple TCP streams assignment in the OpenFlow
network.

the request of TCP connection from applications. The reason why
we have two separated functions is that the TCP port numbers
used for a communication are not determined until just before the
TCP connection is opened. To install a flow entry into an Open-
Flow switch, we need information on a set of source and desti-
nation addresses and TCP port numbers. Therefore, we search
multiple available paths between sites first when the source and
the destination addresses are provided. And then, we create ac-
tual flow entries when TCP port numbers are determined. Thus,
we designed two separated functions to find multiple available
routes and assign the routes for each actual TCP connection.

3.2 Prediction Model to Optimize TCP Stream Assignment
in Multipath Routing

There are several existing researches to predict the maximum
network throughput with multiple TCP streams, however, few re-
searches have been conducted to find the optimal number of TCP
streams that can achieve the maximum throughput. We there-
fore derived the prediction model for an optimal number of TCP
streams based on some existing models for the network through-
put.

According to Hacker et al Model [10], when an application
opens a single stream, the maximum network throughput can be
represented as:

_ MSS Co
R P

Th represents the maximum throughput, MS S is the maximum

Th < (D

segment size of TCP, R is the round trip time, p is the packet loss
rate and ¢ is a constant.

Hacker et al. [10] also claim that the aggregated throughput of
parallel streams can be calculated with the throughput of a single
stream multiplied by the number of streams. In addition, Dinda et
al. [17] show p would increase as the number of parallel streams
increases and the network gets congested. Therefore, Eq. (1) can
be rearranged for n streams as:

MSS X c (n)
Th, <= —— . 2)
R P

n represents the number of parallel streams, p, is the packet loss

rate when n streams are used on the network. If we use too many

© 2017 Information Processing Society of Japan

streams, p, increases dramatically and Tk, decreases.
According to Ref. [14], the packet loss rate in a network, p,, is

determined only by the available bandwidth(B)-latency(R) prod-

uct per TCP connection (i.e., BR/n) and can be represented as:

BR* BR \
pn=|c1 (—) to—-al . 3)
n n
c1, ¢ and c¢3 are constant and positive numbers.

After placing p, in Eq. (2), the total achievable throughput T4,
is calculated as follow:

_ MSS X n

I'h, <=
R) -1
(Cl (_BnR) + 02%‘? — C3)

Since Eq. (4) is a convex upward function, we can get an op-

C))

timal n that maximizes the Th, by solving the following partial
differential equation for n:

oTh,
on

If we assume MSS is a relatively static value, the solution of

=0. &)

Eq. (5) is given by the following equation:

n=<LBR. (6)
26‘3

Since ¢y and c3 are constants, Eq. (6) can be simplified as follows
with a single constant value, a:

n = aBR. @)

Since n is actually the number of TCP streams, it should be equal
to or greater than 1. The equation can be therefore written as:

n = max(1l,aBR). (8)

This result seems to be too simplified. However, we got this result
by just combining the existing known models for the maximum
aggregated bandwidth and the packet loss rate, as calculated in
the above. Also, this result matches intuitive expectations. If we
have a larger bandwidth-delay product, the number of optimal
parallel TCP streams will increase accordingly.

The constant values, from c; to c3, which define the packet loss
rate, are determined by the characteristics of the network we use.
Therefore, the constant value, a, in Eq. (8) will be also determined
by the characteristics of the network. To determine the value, a,
we need to measure several combinations of n, B and R. We will
calculate the actual value of a later in the evaluation section.

4. Implementation

We developed our multipath controller using Trema[22], a
framework for developing OpenFlow controllers in Ruby and C.
We developed our controller based on the routing_switch con-
troller [19] included in Trema Apps [23]. Trema Apps is a sample
application set for Trema. Routing_switch controller is a sim-
ple OpenFlow controller that calculates the shortest-hop path be-
tween hosts using Dijkstra’s algorithm and installs flow entries
into the OpenFlow switches for the path. Our controller utilizes
this default shortest-hop routing for the normal communications

926

Journal of Information Processing Vol.25 924-933 (Oct. 2017)

that do not request multipath routing.

We have implemented the two functionalities mentioned in
the previous section, 1) Searching the specified number of paths
between sites, and 2) Installing flow entries into OpenFlow
switches, as XML-RPC interfaces on our OpenFlow controller.
By implementing the functions as generic XML-RPC interfaces,
any application can access our proposed controller. In our im-
plementation, we named these two interfaces as AssignMultipath
and MakePath respectively.

In order to adapt GridFTP to our proposed system, we imple-
mented the required functionality to support our proposed sys-
tem as one of the Globus XIO communication drivers [1] that
GridFTP uses as a communication library. Globus XIO is a plug-
in framework of I/O libraries that is implemented in the Globus
Toolkit[7]. Globus XIO allows applications to support various
protocols and file formats by implementing plug-ins for each dif-
ferent communication method and file and storage access. In this
study, we created a new communication driver based on a stan-
dard XIO TCP driver which is one of the built-in default drivers in
Globus XIO. Our communication driver establishes TCP connec-
tions in collaboration with our multipath controller, so that each
TCP connection can take different paths.

To use our proposed controller, users need to go through the
following two-step process. The first step is acquiring avail-
able multiple paths using AssignMultipath; the second step is de-
ployment of actual flow entries using MakePath. Since the first
step for acquiring multiple paths is a preprocess step before ac-
tual communication starts, we created a lightweight client pro-
gram called assign_mpath just for calling the AssignMultipath
interface. Also, we implemented an XIO driver to access the
MakePath interface for the second step, and implemented the XIO
driver to be called from GridFTP.

The actual execution procedure of program is as follows:

> ./assign_mpath <controller_address>
<port> <src_ip> <src_mac> <dst_ip>
<path_num>

> MPATH_ASSIGNMENT_ID=<id> globus-url-

copy -p <path_num> test.data gsiftp:

//Host B/test.data

assign_mpath program requires the IP address of the Open-

Flow controller (controller_address), the port number of the
controller (port), the source IP address (src_ip), the source
MAC address (src_mac), the destination IP address (dst_ip)
and the number of paths needed to be assigned (path_num).
assign_mpath outputs the number of assigned paths and an as-
signment ID. This assignment ID is a unique ID identify-
ing the assigned paths and will be used later for calling the
MakePath interface. globus-url-copy is a GridFTP client pro-
vided by the Globus Toolkit. In order to give the assignment ID
to our developed XIO driver, we use an environment variable,
MPATH_ASSIGNMENT_ID. globus-url-copy is therefore launched
with the variable, MPATH_ASSIGNMENT_ID.

4.1 How the System Works
Figure 2 illustrates the proposed system. The proposed system

© 2017 Information Processing Society of Japan

Multipath Controller

. | Assign
4 Muipatn | | Make Path
APl |: .
(1) request =
avallagble paths (2)23earch and 7
secure paths
(3) request different (4) set flow
: path fer each _ entries
: TCP:stream
y assign_mpath|:’ \
ser d .
~ | GridFTP | &
| dlient /\@/\% GridFTP

I
XIO' \ /\ / server
L

Host B

Host A OpenFlow Switches

Fig.2 Overview of our proposed multipath controller and GridFTP.

performs the following steps:

e First, in (1), a user launches the assign_mpath program. It
accesses the AssignMultipath interface implemented on our
OpenFlow controller, and requests available paths from Host
A to Host B.

e Next, in (2), the AssignMultipath calculates the available
paths with the breadth-first search algorithm from Host A
to Host B based on the topology of the OpenFlow network.
The AssignMultipath secures the specified number of avail-
able paths and returns the number of paths with an assign-
ment ID to the user. The assignment ID will be used to refer
to the assigned paths for later use.

e Then, the user starts the GridFTP client with the assignment
ID obtained in the previous step.

e In (3), our implemented XIO driver loads the assignment ID.
Then, the XIO driver accesses the MakePath interface on
the OpenFlow controller and requests to create an individ-
ual path each time the GridFTP client opens a TCP stream
via the XIO driver.

e In (4), the MakePath finds the set of paths assigned by the
AssignMultipath using the assignment ID and acquires a
path from the path set, and then installs flow entries into
the OpenFlow switches for the requested TCP stream. The
MakePath creates flow entries using the source and destina-
tion IP addresses and the source TCP port number as match
conditions, and installs the flow entries to each OpenFlow
switch for the path.

o Finally, the requested TCP stream starts the communication
according to the assigned route. Steps (3) and (4) are applied
repeatedly for the subsequent TCP streams.

5. Evaluation

To verify the effectiveness of the proposed system, we per-
formed evaluations comparing the performance of the GridFTP
with/without our proposed method. For retrieving the best pos-
sible performance, we conducted the evaluations on a virtual en-
vironment first. We then also performed some evaluations on a
real global-scale environment to evaluate the practicality of our

927

Journal of Information Processing Vol.25 924-933 (Oct. 2017)

GridFTP GridFTP

client /@\ sever
\ @

Host A Host B

Fig.3 Topology A on a local testbed (the bandwidth and the latency are
configured to 100 Mbps and 0 ms on each path).

proposal.

5.1 Experiments Using a Virtual Environment

In our virtual environment, we conducted our experiments over
a simple topology to confirm if our proposed system can achieve
the expected results. Furthermore, we designed another more re-
alistic topology, which has some overlapped links among differ-
ent paths, to verify the effectiveness of our system.

5.1.1 Experimental Environment

Our experimental virtual environment is constructed on six vir-
tual machines deployed on each of six physical VMware ESX
machines equipped with two Intel Xeon E5649 processors and
48 GB memory. We assigned two virtual cores and 2 GB mem-
ory for each virtual machine, and setup CentOS 6.5 on each of
them. These virtual machines share a single 1 Gbps network
switch physically, and the actual available bandwidth is about
941 Mbps measured by iperf between two hosts. In this study,
in order to see the effect using multipath, we have limited each
link performance up to 100 Mbps, so as not to exceed the physi-
cal performance limitation.

We installed the GridFTP on two machines: Host A and Host
B, and used these two machines as a client and a server respec-
tively. In this experiment, due to the lack of hardware OpenFlow
switch resources, we prepared multiple OpenFlow switches by
installing a software-based implementation of OpenFlow switch,
Open vSwitch[21]. We deployed several Open vSwitches be-
tween Host A and B, and constructed an OpenFlow network
which has multiple paths between Host A and B.

In addition, to make the communication of GridFTP pass
through the OpenFlow network, we also installed Open vSwitch
on Host A and B. The Open vSwitches on Host A, Host B and
other Open vSwitches are connected by GRE links, which is an
IP-based point-to-point tunneling protocol. By changing the com-
bination of the GRE links, we can easily construct various topolo-
gies for the experiments and configure each path with different
bandwidth and latency.

In this virtual environment, we conducted the experiments on
two network topologies, topology A and B. Topology A (Fig. 3)
is a simple topology which has four independent paths, and the
bandwidth and latency of each path are configured to 100 Mbps
and 0 ms respectively. Topology B (Fig. 4) assumes a more realis-
tic situation. It has some overlapped links and the bandwidth and
latency are configured as shown in Fig. 4. In the figures, SW1 to
SW6 denote Open vSwitches.

© 2017 Information Processing Society of Japan

100 Mbps
" 3m

GridFTP GridFTP

client server
100 Mbps @

50 ms
100 Mbps
Host A 70ms Host B

Fig.4 Topology B on a local testbed (different bandwidth and latency are
configured for each path as shown in the Figure).

Latency Number of TCP streams
(ms) 3 4 5 6 7 8
0 374.66 374.67 374.89 - - -
20 37545 375.55 37544 375.74 375.89 -

40 387.38 | 376.76
60 390.40 | 385.32 | 378.94

376.36 | 376.75 | 376.40 | 376.65 376.98
37747 | 377.58 | 377.26 377.48
80 391.03 | 384.41 | 381.96 379.30 37843 378.14 378.43

100 39363 387.84 38426 38246 38121 379.72 |[HGHEN 378.91
Fig. 5 Transfer time (sec) of 2 GB file with 50 Mbps link.

5.1.2 Determine the Parameter of Prediction Model

In order to determine the constant value, a, of Eq. (8) in our vir-
tual environment, we have measured the optimal number of TCP
streams with various network conditions changing the available
bandwidth and latency. We utilized two virtual machines con-
nected with a single 1 Gbps network switch. Traffic control tool
(tc) of Linux [11] was used to configure the available bandwidth
and latency between the two virtual machines. We have measured
the time needed to transfer a file of 2 GB from one host to another
host under different conditions where the available bandwidth is
limited to 50 Mbps or 100 Mbps with changing the added latency
from 0 to 140 ms.

Figure 5 shows the part of the observed data in the case where
the available bandwidth is limited to 50 Mbps. We have repeated
this measurement 12 times for each case. The data presented in
Fig. 5 reflects the average of 10 trials excluding the highest and
lowest ones. In the Figure, the best results for each different la-
tency are highlighted with red. For example, we can see that using
4 TCP streams achieved the best performance where the latency
is configured to 60 ms.

Using the measurement results, we can calculate the constant
value, a. From the result of the average value calculated with the
measurement results, we determined that a is about 0.001495 in
our virtual environment.

Figure 6 plots the measured optimal numbers of TCP streams
and the predicted lines based on our proposed model. We can see
that the measured values are very close to our prediction results.
Therefore, by using Eq. (8), we can calculate the optimal number
of TCP streams if the available bandwidth and latency are given.
5.1.3 Results of Experiments

In the experiments, the data transfer time was measured. In our
proposed system, it is necessary to run the assign_mpath com-
mand in advance to find the routes. But, we did not measure the
time taken for assign_mpath, since these experimental topologies
are very small and the required time for executing assign_mpath
is very short. We leave such evaluation on the scalability of as-

928

Journal of Information Processing Vol.25 924-933 (Oct. 2017)

w
=]

® 50 Mbps ® 100 Mbps

e
a

o
S

Number of TCP streams
5 &

w

=}

0 20 40 60 80 100 120 140 160 180

Latency

Fig. 6 Relationship between the optimal number of TCP streams and the
latency.

Table 1 Comparison of transfer time in topology A.

Number of streams | Proposed multipath | Conventional single
system path method
4 23.40 sec 90.53 sec

sign_mpath with larger and more complex topologies as a future
issue.

In addition, we measured the used bandwidth by periodically
monitoring packet counters on the OpenFlow switches. Each
packet counter on OpenFlow switches records the number of
transferred packets and transferred bytes for a flow-basis. Thus,
this information is useful to measure the bandwidth of each TCP
stream of the GridFTP separately. We measured the counter in
the Open vSwtich on Host B, which is the destination of the data
transfer.

In topology A, we conducted the experiment by transferring a
file of 1 Gbyte. In this topology, there are four available paths, 1)
SWI1-SW2-SW6, 2) SW1-SW3-SW6, 3) SW1-S W4-S W6 and
4) SW1-SW5-SW6. In this paper, S W1-S W2-S W6 represents
a path which walks through switches SW1, SW2, S W6 in this
order. The optimal number of TCP streams is calculated as 1 for
each path in this topology, because the added latency for each
path is configured to O ms.

Table 1 shows the experimental results of topology A. The
result shows that our proposed multipath system successfully dis-
tributes four multiple TCP streams of GridFTP into each differ-
ent path and improved data transfer speed, while the conven-
tional single path method just uses a single path for all four TCP
streams. In the case using four parallel TCP streams, the proposed
system achieved around four times better performance compared
to the conventional single path method. Figure 7 shows the used
bandwidth summarized as stacked area graphs which are calcu-
lated from the average transferred bytes per second. We can see
that the performance of each TCP stream is also very stable.

In topology B, we compared the proposed optimal assignment
and a simple round robin assignment by transferring a file of
10 Gbyte to evaluate the efficiency of the proposed optimal as-
signment method. There are three available paths, 1) S W1-S W2-
SW3-SWe, 2) SW1-SW2-SW4-SW6 and 3) SWI1-SW5-SW6
in the topology. With the proposed optimal assignment, the as-
signment of TCP streams for each path are decided based on the
calculated optimal number of TCP streams of each path. On the
other hand, with the simple round robin assignment, the assign-
ment of TCP streams for each path are equally distributed. In

© 2017 Information Processing Society of Japan

B TCP Stream1 M TCP Stream2 W TCP Stream3 M TCP Stream4

0 2 4 6 8 10 12 14 16 18 20 22
Sec

Fig. 7 Used bandwidth of each TCP stream in topology A with four parallel
TCP streams.

==@=Round robin assighment ==@=Optimal assignment
220

g

210
205
200

195
3 6 9 12 15 18 21 24 27 30 33 36 39
Number of parallel TCP streams

Fig.8 Comparison of the average data transfer speed between the optimal
assignment and the round robin assignment in topology B.

the optimal assignment method, the optimal assignment of TCP
streams is calculated as that 2 streams for each first and second
path and 18 streams for the third path. Therefore, using 22 TCP
streams in total is the optimal number of streams in this case.

To compare the performance between our optimal method and
the simple round robin method, we actually measured the transfer
time with increasing the number of TCP streams from 3 to 39 by
3. Since the optimal assignment of streams is 2, 2 and 18 streams
for each of three paths, we assigned the TCP streams to the three
paths with a ratio of 1:1:9 in the proposed method. On the other
hand, we assigned the TCP streams in a round robin manner for
the simple round robin method. We repeated the same experiment
10 times and calculated the average for the results.

Figure 8 shows the average data transfer speed of the opti-
mal assignment and the round robin assignment with increasing
the number of parallel TCP streams. As shown in Fig. 8, the
proposed optimal assignment method achieves an overall better
throughput than the round robin assignment. This also means
that the performance of the optimal assignment method is con-
verged to the peak performance more quickly. Also, the peak of
the performance is located in the position where the number of
TCP streams is around the predicted optimal number, 22. The re-
sults demonstrated the effectiveness of our proposed system with
the proposed optimal TCP stream assignment.

5.2 Experiments using a Real Global-scale Environment
To evaluate the practicality of our method, we have also con-

929

Journal of Information Processing Vol.25 924-933 (Oct. 2017)

fffffffffff : GRE link; OFS: OpenFlow Switch; OVS: Open vSwitch == : pathl
— —— : path2
okyo \Q Angeles . path3
— .
OFS s . path4
OFS(NEC " (NEC PF5240) (NEC PF5240) (NEC/PF52
PF5220) NICT(JAPAN) NICT(USA)
OFS(Pica8 =
N\ P-3290) =
. ‘\\\ / L
G”dFT\ OFS(Pica8 ridFTP
client : P-3295) server

OFS(Pica8 / OF CUSAY
— : %’,

NAIST(JAPAN;\\\\:;

(0]
OU (JAPAN)

OVS

UCSD(USA)

Fig. 9 Overview of the real global-scale experimental environment.

ducted some experiments in a real global-scale environment.
5.2.1 Experimental Environment

For the evaluation, we used the resources provided by
PRAGMA Experimental Network Testbed (PRAGMA-
ENT)[12]. PRAGMA-ENT provides a large scale OpenFlow
network composed of computing resources and international
academic networks. The part of resources is also connected
through GRE over the public Internet as alternative paths. We
used a part of the resources provided by PRAGMA-ENT.

Figure 9 shows the overview of the experimental environment.
We installed GridFTP on a virtual machine as a client, and de-
ployed an Open vSwitch and two hardware OpenFlow Switches
(Pica8 P-3290 and NEC PF5220) at Nara Institute of Science and
Technology, Japan (NAIST). Also, we installed GridFTP on a
virtual machine as a server, and deployed an Open vSwitch and
a hardware OpenFlow Switch (Pica8 P-3290) at the University of
Florida, USA (UF).

There are three sites between NAIST and UF: 1) National In-
stitute of Information and Communications Technology, Japan
(NICT) that deployed three hardware OpenFlow Switches (NEC
PF5240): one is in Osaka Data Center, one is in Tokyo Data Cen-
ter and another one is in Los Angeles Data Center, 2) Osaka Uni-
versity, Japan (OU) that deployed an Open vSwitch, 3) University
of California, San Diego, USA (UCSD) that deployed two hard-
ware OpenFlow Switches (Pica8 P-3290) and an Open vSwitch.

The experimental environment uses different international and
academic networks and GRE: 1) The GRE connection between
NAIST and UCSD is established over the TransPAC3 network;
2) The GRE connections between OU and NAIST, OU and
UCSD are established over Science Information NETwork, Japan
(SINETS); 3) NAIST, Osaka, Tokyo and Los Angeles Data Cen-
ter of NICT are connected with RISE service over JGN-X; 4)
The links between UF and Los Angeles, UCSD and Los Ange-
les, UCSD and UF are connected via Internet2 and California Re-
search and Education Network (CalREN). All experiments on the
global environments are conducted during weekends to reduce
the impact from the background traffic, because there is usually
a larger traffic during working days and a smaller traffic during

© 2017 Information Processing Society of Japan

Table 2 Experiment result to determine value a in the global-scale experi-
mental environment.

Path number 1 2 3 4
Latency (ms) 191 183 211 191
Available average bandwidth (Mbps) | 728.4 | 638 916 | 780.5
S.D. of available bandwidth 0.78 | 3.82 | 497 | 20.43
Observed optimal number of streams 8 10 10 28
Predicted optimal number of streams 9 8 13 10

weekends on these national research and education networks.
5.2.2 Determine the Parameter of Prediction Model

In order to determine the value, a, of Eq. (8) in our global-scale
environment, we have also measured the available bandwidth and
latency on several paths and figured out the optimal number of
TCP streams for those paths. Figure 9 shows four shorter paths
(pathl to 4) that our system found. Since longer paths than these
four paths have too many overlapped links with the other paths
and are not useful to evaluate, we use the four paths illustrated in
Fig. 9.

Table 2 indicates the measurement results of the four paths.
As the fourth path has a bigger standard deviation and the per-
formance is not stable on the path, we use the other three paths
to calculate the value, a. From the measurement results, we have
determined the value, a as about 0.000065 in our international en-
vironment. Table 2 also shows the predicted optimal number of
TCP streams. We can see that the numbers are slightly different
from the observed optimal numbers, but still similar.

5.2.3 Results of Experiments

In the experiments, we compared our proposed system with
two other methods, 1) the single path assignment method which
is a conventional routing method just using a single path for
multiple TCP streams, 2) the round robin assignment method
which uses available multiple paths in a round robin manner. Our
method uses available multiple paths based on the rate from the
predicted optimal numbers of TCP streams for each path. For the
evaluation, we transferred a file of 6 GB from NAIST to UF, and
measured the transfer time and also measured the used bandwidth
during the transfer. The measurement method is the same as the
method used in our virtual environment experiments.

Since the used four paths have shared links each other, the

930

Journal of Information Processing Vol.25 924-933 (Oct.

Table 3 Optimal assignment in the global-scale experimental environment.

Path number 1 2 3 4
Latency (ms) 191 183 | 211 191
Expected available bandwidth (Mbps) | 660 | 200 | 740 | 170
Optimal number of streams 8 2 10 2
=&=Single path assignment method =&=Round robin assignment method

==0==0ptimal assignment method
900

800
700

600

500

Mbps

400

300
200
100

0
4 8 12 16 20 24 28 32 36 40 44
Number of parallel TCP streams

Fig. 10 Comparison of the average data transfer speed between the single
path assignment, the round robin assignment and the optimal as-
signment.

available bandwidth would be reduced when these four paths are
used simultaneously. We measured a standalone performance of
each link and expected the available bandwidth of each path as
shown in Table 3. Based on the expected bandwidth, we have
calculated the optimal number of TCP streams for each path as 8,
2, 10 and 2 respectively. Therefore, we assigned TCP streams to
the four paths with a ratio of 4:1:5:1 in our optimal assignment
method.

Figure 10 shows the average speed of the data transfer while
increasing the number of parallel TCP streams. From the results,
in the case of using 4, 8 and 12 parallel TCP streams, the average
speeds of the single path assignment method are better than the
optimal assignment and the round robin assignment method. This
is because our proposed system used pathl, 2, 3 and 4 simultane-
ously, and only a few TCP streams were assigned for each path in
the case of using smaller streams. Therefore, those TCP streams
could not overcome the performance degradation of TCP’s slow
start mechanism. On the other hand, in the case of using the
single path assignment method, all streams were assigned to the
shortest path, pathl, and achieved better performance than our
method. However, when we used more than 16 streams, the opti-
mal assignment and the round robin assignment method achieved
better performance than the single path assignment. Especially,
the maximum performance of our optimal assignment method
reaches approximately 30% better than the round robin assign-
ment method and approximately 60% better than the single path
assignment method.

Figure 11 shows the used bandwidth for the round robin as-
signment method with 24 parallel TCP streams. The performance
for path4 is slightly worse than the other paths because path4 is
the longest and unstable path. The results show that the band-
width keeps at around 880 Mbps and also achieved 900 Mbps as
its best performance.

Figure 12 shows the used bandwidth for the optimal assign-

© 2017 Information Processing Society of Japan

2017)

M Pathl M Path2 M path3 M Path4

Mbps

Fig. 11 Used bandwidth for the round robin assignment method in case of
using 24 parallel TCP streams (6 parallel TCP streams are assigned
for each path).

W Pathl MPath2 mPath3 EPath4

1000
900

800

Mbps
v
8

Fig. 12 Used bandwidth for the optimal assignment method in case of us-
ing 22 parallel TCP streams (TCP streams are assigned for each
path with a ratio of 4:1:5:1 in order).

ment method with 22 parallel TCP streams. The performance of
path2 and 3 is worse than that of the other paths. But, the over-
all performance of the aggregated bandwidth is larger than the
round robin assignment method. The results show that the traffic
is stable and the bandwidth keeps at around 960 Mbps. In this
experiment, our virtual machine host was equipped only with a
1 Gbps NIC. So, this result indicates that our proposed method
achieved the performance that is close to the physical limitation
of the hardware.

6. Conclusion

In this paper, we proposed a multipath controller providing
multiple paths to the multiple TCP streams applications by using
SDN technology based on OpenFlow. We also proposed a predic-
tion model for optimal assignment of TCP streams. To demon-
strate the effectiveness of our proposed controller, we adapted
GridFTP into our proposed system as a case study and performed
experiments using a virtual environment and a real global-scale
environment. Experimental results showed that the proposed sys-
tem improves the bandwidth usage and shortens the time of the
GridFTP transfer.

For the future works, there are still some issues needing to be

931

Journal of Information Processing Vol.25 924-933 (Oct. 2017)

addressed. First, in our current OpenFlow controller, to simplify
the design, we used a common parameter a of prediction model
for all paths. Actually, for each network path, the performance
could be improved by adjusting the parameter a according to net-
work path conditions. Therefore, we plan to adapt the parameter
adjustment function to improve the OpenFlow controller and con-
duct further experiments. Second, we just used simple topologies
for the evaluations. To evaluate the practicality and performance
of our OpenFlow controller, we need to test the controller with
larger and more realistic networks. Benchmarking with simulated
environments would be also considered. Third, we have not taken
into account the use of multiple users. Currently, our system only
focuses on optimizing the data transfer performance between two
endpoints. We may need to optimize the TCP streams assignment
in terms of the fairness among multiple users of the network.

Acknowledgments This work was partly supported by JSPS
KAKENHI Grant Number 15K00170. The first author also grate-
fully expresses his gratitude to the Japan Ministry of Education,
Culture, Sports, Science and Technology (MEXT) for scholar-
ship.

References

[1] Allcock, W., Bresnahan, J., Kettimuthu, R. and Link, J.: The globus
extensible input/output system (XIO): A protocol independent IO sys-
tem for the grid, Joint Workshop on HighPerformance Grid Comput-
ing and High-Level Paral-lel Programming Models in conjunction
with International Parallel and Distributed Processing Symposium,
IEEE (2005).

2] Allcock, W., Bresnahan, J., Kettimuthu, R., Link, M., Dumitrescu, C.,
Raicu, I. and Foster, I.: The Globus striped GridFTP framework and
server, Proc. 2005 ACM/IEEE Conference on Supercomputing, p.54,
IEEE Computer Society (2005).

[3] Allman, M., Kruse, H. and Ostermann, S.: An application-level solu-
tion to TCP’s satellite inefficiencies, Proc. Ist International Workshop
on Satellite-based Information Services (WOSBIS), Citeseer (1996).

[4] Baldini, A., De Carli, L. and Risso, F.: Increasing performances
of TCP data transfers through multiple parallel connections, /EEE
Symposium on Computers and Communications, 2009, ISCC 2009,
pp.630-636, IEEE (2009).

[5] Chervenak, A., Foster, I., Kesselman, C., Salisbury, C. and Tuecke,
S.: The data grid: Towards an architecture for the distributed manage-
ment and analysis of large scientific datasets, Journal of Network and
Computer Applications, Vol.23, No3, pp.187-200 (2000).

[6] Ford, A., Raiciu, C., Handley, M., Barre, S. and Iyengar, J.: Architec-
tural guidelines for multipath TCP development, RFC 6182 (2011).

[7] Foster, 1., Kesselman, C. and Tuecke, S.: The anatomy of the
grid: Enabling scalable virtual organizations, International Journal
of High Performance Computing Applications, Vol.15, No.3, pp.200—
222 (2001).

[8] Gu, Y. and Grossman, R.L.: UDT: UDP-based data transfer for
high-speed wide area networks, Computer Networks, Vol.51, No.7,
pp.1777-1799 (2007).

[9] Gunter, D., Kettimuthu, R., Kissel, E., Swany, M., Yi, J. and Zurawski,
J.: Exploiting Network Parallelism for Improving Data Transfer Per-
formance, High Performance Computing, Networking, Storage and
Analysis (SCC), 2012 SC Companion:, pp.1600-1606, IEEE (2012).

[10] Hacker, T.J., Athey, B.D. and Noble, B.: The end-to-end perfor-
mance effects of parallel TCP sockets on a lossy wide-area network,
IEEE International Symposium on Parallel and Distributed Process-
ing (IPDPS02), pp.434-443, IEEE (2002).

[11] Hubert, B. et al.: Linux advanced routing & traffic control HOWTO
(2009), available from ¢http://www.lartc.org/howto/).

[12] Ichikawa, K., Tsugawa, M., Haga, J., Yamanaka, H., Liu, T.-L., Kido,
Y., U-Chupala, P., Huang, C., Nakasan, C., Chang, J.-Y., Ku, L.-C.,
Tsai, W.-F., Date, S., Shimojo, S., Papadopoulos, P. and Fortes, J.:
PRAGMA-ENT: Exposing SDN Concepts to Domain Scientists in the
Pacific Rim, PRAGMA Workshop on International Clouds for Data
Science (PRAGMA-ICDS 2015) (2015).

[13] Ishii, S., Kawai, E., Kanaumi, Y., Saito, S.-i., Takata, T., Kobayashi,
K. and Shimojo, S.: A study on designing OpenFlow controller RISE
3.0, 2013 19th IEEE International Conference on Networks (ICON),

© 2017 Information Processing Society of Japan

pp-1-5, IEEE (2013).

[14] Tto, T., Ohsaki, H. and Imase, M.: On parameter tuning of data
transfer protocol GridFTP for wide-area grid computing, 2nd Inter-
national Conference on Broadband Networks, 2005, pp.1338-1344,
IEEE (2005).

[15] Kanaumi, Y., Saito, S.-I., Kawai, E., Ishii, S., Kobayashi, K. and
Shimojo, S.: RISE: A Wide-Area Hybrid OpenFlow Network Testbed,
leice Trans. Comm., Vol.96, No.1, pp.108-118 (2013).

[16] Kissel, E., Swany, M. and Brown, A.: Improving GridFTP perfor-
mance using the Phoebus session layer, Proc. Conference on High Per-
Jformance Computing Networking, Storage and Analysis, p.34, ACM
(2009).

[17] Lu, D., Qiao, Y., Dinda, P.A. and Bustamante, FE.: Modeling and
taming parallel TCP on the wide area network, /9th IEEE Interna-
tional Parallel and Distributed Processing Symposium, Vol.1, p.68b,
IEEE (2005).

[18] McKeown, N., Anderson, T., Balakrishnan, H., Parulkar, G., Peterson,
L., Rexford, J., Shenker, S. and Turner, J.: OpenFlow: Enabling inno-
vation in campus networks, ACM SIGCOMM Computer Communica-
tion Review, Vol.38, No.2, pp.69-74 (2008).

[19] NEC Corporation: Routing switch, Trema App [Online], available
from (https://github.com/trema/apps/tree/master/routing_switch) (ac-
cessed 2016-07-22).

[20] Open Networking Foundation [Online], available from ¢https:/www.
opennetworking.org/) (accessed 2016-07-22).

[21] Open vSwitch [Online], available from ¢http://openvswitch.org) (ac-
cessed 2016-07-22).

[22] Shimonishi, H., Takamiya, Y., Chiba, Y., Sugyo, K., Hatano, Y.,
Sonoda, K., Suzuki, K., Kotani, D. and Akiyoshi, I.: Programmable
network using OpenFlow for network researches and experiments,
Proc. 6th International Conference on Mobile Computing and Ubiq-
uitous Networking (ICMU 2012), pp.164-171 (2012).

[23] Trema App [Online], available from (https://github.com/trema/apps)
(accessed 2016-07-22).

[24] Tullimas, S., Nguyen, T., Edgecomb, R. and Cheung, S.-C.: Multime-
dia streaming using multiple TCP connections, ACM Trans. Multime-
dia Computing, Communications, and Applications (TOMM), Vol.4,
No.2, p.12 (2008).

[25] van der Pol, R., Bredel, M., Barczyk, A., Overeinder, B., van
Adrichem, N. and Kuipers, F.: Experiences with MPTCP in an in-
tercontinental OpenFlow network, Proc. 29th TERENA Network Con-
ference (TNC2013) (2013).

[26] Wang, B., Wei, W., Kurose, J., Towsley, D., Pattipati, K.R., Guo,
Z. and Peng, Z.: Application-layer multipath data transfer via TCP:
Schemes and performance tradeoffs, Performance Evaluation, Vol.64,
No.9, pp.965-977 (2007).

[27] Zhang, J., Gui, Y., Liu, C. and Li, X.: To improve throughput via
multi-pathing and Parallel TCP on each path, 4th ChinaGrid Annual
Conference, 2009, ChinaGrid’09, pp.16-21, IEEE (2009).

[28] Zhang, M., Lai, J., Krishnamurthy, A., Peterson, L.L. and Wang, R.Y.:
A Transport Layer Approach for Improving End-to-End Performance
and Robustness Using Redundant Paths, USENIX Annual Technical
Conference, General Track, pp.99-112 (2004).

Che Huang received his Bachelor of Arts
and Sciences and Master of Arts and Sci-
ences degrees from Osaka Kyoiku Uni-

versity in 2013 and 2015, respectively.
Currently, he is a Ph.D. student in the
Graduate School of Information Science
at Nara Institute of Science and Technol-
ogy (NAIST). His current research inter-
ests include distributed systems, Software Defined Networking
and related information technologies. He is a student member of
IPSJ and IEEE.

932

Journal of Information Processing Vol.25 924-933 (Oct. 2017)

Chawanat Nakasan received his B.Eng.
from Kasetsart University in Thailand in
2013 and M.Eng. from Nara Institute of
Science and Technology in Japan. He is
currently pursuing a Ph.D. at the same
university. He is currently serving as a
student committee member in the Pacific

Rim Applications and Grid Middleware
Assembly (PRAGMA). His research focuses on multipath rout-
ing and software-defined network.

Kohei Ichikawa received his B.E., M.E.,
and Ph.D. from Osaka University in 2003,
2005, and 2008, respectively. He was a
postdoctoral fellow at the Research Cen-
ter of Socionetwork Strategies, Kansai
University from 2008 to 2009. He also
worked as an Assistant Professor at the

Central Office for Information Infrastruc-
ture, Osaka University from 2009 to 2012. From 2012 he is work-
ing as an Associate Professor at Graduate School of Information
Science, Nara Institute of Science and Technology. His current
research interests include distributed systems, Software Defined
Networking and related information technologies. He is a mem-
ber of IEICE, IEEE, IPSJ and JSAL

Yasuhiro Watashiba received his B.E.
and MLE. degrees from Kyoto University
in 2002 and 2004, respectively, and his
Ph.D. degrees from Osaka University in

2015. Currently, he is working as As-
sistant Professor of the Graduate School

of Information Science, Nara Institute of
Science and Technology (NAIST). His
current research interests include Resource Management on com-
puting environment and related information technologies. He is a
member of IEICE, IPSJ, IEEE and ACM.

Hajimu lida received his B.E., M.E., and
Dr. of Eng. degrees from Osaka Univer-
sity in 1988, 1990, and 1993, respectively.
From 1991 to 1995, he worked for the
Department of Information and Computer
Science, Faculty of Engineering Science,

Osaka University as a research associate.
Since 1995 he has been with the Gradu-
ate School of Information Science, Nara Institute of Science and
Technology, Japan. His current position is a Professor of the Lab-
oratory of Software Design and Analysis. His research interests
include modeling and analysis of software and development pro-
cess.

© 2017 Information Processing Society of Japan

933

