
Journal of Information Processing Vol.25 962–974 (Dec. 2017)

[DOI: 10.2197/ipsjjip.25.962]

Regular Paper

Towards Practical Typechecking for Macro Forest
Transducers

Kazuhiro Abe1,a) Keisuke Nakano1,b)

Received: February 4, 2017, Accepted: August 4, 2017

Abstract: Macro tree transducers (MTTs) and macro forest transducers (MFTs) have been used as good models of
tree-structured data transformations such as XML transformations. Typechecking of transformations in these mod-
els is performed to verify if any tree of an input type is always transformed into a tree of an output type, which is
useful for validating XML transformations against given XML schemata. In typechecking problems for MTTs and
MFTs, each “type” is usually given by a tree automaton. A naive implementation of a typechecking algorithm is very
inefficient because its time complexity is beyond exponential to the number of states of tree automata, and a large
number of equivalence checking operations over finite maps are required. For typechecking of MTTs, Frisch and
Hosoya proposed an efficient and practical algorithm by using alternating tree automata as an internal representation of
types and reducing the problem to satisfiability checking over first-order logic formulae. In this paper, we extend their
typechecking method to apply it to MFTs that are more expressive than MTTs. Our implementation of the proposed
method shows that it performs typechecking for relatively simple cases in a reasonable time.

Keywords: macro forest transducers, typechecking, alternating tree automata

1. Introduction

Macro tree transducers (MTTs) [1] have been studied as a
model of transformations between trees. However, since trees
in MTTs have a fixed number of children, MTTs cannot deal
with JSON and XML, called forest, which have an arbitrary num-
ber of children. To solve this problem, macro forest transducers
(MFTs) [2] have been proposed by extending MTTs so that they
can be applied to actual XML transformations [3], [4].

One of the important properties of tree transducers such as
MTTs and MFTs is the decidability of typechecking. Given a spe-
cific input and output as sets Lin and Lout of trees, typechecking
of a transformation T induced by a tree transducer is performed
to verify if any tree in Lin is always transformed by transforma-
tion T into a tree in Lout. In general, sets of trees are specified as
tree automata (TAs). Typechecking of tree transducers is applied
to validate XML transformations against XML schemata [5].

Typechecking methods of tree transducers are roughly divided
into the following two groups.
Backward typechecking First, we calculate the inverse image
T−1(L�out) of the complement of the output type Lout under
the transformation T , and then we check T−1(L�out) ∩ Lin =

∅, which is equivalent to T (Lin) ⊆ Lout.
Forward typechecking First, we calculate the imageT (Lin) of

the input type Lin under the transformation T , and then we
check directly T (Lin) ⊆ Lout.

For MTTs and MFTs, backward typechecking has been inten-

1 Graduate School of Informatics and Engineering, the University of
Electro-Communications, Chofu, Tokyo 182–8585, Japan

a) abe@ipl.cs.uec.ac.jp
b) ksk@cs.uec.ac.jp

sively studied [1], [2]. Frisch and Hosoya [6] proposed an effi-
cient backward typechecking algorithm for MTTs by using al-
ternating tree automata (ATAs) [7] for inverse images instead of
TAs and implemented it [8]. Since any MFT can be represented
by a composition of two MTTs, any MFT can be typechecked
by two-fold computation of the inverse images of the MTTs [2].
However, this indirect typechecking method for MFTs is ineffi-
cient due to the number of states of an ATA expressing the inverse
image used in the middle of the typechecking process. As a direct
typechecking method for MFTs, Perst and Seidl’s naive backward
typechecking [2] is known. Their method is based on the fact that
MFTs extend MTTs just by adding a concatenation operator for
forests in the same way as for lists. In the method, the inverse
image of an MFT is given by a TA in which each state is given
by binary relation, that is, a set of pairs, representing state transi-
tions caused by forest concatenation. Their proposed typecheck-
ing method showed the worst-case complexity. However, there
has been no proposal or implementation of a practical typecheck-
ing method for MFTs. On the other hand, Kobayashi et al. [9]
proposed a faster forward typechecking method for linear higher-
order multi-parameter tree transducers that are as expressive as
compositions of MTTs and implemented it. In particular, since
an MFT can be converted to 4-order linear higher-order multi-
parameter tree transducers, it is possible to typecheck any MFT.
However, their typechecking method is not specialized for MFTs,
so there may be room for improvement. In this paper, we pro-
pose a new backward typechecking method for MFTs based on
Perst and Seidl’s idea to compute the inverse image while pay-
ing attention to output state transitions by concatenating forests.
We give a different construction of a TA in which a state is a
pair of output states while they use a set of pairs. Based on their

c© 2017 Information Processing Society of Japan 962

Journal of Information Processing Vol.25 962–974 (Dec. 2017)

paper, we extend Frisch and Hosoya’s faster backward typecheck-
ing method for MTTs to apply it to MFTs.

The contributions of this paper are as follows. First, based on
Perst and Seidl’s idea, this paper extended Frisch and Hosoya’s
backward typechecking method for MTT to a direct backward
typechecking method for MFT. Second, this paper showed the
correctness of this extended typechecking method. Finally, an
implementation of this method showed that typechecking will be
completed quickly even if the worst-case complexity increases.

The structure of this paper is as follows. Section 2 provides
the terms and definitions required for our typechecking method.
Section 3 introduces basic algorithms related to TAs or ATAs.
Section 4 shows our typechecking method and its correctness.
Section 5 discusses the implementation of our method. Sec-
tion 6 presents the experimental results for our implementation.
Section 7 compares the three approaches: Frisch and Hosoya’s
typechecking method for MTTs, Kobayashi et al.’s typecheck-
ing method for higher-order multi-parameter tree transducers, and
our typechecking method for MFTs.

2. Preliminaries

In this section, we introduce the terms and definitions used in
this paper.

2.1 Basic Notations
We denote the set of all natural numbers including zero by N.

For any natural number n ∈ N, [n] stands for the set of natural
numbers from 1 to n; in particular, [0] is the empty set.

From now on, for simplicity, the i (1 ≤ i ≤ k)-th element of
k-vector u is denoted by vi, and the 0-vector is denoted by ().

2.2 Trees and Forests
In this paper, trees are labeled binary trees which are defined

below.
Definition 2.1. The set of all trees over an alphabet Σ is denoted
by BΣ. A tree t ∈ BΣ is syntactically given by

t ::= ε | a(t, t) (a ∈ Σ).

�
Here, ε is called a leaf, and symbol a in tree a(t1, t2) is called a

node. For trees ε and a(t1, t2), their roots are ε and a, respectively.
In addition, let the alphabet Σ be a finite set of symbols.

A forest is given as a list of unranked trees in which every node
can have any number of children.
Definition 2.2. The set of all forests over an alphabet Σ is denoted
by FΣ. A forest f ∈ FΣ is syntactically given by

f ::= ε | a〈 f 〉 f (a ∈ Σ).

�
Here, ε means an empty forest. Intuitively, a〈 f 〉 means an un-

ranked tree whose root symbol is a, and a forest means a list of
such trees.

For any forest f = a〈 f1〉 f2, f1 is called a child forest of f , and
f2 is called a sibling forest of f . The right most empty forest in
forest f , that is, ε obtained by taking sibling forests repeatedly,

Fig. 1 Concatenation of forests.

is called a hole of f . In particular, the hole of ε is ε itself. For
example, the hole of the forest a〈b〈ε〉ε〉c〈ε〉ε shown on the left of
Fig. 1 (a) is represented by the circled ε.

By translating forests ε and a〈−〉− into trees ε and a(−,−), re-
spectively, every forest can be regarded as a tree. Therefore, we
will treat forests as trees in this paper. In particular, tree automata
and alternating tree automata are also used for forests.

However, forests and trees are different in the following sense.
Since forests are lists, they can be concatenated. The concatena-
tion f1 f2 of forests f1, f2 is the forest obtained by replacing the
hole of f1 with f2.
Definition 2.3. For forests f1 = a11〈 f11〉 · · · a1n〈 f1n〉ε and f2 =

a21〈 f21〉 · · · a2m〈 f2m〉ε, the concatenation f1 f2 of f1 and f2 is de-
fined by

f1 f2 = a11〈 f11〉 · · · a1n〈 f1n〉a21〈 f21〉 · · · a2m〈 f2m〉ε.

�
For example, the concatenation of the forests

a〈b〈ε〉ε〉c〈ε〉ε and d〈e〈ε〉 f 〈ε〉ε〉ε in Fig. 1 (a) is the forest
a〈b〈ε〉ε〉c〈ε〉d〈e〈ε〉 f 〈ε〉ε〉ε in Fig. 1 (b)

2.3 Tree Automata
A tree automaton (TA) is a state machine dealing with trees.

Definition 2.4. Let Σ be an alphabet. A TA is a tuple M =

(Q, I, F,Δ), where
• Q is a finite set of states,
• I ⊆ Q is a finite set of initial states,
• F ⊆ Q is a finite set of final states, and
• Δ is a finite set of transition rules of the form

a(q1, q2)→ q (a ∈ Σ, q1, q2, q ∈ Q).

�
A TA assigns a state q ∈ Q to each node and leaf in a given

tree. The assignment must follow the set Δ. For a symbol a and
states q1 and q2, there may be more than one transition rule or
no transition rules a(q1, q2) → q. Therefore, a state assigned to
a node of a tree is nondeterministically chosen according to the
node symbol and states of children.

First, we define the language of a state of a TA. For a state
q ∈ Q, the set of all trees accepted by q, that is, whose root is
assigned q is called the language of the state q and denoted by
[[q]].
Definition 2.5. Let q be a state of a TA M = (Q, I, F,Δ), and let
t1, t2 ∈ BΣ be trees. Then, [[q]] is the smallest set such that
• ε ∈ [[q]] if q ∈ I, and
• a(t1, t2) ∈ [[q]] if ∃(a(q1, q2) → q) ∈ Δ. t1 ∈ [[q1]] ∧ t2 ∈

[[q2]].
�

Next, we define the language of a TA. For any tree t ∈ BΣ, it

c© 2017 Information Processing Society of Japan 963

Journal of Information Processing Vol.25 962–974 (Dec. 2017)

can be determined whether a TA M accepts t. The set of all trees
accepted by M, that is, whose root is assigned to any final state of
M is called the language of the TA M and denoted by L(M). The
language of the TA M is defined as the union of the languages of
the final states of M.
Definition 2.6. Let M = (Q, I, F,Δ) be a TA. The languageL(M)
of the TA M is

⋃
q∈F[[q]]. �

2.4 Deterministic Bottom-up Tree Automata
It is said that a TA M is deterministic if at most one state of

a node is determined by the node symbol and states of children
according to the transition rules of M.
Definition 2.7. Let Σ be an alphabet. A TA M = (Q, I, F,Δ) is
deterministic if
• the set I of initial states is a singleton, and
• for any pair of states q1, q2 ∈ Q and symbol a ∈ Σ, there

exists at most one transition rule a(q1, q2)→ q in Δ.
�

The ‘at most one’ condition allows nonexistence of transition
rules for some symbols and states of children. Additionally, since
the set I of initial states is a singleton, we will denote the deter-
ministic TA by (Q, {qI}, F,Δ).

Because of the properties of the transition rules of a determin-
istic TA, we have the following theorem that two distinct states
cannot be assigned to the root for any tree.
Theorem 2.8. Let Σ be an alphabet, and let M = (Q,), {qI}, F,Δ)
be a deterministic TA. For any tree t ∈ BΣ and states q, q′ ∈ Q,
q = q′ if t ∈ [[q]] ∧ t ∈ [[q′]]. �

Proof. By induction on the structure of t. �

On the other hand, it is said that a TA is complete if one or more
states are always determined by a symbol and states of children.
Definition 2.9. Let Σ be an alphabet. A TA M = (Q, I, F,Δ) is
complete if
• the set I of initial states has at least one state, and
• for any pair of states q1, q2 ∈ Q and symbol a ∈ Σ, there

exists at least one transition rule a(q1, q2)→ q in Δ.
�

Because of the properties of the transition rules of a complete
TA, the TA can always assign at least one state to the root for any
tree.
Theorem 2.10. Let Σ be an alphabet, and let M = (Q, I, F,Δ) be
a complete TA. For any tree t ∈ BΣ, there exists a state q ∈ Q

such that t ∈ [[q]]. �

Proof. By induction on the structure of t. �

A deterministic and complete TA uniquely assigns a state for
each node of a given tree. We call it a deterministic bottom-up

tree automaton (DBTA).
Definition 2.11. A TA M is a DBTA if M is deterministic and
complete. �

Because of the properties of the transition rules of a DBTA,
exactly one state is assigned to the root for any tree.

2.5 Alternating Tree Automata
An alternating tree automaton (ATA) is a variant of the TA. Al-

though the definition of ATAs is similar to that of TAs, the forms
of their transition rules are different. In TAs, state transition is
specified by a set of rules that assign a state to a node by its node
symbol and states assigned to its children. In ATAs, state transi-
tion is specified by conditional expressions that assign a state to
a node by its node symbol and all possible states assigned to its
children.
Definition 2.12. Let Σ be an alphabet. An ATA is a tuple
M = (Q, I, F,Φ), where
• Q is a finite set of states,
• I ⊆ Q is a finite set of initial states,
• F ⊆ Q is a finite set of final states, and
• Φ is a transition function Q× Σ→ φ that gives a conditional

expression to assign states to nodes of a tree. The conditional
expression φ is syntactically given by

φ ::= φ ∨ φ | φ ∧ φ | � | ⊥ | ↓1 q | ↓2 q.

�
The intuitive meaning of the conditional expression φ conforms

to the logical expression. ∨ gives the logical OR of conditions,
and ∧ gives the logical AND of conditions. � and ⊥ correspond
to true and false, respectively. ↓i q means the condition that the
root of the i-th child is assigned the state q.

Similarly to TAs, an ATA assigns states to each node and leaf
of a tree. This assignment must follow the transition function Φ
of the ATA.

First, we define the language of a state of an ATA. For a state
q ∈ Q of an ATA, the set of all trees accepted by q, that is, whose
root is assigned q is called the language of the state q and denoted
by [[q]]. We also define the language of a conditional expression
here. For a conditional expression φ of an ATA, a set of pairs of
trees that satisfy the condition specified by φ is called the lan-

guage of the conditional expression φ and denoted by [[φ]].
Definition 2.13. Let M = (Q, I, F,Φ) be an ATA, q ∈ Q be a state
of M, and t1, t2 ∈ BΣ be trees. Then, [[q]] is the smallest set such
that
• ε ∈ [[q]] if q ∈ I, and
• a(t1, t2) ∈ [[q]] if (t1, t2) ∈ [[Φ(q, a)]].

where [[φ]] for a conditional expression φ is defined as follows.
For a vector of trees t ∈ Bk

Σ
(k = 0, 2), t ∈ [[φ]] holds if a judge-

ment t � φ is derived by
• t � �,
• t � φ1 ∧ φ2 if t � φ1 and t � φ2,
• t � φ1 ∨ φ2 if t � φ1 or t � φ2, and
• t � ↓i q (i = 1, 2) if ti ∈ [[q]].

�
Next, we define the language of an ATA. Similarly to TAs, for

any tree t, it can be determined whether an ATA accepts t. The
set of all trees that are accepted by an ATA M is called the lan-
guage of M and denoted by L(M). The language of an ATA M is
defined as the union of the languages of the final states of M.
Definition 2.14. Let M = (Q, I, F,Φ) be an ATA. The language
L(M) of the ATA M is

⋃
q∈F[[q]]. �

Example 1. For trees over the alphabet Σ = {s}, an ATA Modd

that accepts a tree with an odd number of s is given by

c© 2017 Information Processing Society of Japan 964

Journal of Information Processing Vol.25 962–974 (Dec. 2017)

Modd = ({q0, q1}, {q0}, {q1},Φodd),

Φodd(q0, s) = (↓1 q0 ∧ ↓2 q1) ∨ (↓1 q1 ∧ ↓2 q0), and

Φodd(q1, s) = (↓1 q0 ∧ ↓2 q0) ∨ (↓1 q1 ∧ ↓2 q1).

q0 accepts only trees with an odd number of s. q1 accepts only
trees with an even number of s. �

2.6 Macro Forest Transducers
A macro forest transducer (MFT) is a collection of transfor-

mation rules over forests. The form of the transformation rules
is restricted. Intuitively, the transformation induced by an MFT
can be regarded as a multi-parameter mutually recursive function
over forests. A function in an MFT can have multiple accumu-
lating parameters, and the number of parameters is called rank.
A transformation may output more than one forest or no forests.
Therefore, each function induced by an MFT is regarded as a map
from forests to sets of forests.
Definition 2.15. For forests over an alphabet Σ, an MFT T is a
tuple (P, P0,Π), where
• P is a finite set of ranked function names. P(i) ⊆ P is a set of

function names each of which has rank i ∈ N,
• P0 ⊆ P(0) is a finite set of initial function names, and
• Π is a set of transformation rules of the form

p(a〈x1〉x2, y1, . . . , yk)→ e (p ∈ P(k), k ∈ N, a ∈ Σ)

p(ε, y1, . . . , yk)→ e (p ∈ P(k), k ∈ N)

where e is called a right-hand-side expression. The right-
hand-side expression e for p(a〈x1〉x2, y1, . . . , yk) is syntacti-
cally given by

e ::= b〈e1〉e2 (b ∈ Σ)

| ε
| q(xh, e1, . . . , el) (q ∈ P(l), l ∈ N, h ∈ [2])

| yi (i ∈ [k])

| e1e2.

The right-hand-side expression e for p(ε, y1, . . . , yk) is given
in the same syntax excluding q(xh, e1, . . . , el).

�
We denote a function name p that has a rank k by p(k). The

rank k shows the number of accumulating parameters y1, . . . , yk

given to the function name p(k). Each syntax of the right-hand-
side expressions of a transformation rule for p(k) has the follow-
ing meaning: b〈e1〉e2 and ε construct forests, q(l)(xh, e1, . . . , el)
means a function call, yi refers to an accumulating parameter, and
e1e2 concatenates two forests. In particular, the first argument of
a function call must be the child x1 or the sibling x2 of the first
argument of the caller, and the other arguments can be arbitrary
right-hand-side expressions. For each left-hand side, there may
be more than one right-hand-side expression or no right-hand-
side expressions. Therefore, a transformation induced by an MFT
is nondeterministic, and its semantics is given by a function from
forests to sets of forests.

In summary, P is the set of function names, Π is the set of
transformation rules, P0 is the set of initial function names whose

rank must be 0, and functions in P0 should be called first when
applying an MFT to a given forest.

Next, we define the semantics of an MFT [[·]]. It is known
through evaluation strategies that a nondeterministic MFT has
two styles of semantics evaluation results obtained by using these
two semantics are different in general. In this paper, we consider
only one of them, called In-Out (IO). Intuitively, IO-semantics [[·]]
evaluates a right-hand-side expression from inside to outside. [[·]]
takes a function name p(k), an input forest f , and a k-dimensional
vector τ consisting of accumulating parameters τi given by func-
tion calls and then returns the set of forests as evaluation results
of p(k). The set [[p(k)]](f , τ) is defined below.
Definition 2.16. For a forest a〈 f1〉 f2 over an alphabet Σ, a vector
τ ∈ FΣk and an MFT T = (P, P0,Π), the semantics [[p(k)]] with
p ∈ P is defined by

[[p(k)]](a〈 f1〉 f2, τ) =
⋃

(p(k)(a〈x1〉x2 ,y1 ,...,yk)→e)∈Π

[[e]]((f1, f2), τ), and

[[p(k)]](ε, τ) =
⋃

(p(k)(ε,y1 ,...,yk)→e)∈Π

[[e]]((), τ)

where the semantics [[e]] of the right-hand side e is defined by

[[a〈e1〉e2]](f , τ)

= {a〈 f ′1〉 f
′
2 | f ′1 ∈ [[e1]](f , τ), f ′2 ∈ [[e2]](f , τ)},

[[ε]](f , τ) = {ε},
[[p(l)(xh, e1, . . . , el)]](f , τ)

= {[[p(l)]](fh, τ
′) | ∀ j ∈ [l]. τ′j ∈ [[e j]](f , τ)},

[[yi]](f , τ) = {τi}, and

[[e1e2]](f , τ) = { f ′1 f ′2 | f ′1 ∈ [[e1]](f , τ), f ′2 ∈ [[e2]](f , τ)}.

�
An MFT T = (P, P0,Π) transforms a forest f by applying the

semantics of the initial function names P0 to f . Therefore, the
transformation by T for a forest f is the union of [[p(0)

0]](f , ()) for
all p0 ∈ P0.
Definition 2.17. The set of T (f) of all forests transformed from
a forest f by an MFT T = (P, P0,Π) is

⋃
p∈P0

[[p]](f , ()). �
Example 2. Over an alphabet Σ = {doc, note,memo, text, s}, we
consider forests in which each of the children of doc is either
memo or note and the children of memo and note are text. For
these forests, an MFT Tex = ({p(0)

0 , p
(1)
note, p

(1)
memo, id

(0)}, {p(0)
0 },Πex)

with

Πex =
{
p(0)

0 (doc〈x1〉x2)→ doc〈p(1)
note(x1, ε) p(1)

memo(x1, ε)〉,

p(1)
note(ε, y1)→ ε,

p(1)
note(note〈x1〉x2, y1)

→ note〈s〈y1〉id(0)(x1)〉p(1)
note(x2, s〈y1〉),

p(1)
note(memo〈x1〉x2, y1)→ p(1)

note(x2),

p(1)
memo(ε, y1)→ ε,

p(1)
memo(memo〈x1〉x2, y1)

→ memo〈s〈y1〉id(0)(x1)〉p(1)
memo(x2, s〈y1〉),

p(1)
memo(note〈x1〉x2, y1)→ p(1)

memo(x2),

id(0)(ε)→ ε,
id(0)(text〈x1〉x2)→ text〈id(0)(x1)〉id(0)(x2)

}

c© 2017 Information Processing Society of Japan 965

Journal of Information Processing Vol.25 962–974 (Dec. 2017)

doc〈
note〈〉
memo〈text〈〉text〈〉〉
memo〈text〈〉〉
note〈text〈〉〉
〉

(a) Before transformation

doc〈
note〈s〈〉〉
note〈s〈s〈〉〉text〈〉〉
memo〈s〈〉text〈〉text〈〉〉
memo〈s〈s〈〉〉text〈〉〉
〉

(b) After transformation

Fig. 2 Transformation example of MFT Tex.

separates two kinds of children, memo and note, and adds a serial
number with s (successor operator for Peano numbers) to each.
Here, we denote an expression (x, y) with 1-dimensional vector
y = (y1) by (x, y1) and a〈ε〉ε by a〈〉 briefly. By this MFT, for
example, the forest in Fig. 2 (a) is transformed into the forest in
Fig. 2 (b).

The first argument of the function p(1)
note is a forest whose root

is note or memo, and the second argument is a forest that repre-
sents a serial number that is added to note. The arguments of the
function p(1)

memo are similar to those of p(1)
note. The functions p(1)

note

and p(1)
memo collect all forests whose roots are note and memo. The

return value of the initial function p(0)
0 is a concatenation of these

results. id(0) imitates the identity function. �

2.7 Typechecking of MFTs
In this paper, a type of a tree is specified by the language of a

TA. In other words, a tree t is included in the type specified by a
TA M if and only if t is accepted by M.
Definition 2.18. Let M be a TA. A tree t has the type specified
by M if t ∈ L(M). �

For tree transducers, typechecking is performed to verify if any
tree that satisfies certain properties (that is, any tree of an input
type Min) is always transformed into a tree that satisfies other cer-
tain properties (that is, a tree of an output type Mout).

Although there are several kinds of type representation and tree
transducers, we assume that the input type is specified by a TA,
output type is specified by a DBTA, and tree transducer is given
by an MFT. Typechecking for an MFT is formally defined as fol-
lows.
Definition 2.19. Let Σ be an alphabet, T be an MFT, Min be an
input type TA, and Mout be an output type DBTA. Then, type-
checking of T against Min and Mout is performed to verify the
formula

∀t ∈ FΣ. t ∈ L(Min)⇒ T (t) ⊆ L(Mout),

which is often denoted by T (L(Min)) ⊆ L(Mout) simply. �
The following fact about typechecking for most tree transduc-

ers is not limited to MFTs and is known.
Theorem 2.20. For any input type TA Min, any output type
DBTA Mout, and any MFT T , we have

T (L(Min)) ⊆ L(Mout) ⇐⇒ T−1(L(Mout)
�) ∩ L(Min) = ∅

where L(Mout)� is the complement FΣ \ L(Mout) of the set
L(Mout), and T−1(A) is the inverse image {t | T (t) ∩ A � ∅}
of a set A of trees under an MFT T . �

Proof. By the definition of inverse image and trivial deforma-

tions about sets. �

3. Algorithms about TAs and ATAs

This section introduces basic algorithms and construction
methods for the TAs and ATAs that are used in this paper.

3.1 Construction of Complement TA of DBTA
In the case where a given TA is a DBTA, it is known that a TA

that rejects all trees accepted by the original TA but accepts all
trees rejected by the original TA can be constructed by swapping
final states with non-final states [10].
Theorem 3.1. For a DBTA M = (Q, I, F,Δ), consider the TA
M′ = (Q, I,Q \F,Δ). Then, M′ accepts trees rejected by M. That
is, for an alphabet Σ,L(M)∪L(M′) = BΣ, andL(M)∩L(M′) = ∅.

�
Because of the definition of a DBTA, all transitions are

uniquely determined from the bottom. Therefore, we can obtain
the complement as a language by only swapping final states with
non-final states.

3.2 Transformation of TA into ATA
Any TA can be transformed into an ATA equivalent to the TA.

Theorem 3.2. For a TA M = (Q, I, F,Δ), let M′ = (Q, I, F,Φ) be
the ATA constructed by

Φ(q, a) =
∨

(a(q1 ,q2)→q)∈Δ
↓1 q1 ∧ ↓2 q2.

Then, L(M′) = L(M) holds. �

Proof. Let [[q]]M be the language of a state q for the TA M,
and let [[q]]M′ be the language of a state q for the ATA M′.
t ∈ [[q]]M′ ⇐⇒ t ∈ [[q]]M is proved by induction on the structure
of t ∈ BΣ. Thus, L(M′) = L(M) holds． �

3.3 Intersection of ATAs
For two ATAs, M1 and M2, an ATA M such that L(M) =

L(M1) ∩ L(M2) is called an ATA accepting the intersection of
M1 and M2. The ATA M can be constructed as follows.
Theorem 3.3. Let M1 = (Q1, I1,F1,Φ1) and M2 = (Q2, I2,F2,Φ2)
be ATAs. Without loss of generality, we assume Q1∩Q2 = ∅. Let
M = (Q, I,F,Φ) be the ATA given by

Q = Q1 ∪ Q2 ∪ {qnew},

I =

⎧⎪⎪⎨⎪⎪⎩
I1 ∪ I2 ∪ {qnew} (I1 ∩ F1 � ∅ ∧ I2 ∩ F2 � ∅)
I1 ∪ I2 (otherwise),

F = {qnew}, and

Φ(q, a)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

Φ1(q, a) (q ∈ Q1)

Φ2(q, a) (q ∈ Q2)
∨

(q1 ,q2)∈F1×F2

Φ1(q1, a) ∧ Φ2(q2, a) (q = qnew)

where qnew is a fresh state such that qnew � Q1 ∪ Q2.
Then, L(M) = L(M1) ∩ L(M2) holds. �

Proof. t ∈ [[qnew]] ⇐⇒ t ∈ L(M1) ∩ L(M2) can be proved

c© 2017 Information Processing Society of Japan 966

Journal of Information Processing Vol.25 962–974 (Dec. 2017)

by induction on the structure of t ∈ BΣ. Thus, L(M) = L(M1) ∩
L(M2) holds. �

4. Typechecking Method for MFTs

In this section, we show a typechecking method for MFTs us-
ing an ATA that extends the typechecking method of Frisch and
Hosoya [6]. First, we propose additional states that are necessary
for our extension of TAs and define the semantics of the language.
Next, using the additional states, we extend the inverse type in-
ference method for MTTs of Frisch and Hosoya to MFTs and
show its correctness. Finally, we show the whole structure of our
typechecking for MFTs.

4.1 Language of Hole-relational State
A TA is an automaton specifically designed for trees. When a

TA is applied to forests, the states of the root of a forest f can be
determined by transition rules with the states of the child and the
sibling of the forest f , while the states of the root of a concate-
nation f1 f2 cannot be determined with states of forests, f1 and f2.
The naive typechecking method for MFTs of Perst and Seidl [2]
solves this problem by considering pairs of states. In this sub-
section, we propose assigning special states for concatenation of
forests to a TA, which was inspired by the method of Perst and
Seidl, and define the semantics of this language. By using these
special states, we can immediately find the states of the root of
a forest after concatenation from the states of the roots of two
forests to be concatenated.

For states q′, q ∈ Q of a TA M = (Q, I, F,Δ), q′ � q with
(q′, q) ∈ Q2 is called a hole-relational state. Intuitively, assigning
the state q′ � q to the root of a forest f corresponds to the fact
that q′ can be assigned to the root of f by applying the transition
rules when q is assigned to the hole of f . The set of all forests
whose root can be assigned a hole-relational state q′ � q is called
the language of the hole-relational state for q′ � q and denoted by
[[q′ � q]].
Definition 4.1. For a TA M = (Q, I, F,Δ), states q′, q ∈ Q, and a
forest f , f ∈ [[q′ � q]] holds if we have

∀ f ′ ∈ [[q]]. f f ′ ∈ [[q′]].

�
Briefly, for a vector f ∈ FΣk and vectors of states q′, q ∈ Qk,

we denote ∀i ∈ [k]. fi ∈ [[q′i � qi]] by f ∈ [[q′ � q]].
Example 3. For states q1, q2, and q3 of a TA, consider forests
f1 = a〈b〈ε〉ε〉c〈ε〉ε and f2 = d〈e〈ε〉 f 〈ε〉ε〉ε. When q1 and q2 are
assigned to the root and the hole of f1, respectively, q1 � q2 is as-
signed to the root of f1 as shown in Fig. 3 (a). Additionally, when
q2 � q3 is assigned to the root of f2, q1 � q3 is assigned to the root
of f1 f2 as shown Fig. 3 (b). �

In the language of a hole-relational state, we have the following
theorem related to transition rules and concatenation of forests.
Theorem 4.2. For states q1, q2, q3 ∈ Q of a TA M = (Q, I, F,Δ),
an initial state qI ∈ I, and forests f1, f2 ∈ FΣ,

a〈 f1〉 f2 ∈ [[q � q3]]

⇐⇒ ∃(a(q1, q2)→ q) ∈ Δ. f1 ∈ [[q1]] ∧ f2 ∈ [[q2 � q3]]

Fig. 3 Assignment of hole-relational state.

holds. �

Proof. By the definitions of the language of a hole-relational
state of a TA and the language of a state of a TA, we obtain

a〈 f1〉 f2 ∈ [[q � q3]]

⇐⇒ ∀ f ′ ∈ [[q3]]. a〈 f1〉 f2 f ′ ∈ [[q]]

⇐⇒ ∀ f ′ ∈ [[q3]]. ∃(a(q1, q2)→ q) ∈ Δ.
f1 ∈ [[q1]] ∧ f2 f ′ ∈ [[q2]]

⇐⇒ ∃(a(q1, q2)→ q) ∈ Δ. f1 ∈ [[q1]] ∧ f2 ∈ [[q2 � q3]].

�

If a TA is deterministic, when an initial state is assigned to the
hole, we have the following theorem related to the languages of a
state and a hole-relational state.
Theorem 4.3. For any state q ∈ Q of a deterministic TA M =

(Q, {qI}, F,Δ) and any forest f ∈ FΣ, we have f ∈ [[q � qI]] ⇐⇒
f ∈ [[q]]. �

Proof. By induction on the structure of f .
We consider the case f = ε. We prove this case by the defini-

tion of the language of a hole-relational state of a TA, definition
of a language of a state of a TA, and Theorem 2.8. Then, we find

ε ∈ [[q � qI]]

⇐⇒ ∀ f ′ ∈ [[qI]]. f ′ ∈ [[q]]

⇐⇒ q = qI

⇐⇒ ε ∈ [[q]].

Next, we consider the case f = a〈 f1〉 f2. We have

a〈 f1〉 f2 ∈ [[q � qI]]

⇐⇒ {The definition of a hole-relational state of a TA}
∀ f ′ ∈ [[qI]]. a〈 f1〉 f2 f ′ ∈ [[q]]

⇐⇒ {The definition of a state of a TA}
∀ f ′ ∈ [[qI]].∃(a(q1, q2)→ q).

f1 ∈ [[q1]] ∧ f2 f ′ ∈ [[q2]]

⇐⇒ {The definition of a hole-relational state of a TA}
∃(a(q1, q2)→ q). f1 ∈ [[q1]] ∧ f2 ∈ [[q2 � qI]]

⇐⇒ {The induction hypothesis}
∃(a(q1, q2)→ q). f1 ∈ [[q1]] ∧ f2 ∈ [[q2]]

⇐⇒ {The definition of a state of a TA}
a(f1, f2) ∈ [[q]].

Thus, Theorem 4.3 is proved by induction on the structure
of f . �

c© 2017 Information Processing Society of Japan 967

Journal of Information Processing Vol.25 962–974 (Dec. 2017)

From Theorem 4.3, if a TA is deterministic, we obtain the fol-
lowing theorem by transformation of Theorem 4.2 immediately.
Theorem 4.4. For states q1, q2, q3 ∈ Q of a deterministic TA
M = (Q, {qI}, F,Δ) and forests f1, f2 ∈ FΣ, we have

a〈 f1〉 f2 ∈ [[q � q3]] ⇐⇒ ∃(a(q1, q2)→ q) ∈ Δ.
f1 ∈ [[q1 � qI]] ∧ f2 ∈ [[q2 � q3]].

�

Proof. By Theorem 4.2 and Theorem 4.3, we obtain

a〈 f1〉 f2 ∈ [[q � q3]]

⇐⇒ ∃(a(q1, q2)→ q) ∈ Δ. f1 ∈ [[q1]] ∧ f2 ∈ [[q2 � q3]]

⇐⇒ ∃(a(q1, q2)→ q) ∈ Δ. f1 ∈ [[q1 � qI]] ∧ f2 ∈ [[q2 � q3]].

�

On the other hand, if a TA is complete, for any forest f , there
exists a hole-relational state whose language includes f , which is
similar to the language of a state of a TA.
Theorem 4.5. Let Σ be an alphabet and M = (Q, I, F,Δ) be a
TA. If M is complete, for any forest f ∈ FΣ, there exist states
q′, q ∈ Q such that f ∈ [[q′ � q]]. �

Proof. By induction on the structure of f ∈ FΣ.
Case t = ε

In accordance with the definition of completeness, I has at
least one state. Let qI be one of these states. By the definition
of the language of a hole-relational state and the definition of
the language of a state of a TA, ε ∈ [[qI � qI]] holds.

Case t = a〈 f1〉 f2
By Theorem 2.10, there exists q1 ∈ Q such that f1 ∈ [[q1]].
By the induction hypothesis, there exist q2, q3 ∈ Q such
that f2 ∈ [[q2 � q3]]. Since there exists a transition rule
a(q1, q2) → q (q ∈ Q) in Δ because the TA is complete,
a〈 f1〉 f2 ∈ [[q � q3]] holds by Theorem 4.2.

Thus, Theorem 4.5 is proved by induction on the structure of
the forest f . �

4.2 Inverse Type Inference for MFT with ATA
Given an MFT T and a DBTA M, inferring the inverse im-

age of L(M) under T is called inverse type inference. Frisch and
Hosoya proposed an inverse type inference method for MTTs. In
their method, given an MTT T = (P, P0,Π) and a DBTA M =

(Q, {qI}, F,Δ), they construct an ATA that has a state 〈p(k), q, s〉
for p(k) ∈ P, q ∈ Q, and s ∈ Qk. Intuitively, t ∈ [[〈p(k), q, s〉]] for a
tree t means that there exists at least one tree t′ such that t′ ∈ [[q]]
in the transformed forests [[p(k)]](t, τ) by a function p(k) with a
vector τ such that ∀i ∈ [k]. τi ∈ [[si]] are used as parameters. The
set
⋃

p(0)
0 ∈P0 , qF∈F[[〈p(0)

0 , qF , ()〉]] represents all trees whose root can
be assigned a final state qF after the transformation by a initial
function p(0)

0 so that the inverse image under T can be represented
by the set.

However, in their method, an excepted return value of
〈p(k), q, s〉 obtained by a transition function cannot be represented
in the case that a right-hand-side expression of function p(k) rep-
resents a concatenation of forests for a state 〈p(k), q, s〉. That is

caused by the fact that the language of a state of a TA does not
support state transition by concatenation. To solve this prob-
lem, in this paper, we use hole-relational states instead of orig-
inal states. By using hole-relational states, for example, we can
find immediately that q1 �q3 can be assigned to the concatenation
f1 f2 if there exist forests f1 and f2 such that f1 ∈ [[q1 � q2]] and
f2 ∈ [[q2 � q3]] hold for states q1, q2, and q3 of a TA.

Based on the above, we propose an inverse type inference
method that constructs an ATA accepting the inverse image un-
der an MFT by extending their method. While they construct an
ATA related to states of a DBTA, we construct an ATA related to
hole-relational states of a DBTA in a similar way.
Definition 4.6. For an MFT T = (P, P0,Π) and a DBTA M =

(Q, {qI}, F,Δ), the ATA Iv(T ,M) = (Ξ,ΞI ,ΞF ,Φ) is defined as
below.

Ξ = {〈p(k), (q′, q), (s′, s)〉 | p(k) ∈ P, q′, q ∈ Q, s′, s ∈ Qk}

ΞI =

⎧⎪⎪⎪⎨⎪⎪⎪⎩〈p
(k), (q′, q), (s′, s)〉 ∈ Ξ

∣∣∣∣∣∣∣∣
() ∈

⎡⎢⎢⎢⎢⎢⎢⎢⎣

⎡⎢⎢⎢⎢⎢⎢⎢⎣
∨

(p(k)(ε,y1 ,...,yk)→e)∈Π

Inf(e, (q′, q), (s′, s))

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎬⎪⎪⎪⎭

ΞF = {〈p(0), (qF , qI), ((), ())〉 | p(0) ∈ P0, qF ∈ F, qI ∈ I}
Φ(〈p(k), (q′, q), (s′, s)〉, a)

=
∨

(p(k)(a〈 f1〉 f2 ,y1 ,...,yk)→e)∈Π

Inf(e, (q′, q), (s′, s))

Here, Inf is the function that takes a right-hand-side expression, a
pair of states of M, and a pair of vectors of states of M and returns
a conditional expression of the ATA. The function Inf is defined
by cases about the right-hand-side expression as follows.

Inf(ε, (q′, q), (s′, s)) =

⎧⎪⎪⎨⎪⎪⎩
� (q′ = q)

⊥ (otherwise)

Inf(a〈e1〉e2, (q
′, q), (s′, s))

=
∨

(a(r1 ,r2)→q′)∈Δ
Inf(e1, (r1, qI), (s′, s)) ∧ Inf(e2, (r2, q), (s′, s))

Inf(p(l)(xh, e1, . . . , el), (q
′, q), (s′, s))

=
∨

t′ ,t∈Ql

⎛⎜⎜⎜⎜⎜⎜⎝↓h 〈p(l), (q′, q), (t′, t)〉 ∧
∧

j∈[l]
Inf(e j, (t

′
j, t j), (s′, s))

⎞⎟⎟⎟⎟⎟⎟⎠

Inf(y j, (q
′, q), (s′, s)) =

⎧⎪⎪⎨⎪⎪⎩
� (q′ = s′j ∧ q = s j)

⊥ (otherwise)

Inf(e1e2, (q
′, q), (s′, s))

=
∨

r∈Q
Inf(e1, (q

′, r), (s′, s)) ∧ Inf(e2, (r, q), (s′, s))

�
Iv constructs an ATA that accepts the inverse image of L(M)

under T . Intuitively, for a forest f , 〈p(k), (q′, q), (s′, s)〉 can be
assigned to the root of f when [[q′ � q]] includes a tree in the set
[[p(k)]](f , f1, . . . , fk) of transformed trees by p(k) taking forests
fi ∈ [[s′i � si]]. We show that Iv(T ,M) accepts the inverse image,
that is, L(Iv(T ,M)) = T−1(L(M)) and prove the correctness of
the proposed construction.

c© 2017 Information Processing Society of Japan 968

Journal of Information Processing Vol.25 962–974 (Dec. 2017)

First, we prove Lemma 4.7. Second, using Lemma 4.7, we
prove Lemma 4.8. Finally, using Lemma 4.8, we prove Theo-
rem 4.9 which provides the correctness of Iv.
Lemma 4.7. For the function Inf for any MFT T = (P, P0,Π)
and any DBTA M = (Q, {qI}, F,Δ), we have

∀n ∈ {0, 2}.∀ f ∈ FΣn.

(∀h ∈ [n].∀p(k) ∈ P.∀τ ∈ FΣk.∀q′, q ∈ Q.

(∃s′,∃s ∈ Qk.

τ ∈ [[s′ � s]] ∧ fh ∈ [[〈p(k), (q′, q), (s′, s)〉]])
⇐⇒ [[p(k)]](fh, τ) ∩ [[q′ � q]] � ∅) · · · · · · (H)

=⇒
(∀e : right-hand-side expression of T .
∀k ∈ N.∀τ ∈ FΣk.∀q′, q ∈ Q.

(∃s′,∃s ∈ Qk.

τ ∈ [[s′ � s]] ∧ f ∈ [[Inf(e, (q′, q), (s′, s))]])

⇐⇒ [[e]](f , τ) ∩ [[q′ � q]] � ∅).

�

Proof. By induction of the structure of the right-hand-side ex-
pression e.

Consider the case e = b〈e1〉e2. For any τ ∈ FΣk, we have

∃s′,∃s. τ ∈ [[s′ � s]]

∧ f ∈ [[Inf(b〈e1〉e2, (q
′, q), (s′, s))]]

(1)
⇐⇒ ∃s′,∃s. τ ∈ [[s′ � s]]

∧ f ∈
⎡⎢⎢⎢⎢⎢⎢⎣

⎡⎢⎢⎢⎢⎢⎢⎣
∨

(b(r1 ,r2)→q′)∈Δ
Inf(e1, (r1, qI), (s′, s))

∧ Inf(e2, (r2, q), (s′, s))

⎤⎥⎥⎥⎥⎥⎥⎦

⎤⎥⎥⎥⎥⎥⎥⎦

(2)
⇐⇒ ∃s′,∃s. τ ∈ [[s′ � s]]

∧ (∃(b(r1, r2)→ q′) ∈ Δ.
f ∈ [[Inf(e1, (r1, qI), (s′, s))]]

∧ f ∈ [[Inf(e2, (r2, q), (s′, s))]])

(3)
⇐⇒ ∃(b(r1, r2)→ q′) ∈ Δ.

[[e1]](f , τ) ∩ [[r1 � qI]] � ∅
∧ [[e2]](f , τ) ∩ [[r2 � q]] � ∅

(4)
⇐⇒ [[b〈e1〉e2]](f , τ) ∩ [[q′ � q]] � ∅

where each of the deformations is obtained as follows.
(1) By the definition of the function Inf.
(2) By the definition of the semantics of MFT.
(3) By the induction hypothesis for the right-hand-side expres-

sions, e1 and e2.
(4) (⇒) We consider a forest b〈 f1〉 f2 with f1 ∈ ([[e1]](f , τ) ∩

[[r1 � qI]]) and f2 ∈ ([[e2]](f , τ) ∩ [[r2 � q]]). From f1 ∈
[[e1]](f , τ) and f2 ∈ [[e2]](f , τ), we obtain b〈 f1〉 f2 ∈
[[b〈e1〉e2]](f , τ) by the definition of the semantics [[·]] of
a right-hand-side expression. From f1 ∈ [[r1 � qI]], f2 ∈
[[r2 � q]] and the transition rule b(r1, r2) → q′, we obtain

b〈 f1〉 f2 ∈ [[q′ � q]] by Theorem 4.4.
(⇐) We consider a forest f ′ ∈ ([[b〈e1〉e2]](f , τ)∩ [[q′ � q]]).
From f ′ ∈ [[b〈e1〉e2]](f , τ), there exist f ′1 ∈ [[e1]](f , τ) and
f ′2 ∈ [[e2]](f , τ) and we obtain f ′ = b〈 f ′1〉 f

′
2 by the def-

inition of semantics [[·]] of a right-hand-side expression.
From f ′ = b〈 f ′1〉 f

′
2 ∈ [[q′ � q]], there exists a transition

rule b(r1, r2) → q′ with some states r1, r2 ∈ Q such that
f ′1 ∈ [[r1 � qI]] and f ′2 ∈ [[r2 � q]] by Theorem 4.4. Thus,
we have ∃r1,∃r2 ∈ Q.∃(b(r1, r2) → q′). f ′1 ∈ ([[e1]](f , τ) ∩
[[r1 � qI]]) ∧ f ′2 ∈ ([[e2]](f , τ) ∩ [[r2 � q]]).

Consider the case e = ε. For any τ ∈ FΣk, we have

∃s′,∃s. τ ∈ [[s′ � s]] ∧ f ∈ [[Inf(ε, (q′, q), (s′, s))]]

(1)
⇐⇒ ∃s′,∃s. τ ∈ [[s′ � s]] ∧ q′ = q

(2)
⇐⇒ [[ε]](f , τ) ∩ [[q′ � q]] � ∅

where each of the deformations is obtained as follows.
(1) By the definition of the function Inf.
(2) (⇒) We consider the forest ε. We obtain ε ∈ [[ε]](f , τ)

by the definition of the semantics [[·]] of a right-hand-side
expression. From q′ = q, we obtain ε ∈ [[q′ � q]] by the
definition of the language of a hole-relational state of a TA.
Thus, we have ε ∈ ([[ε]](f , τ) ∩ [[q′ � q]]).

(⇐) We consider a forest f ′ ∈ ([[ε]](f , τ) ∩ [[q′ � q]]).
From f ′ ∈ [[ε]](f , τ), we obtain f ′ = ε by the definition
of the semantics of a right-hand-side expression. From
f ′ = ε ∈ [[q′ � q]], we obtain q′ = q by the definition of
the language of a hole-relational state and the definition of
a DBTA. In addition, since M is a DBTA, there exist s′ and
s such that τ ∈ [[s′ � s]] by Theorem 4.5.

Consider the case e = p(l)(xh, e1, . . . , el). Since there is no ex-
pression for n = 0 in any right-hand-side expression, we consider
only the case n = 2 i.e. h ∈ [2]. For any τ ∈ FΣk, we have

∃s′,∃s. τ ∈ [[s′ � s]]

∧ f ∈ [[Inf(p(l)(xh, e1, . . . , el), (q
′, q), (s′, s))]]

(1)
⇐⇒ ∃s′,∃s. τ ∈ [[s′ � s]]

∧ f ∈

⎡⎢⎢⎢⎢⎢⎢⎢⎣

⎡⎢⎢⎢⎢⎢⎢⎢⎣
∨

t′ ,t∈Ql

⎛⎜⎜⎜⎜⎜⎜⎝↓h 〈p(l), (q′, q), (t′, t)〉

∧
∧

j∈[l]
Inf(e j, (t

′
j, t j), (s′, s))

⎞⎟⎟⎟⎟⎟⎟⎟⎠

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎤⎥⎥⎥⎥⎥⎥⎥⎦
(2)
⇐⇒ ∃s′,∃s. τ ∈ [[s′ � s]]

∧
⎛⎜⎜⎜⎜⎜⎜⎝∃t′,∃t ∈ Ql. fh ∈ [[〈p(l), (q′, q), (t′, t)〉]]

∧
∧

j∈[l]
f ∈ [[Inf(e j, (t

′
j, t j), (s′, s))]]

⎞⎟⎟⎟⎟⎟⎟⎠

(3)
⇐⇒ ∃t′,∃t ∈ Ql. fh ∈ [[〈p(l), (q′, q), (t′, t)〉]]

∧
∧

j∈[l]
[[e j]](f , τ) ∩ [[t′j � t j]] � ∅

(4)
⇐⇒ ∃t′,∃t ∈ Ql. (fh ∈ [[〈p(l), (q′, q), (t′, t)〉]])

∧ (∃τ′.∀ j ∈ [l]. τ′j ∈ [[e j]](f , τ) ∧ τ′j ∈ [[t′j � t j]])

c© 2017 Information Processing Society of Japan 969

Journal of Information Processing Vol.25 962–974 (Dec. 2017)

(5)
⇐⇒ ∃τ′. [[p(l)]](fh, τ

′) ∩ [[q′ � q]] � ∅
∧ (∀ j ∈ [l]. τ′j ∈ [[e j]](f , τ))

(6)
⇐⇒ [[p(l)(xh, e1, . . . , el)]] ∩ [[q′ � q]] � ∅

where each of the deformations is obtained as follows.
(1) By the definition of the function Inf.
(2) By the definition of the semantics [[·]] of MFT.
(3) By the induction hypothesis for the right-hand-side expres-

sion e j.
(4) By introduction τ′ such that τ′j ∈ [[e j]](f , τ) ∩ [[t′j � t j]].
(5) By the hypothesis H.
(6) By the definition of the semantics [[·]] of a right-hand-side

expression.
Consider the case e = yi. For any τ ∈ FΣk, we have

∃s′,∃s. τ ∈ [[s′ � s]] ∧ f ∈ [[Inf(yi, (q
′, q), (s′, s))]]

(1)
⇐⇒ ∃s′,∃s. τ ∈ [[s′ � s]] ∧ q′ = s′i ∧ q = si

(2)
⇐⇒ τi ∈ [[q′ � q]]

(3)
⇐⇒ [[yi]](f , τ) ∩ [[q′ � q]] � ∅

where each of the deformations is obtained as follows.
(1) By the definition of the function Inf.
(2) (⇒) By replacing s′i and si in the hypothesis τi ∈ [[s′i � si]]

with q′ and q, respectively.
(⇐) Since M is a DBTA, by Theorem 4.5, there ex-
ist t′ and t such that τ ∈ [[t′ � t]]. From τi ∈
[[q′ � q]], we obtain τ ∈ [[s′ � s]], q′ = s′i , and q =

si where s′ = (t′1, . . . , t
′
i−1, q

′, t′i+1, . . . , t
′
k) and s =

(t1, . . . , ti−1, q, ti+1, . . . , tk)
(3) By the definition of the semantics of a right-hand-side ex-

pression.
Consider the case e = e1e2. For any τ ∈ FΣk, we have

∃s′,∃s. τ ∈ [[s′ � s]]

∧ f ∈ [[Inf(e1e2, (q
′, q), (s′, s))]]

(1)
⇐⇒ ∃s′,∃s. τ ∈ [[s′ � s]]

∧ f ∈
⎡⎢⎢⎢⎢⎢⎢⎣

⎡⎢⎢⎢⎢⎢⎢⎣
∨

r∈Q
Inf(e1, (q

′, r), (s′, s))

∧ Inf(e2, (r, q), (s′, s))

⎤⎥⎥⎥⎥⎥⎥⎦

⎤⎥⎥⎥⎥⎥⎥⎦
(2)
⇐⇒ ∃s′,∃s. τ ∈ [[s′ � s]]

∧ (∃r ∈ Q. f ∈ [[Inf(e1, (q
′, r), (s′, s))]]

∧ f ∈ [[Inf(e2, (r, q), (s′, s))]]
)

(3)
⇐⇒ ∃r ∈ Q. [[e1]](f , τ) ∩ [[q′ � r]] � ∅

∧ [[e2]](f , τ) ∩ [[r � q]] � ∅
(4)
⇐⇒ [[e1e2]](f , τ) ∩ [[q′ � q]] � ∅

where each of the deformations is obtained as follows.
(1) By the definition of the function Inf.
(2) By the definition of the semantics [[·]] of MFT.

(3) By the induction hypothesis for right-hand-side expressions,
e1 and e2.

(4) (⇒) We consider a forest f ′1 f ′2 with f ′1 ∈ ([[e1]](f , τ) ∩
[[q′ � r]]) and f ′2 ∈ ([[e2]](f , τ) ∩ [[r � q]]). From f ′1 ∈
[[e1]](f , τ) and f ′2 ∈ [[e2]](f , τ), we obtain f ′1 f ′2 ∈
[[e1e2]](f , τ) by the definition of the semantics [[·]] of a
right-hand-side expression. In addition, From f ′1 ∈ [[q′ � r]]
and f ′2 ∈ [[r � q]], we obtain f ′1 f ′2 ∈ [[q′ � q]] by the defini-
tion of the language of a hole-relational state of a TA and
the definition of a concatenation for forests. Thus, we have
f ′1 f ′2 ∈ ([[e1e2]](f , τ) ∩ [[q′ � q]]).

(⇐) We consider a forest f ′ ∈ ([[e1e2]](f , τ) ∩ [[q′ � q]]).
From f ′ ∈ [[e1e2]](f , τ), there exist f ′1 ∈ [[e1]](f , τ) and
f ′2 ∈ [[e2]](f , τ) and we obtain f ′ = f ′1 f ′2 by the definition
of the semantics [[·]] of a right-hand-side expression. In ad-
dition, from f ′ = f ′1 f ′2 ∈ [[q′ � q]], there exists r ∈ Q such
that f ′1 ∈ [[q′ � r]] and f ′2 ∈ [[r � q]]. Thus, we have ∃r ∈
Q. f ′1 ∈ ([[e1]](f , τ)∩ [[q′ � r]]) ∧ f ′2 ∈ ([[e2]](f , τ)∩ [[r � q]]).

Based on the above, Lemma 4.7 is proved by induction of the
structure of the right-hand-side expression e. �

We obtain Lemma 4.8 with Lemma 4.7.
Lemma 4.8. Let T = (P, P0,Π) and M = (Q, {qI}, F,Δ) be an
MFT and a DBTA, respectively. For states in the ATA Iv(T ,M) =
(Ξ,ΞI ,ΞF ,Φ),

∀ f ∈ FΣ.∀p(k) ∈ P.∀τ ∈ FΣk.∀q′, q ∈ Q.

(∃s′,∃s ∈ Qk. τ ∈ [[s′ � s]] ∧ f ∈ [[〈p(k), (q′, q), (s′, s)〉]])
⇐⇒ [[p(k)]](f , τ) ∩ [[q′ � q]] � ∅

holds. �

Proof. By induction on the structure of the forest f .
Consider the case f = ε. For any p(k) ∈ P, any τ ∈ FΣk and

any q′, q ∈ Q, we have

∃s′,∃s. τ ∈ [[s′ � s]] ∧ ε ∈ [[〈p(k), (q′, q), (s′, s)〉]]
⇐⇒ {The definition of the language of an ATA}

∃s′,∃s. τ ∈ [[s′ � s]] ∧ 〈p(k), (q′, q), (s′, s)〉 ∈ ΞI

⇐⇒ {The definition of ΞI in Iv}
∃s′,∃s. τ ∈ [[s′ � s]]

∧ ∃(p(k)(ε, y1, . . . , yk)→ e) ∈ Π.
() ∈ [[Inf(e, (q′, q), (s′, s))]]

⇐⇒ {Lemma 4.7}
∃(p(k)(ε, y1, . . . , yk)→ e) ∈ Π.
[[e]]((), τ) ∩ [[q′ � q]] � ∅

⇐⇒ {The definition of the semantics [[·]] of MFT}
[[p(k)]](ε, τ) ∩ [[q′ � q]] � ∅.

Consider the case f = a〈 f1〉 f2. For any p(k) ∈ P, any τ ∈ FΣk,
and any q′, q ∈ Q, we have

∃s′,∃s. τ ∈ [[s′ � s]]

∧ a〈 f1〉 f2 ∈ [[〈p(k), (q′, q), (s′, s)〉]]
⇐⇒ {The definition of the language of an ATA}

c© 2017 Information Processing Society of Japan 970

Journal of Information Processing Vol.25 962–974 (Dec. 2017)

∃s′,∃s. τ ∈ [[s′ � s]]

∧ (f1, f2) ∈ [[Φ(〈p(k), (q′, q), (s′, s)〉, a)]]

⇐⇒ {The definition of Φ in Iv}
∃s′,∃s. τ ∈ [[s′ � s]]

∧ ∃(p(k)(a〈 f1〉 f2, y1, . . . , yk)→ e) ∈ Π.
(f1, f2) ∈ [[Inf(e, (q′, q), (s′, s))]]

⇐⇒ {The induction hypothesis for f1 and f2

and Lemma 4.7}
∃(p(k)(a〈 f1〉 f2, y1, . . . , yk)→ e) ∈ Π.
[[e]]((f1, f2), τ) ∩ [[q′ � q]] � ∅

⇐⇒ {The definition of the semantics [[·]] of MFT}
[[p(k)]](a〈 f1〉 f2, τ) ∩ [[q′ � q]] � ∅

Thus, Lemma 4.8 is proved by induction on the structure
of f . �

This lemma provides that the ATA constructed by Iv accepts
the inverse image.
Theorem 4.9. Let T = (P, P0,Π) and M = (Q, {qI}, F,Δ) be an
MFT and a DBTA, respectively. For the ATA Iv(T ,M),

L(Iv(T ,M)) = T−1(L(M))

holds. �

Proof. We find

L(Iv(T ,M))

= {The definition of the language of an ATA}
⋃

p0
(0)∈P0 , qF∈F

[[〈p0
(0), (qF , qI), ((), ())〉]]

= {Lemma 4.8}
{ f | [[p0

(0)]](f , ()) ∩ [[qF � qI]] � ∅, p0
(0) ∈ P0, qF ∈ F}

= {The definition of the language of a hole-relational

state and the language of a state}
{ f | [[p0

(0)]](f , ()) ∩ [[qF]] � ∅, p0
(0) ∈ P0, qF ∈ F}

= {The definitions of the semantics of MFT}
{ f | T (f) ∩ L(M) � ∅, p0

(0) ∈ P0, qF ∈ F}
= {The definitions of an inverse image

and the language of a TA}
T −1(L(M)).

�

4.3 Typechecking Method for MFTs
In this section, we show a typechecking method for MFTs us-

ing the inverse type inference method with an ATA. Typechecking
for an MFT T , an input type TA Min, and an output type DBTA
Mout is performed as follows.
(1) We obtain a TA M�out such that L(M�out) = L(Mout)� by the

construction method of a complement TA of a DBTA.
(2) For T and M�out, we obtain an ATA A such that L(A) =
T−1(L(M�out)) by Iv.

(3) We obtain an ATA Ain such that L(Ain) = L(Min) by the
transformation method of a TA into an ATA.

(4) We obtain an ATA A′ such that L(A′) = L(A) ∩ L(Ain) by
the construction method of an intersection of ATAs.

(5) We check whether the language of A′ is empty.
Here, the result of the emptiness test of A′ can be used as the

result of typechecking as required.
Corollary 4.10. For an ATA A′ constructed as above, L(A′) =
∅ ⇐⇒ T (L(Min)) ⊆ L(Mout) holds. �

Proof. From the construction method of A′,

L(A′) = T−1(L(Mout)
�) ∩ L(Min)

is obtained. In addition, by Lemma 2.20,

L(A′) = ∅ ⇐⇒ T (L(Min)) ⊆ L(Mout)

holds. �

4.4 Computational Complexity of Our Typechecking
Method

We show the complexity of our typechecking method in Sec-
tion 4.3 for an MFT T , an output type DBTA Mout, and an input
type TA Min, following steps (1) to (5) of the method. Let |P|,
|e|, and k be the number of function names, the maximum size
and the maximum rank of the MFT T , respectively. In addition,
let |Qout| be the number of states of the DBTA Mout and |Qin| and
|Δin| be the numbers of states and transition rules of the TA Min,
respectively. Notice that since Mout is a DBTA, the number of
transition rules is O(|Qout|2).
(1) For a DBTA M, a DBTA that is the complement of M can

be computed in linear time for the number of states of M ac-
cording to the construction. In addition, the number of states
of M′ is equal to the number of states of M. Therefore, (1)
can be computed in linear time for |Qout|, and the number of
states of the DBTA M�out is |Qout|.

(2) We consider the construction time of the ATA A =

Iv(T ,M�out) for the DBTA M�out constructed at (1). One cal-
culation time of Φ(q, a) is O(k|Qout|2k|e|) because the number
of states of M�out is O(|Qout|2). In addition, the number of
states of A is O(|P| |Qout|2(k+1)). Therefore, (2) can be com-
puted in time O(k|P| |Qout|4k(k+1)|e|).

(3) For a TA M that has |Q| states and |Δ| transition rules, a
transformation from M to an ATA can be done in time
O(|Qin| + |Δin|), and then the ATA has |Q| states. Therefore,
the ATA Ain can be computed in time O(|Qin|+ |Δin|) and has
|Qin| states.

(4) A construction of an ATA that accepts the intersection
of ATAs can be computed in linear time for the num-
bers of states of original ATAs, according to the construc-
tion. Therefore, the ATA A′ can be computed in time
O(|P| |Qout|2(1+k) + |Qin|) and has O(|P| |Qout|2(1+k) + |Qin|)
states.

(5) An emptiness test for an ATA can be computed in exponen-
tial time [11]. Therefore, (5) can be computed in exponential
time for |P| + |Qout| + |Qin|.

In summary, since the complexities (1) to (4) can be neglected

c© 2017 Information Processing Society of Japan 971

Journal of Information Processing Vol.25 962–974 (Dec. 2017)

for (5), the typechecking method can be computed in exponential
time for |P| + |Qout| + |Qin|.

5. Optimization and Implementation

In the inverse type inference method of Frisch and Hosoya
that we extend, they proposed an optimization technique [6]
that shortens conditional expressions obtained from the transi-
tion function of an ATA constructed by the inverse type infer-
ence method and then implemented a typechecker for MTTs [8]
using this optimization. To use their optimization simply, we
modified their implementation on the basis of our inverse type
inference method for MFTs so as to obtain a typechecker for
MFTs equipped with their optimization. Because of the opti-
mization, our implementation computes a conditional expression
Inf(e, (q, q′), (s′, s)) for sets q and q′ of states instead of states q

and q′. The conditional expression Inf(e, (q, q′), (s′, s)) represents∨
q′∈q′ , q∈q Inf(e, (q′, q), (s′, s)). Since we use a set q of states in-

stead of a state q, the number of states of a constructed ATA grows
exponentially. However, their optimization shortens conditional
expressions obtained from Inf, and then typechecking can be per-
formed faster in practice.

6. Evaluation

In this section, we evaluate and consider our typechecking im-
plementation by comparing it with other typechecking implemen-
tations. The implementation of Frisch [8] and our implementation
that extends his were compiled by OCaml 4.04.0, respectively. In
addition, these implementations were run on an Intel Core i5-
4590 PC with 4 GB RAM.

The details of typechecking examples for MFTs used in the
evaluation were defined as follows. We used DTD to represent
the input and output types for simplicity. A line type Input =
a[T1],T2 declares and defines an element Input in which a tree
has the symbol a at the root, the child in the element T1 and the
sibling in the element T2. In addition, a leaf ε represented by ()
can be omitted. For example, a〈ε〉ε is represented by a[()]()
or a[].
appT, appF

These are MFTs that represent XML transformations used
in evaluations of Kobayashi et al. [9] and Frisch and
Hosoya [6]. A given input forest is a document with doc
as the root. In particular, an input type is represented by the
following DTD.

type Input = doc[Preface, (Div|P|Note)*]

type Preface = preface[Header, P*]

type Header = header[]

type P = p[]

type Div = div[(Div|P|Note)*]

type Note = note[P*]

appT and appF append appendix to the child of doc, ap-
pend the children of preface and note to the child of
appendix, and eliminate the children of preface and note.
Typechecking for these MFTs verify the correctness of trans-
formations for input forests. For typechecking, the output
type is defined as follows.

type Output = doc[(Div|P)*, Appendix]

type P = p[]

type Div = div[(Div|P)*]

type Appendix = appendix[Header, P*]

type Header = header[]

where appT is defined without concatenationas an MTT, and
appF is defined with concatenation as an MFT so that its
function names have smaller ranks. In this way, these imple-
mentations are different.

echild
A given DTD as an input type is the same as for the appT
case. echild, for example, transforms a forest a[b[]],c[]
into a forest a[b[empty[]]],c[empty[]] using a forest
empty[] that evinces the emptiness of the child. Typecheck-
ing for echild verifies the correctness of transformations for
input forests. For typechecking, the output type is defined as
follows.

type Output = doc[Preface, (Div|P|Note)*]

type Preface = preface[Header, P*]

type Header = header[Empty]

type P = p[Empty]

type Div = div[(Empty|(Div|P|Note)+)]

type Note = note[(Empty|P+)]

type Empty = empty[]

fib
fib is an MFT that uses concatenation and is based on
Faßbender et al.’s [12] top-down tree transducer [13] to ob-
tain Fibonacci numbers. Given a forest representing n, fib
transforms into an output forest representing the n-th Fi-
bonacci number. An input forest has a sequence of s in
the child direction and represents a natural number includ-
ing zero. For example, an input forest s〈s〈ε〉ε〉ε represents
2. An output forest has a sequence of s in the sibling direc-
tion. For example, an output forest s〈ε〉s〈ε〉ε represents 2. It
is known that a 3n-th Fibonacci number is even. Typecheck-
ing for fib verifies this fact.

book
book is the MFT based on an example of an MFT created
by Nakano [14]. An input forest represents information of
a book whose root is book. In particular, an input type for
book is defined as follows.

type Input = book[Title, Chapter*]

type Title = title[]

type Chapter = chapter[Title, Item*]

type Item = key[] | word[]

book adds a serial section number represented by a succes-
sor s and a zero z to the child of chapter, transforms title
into name under an element Chapter, and enumerates the
keywords key in the child of book. Typechecking for book
verifies the correctness of transformations for input forests.
For typechecking, the output type is defined as follows.

type Output = book[Title, Chapter*, Index]

type Title = title[]

c© 2017 Information Processing Society of Japan 972

Journal of Information Processing Vol.25 962–974 (Dec. 2017)

Table 1 Execution times of typechecking by our implementation and Frisch’s implementation.

appT appF echild book fib
MFT/MTT MTT MFT MTT MFT MFT
Frisch’s implementation (ms) 11.95 213.0 3.116 4996 N/A
Our implementation (ms) 32.95 9.702 3.110 17.19 1071
No. of states of the ATA in Frisch’s implementation 65 154 13 378 N/A
No. of states of the ATA in our implementation 84 50 13 83 33

type Chapter = chapter[Num, Name, Item*]

type Num = s[Num] | z[]

type Name = name[]

type Item = key[] | word[]

We compared our implementation with Frisch’s implementa-
tion with regard to execution times of typechecking for MFTs
and MTTs defined above. In addition, MFTs are more expressive
than MTTs, but a composition of two MTTs is more expressive
than an MFT [2]. Based on this fact, we represent an MFT by a
composition of two MTTs in Frisch’s implementation. The re-
sults were as shown in Table 1. In this table, the number of states
of an ATA is the number of states actually constructed in inverse
type inference, not the number of all states of the ATA constructed
by Iv.

For these typechecking examples, our implementation exe-
cuted in reasonable time. In addition, we found out the following
facts.
The number of states of an ATA The number of states of an

ATA significantly affected the execution time of typecheck-
ing. The case concerned with this fact was considered to
have the worst-case complexity of the typechecking algo-
rithm, which is exponential to the number of states.

Concatenation of forests In our implementation, typechecking
for appF generated fewer states of an ATA than typecheck-
ing for appT. appF was defined as the same MFT of appT
with concatenation of forests. The number of states of an
ATA constructed by our inverse type inference increases with
the maximum rank of function names of an MFT signifi-
cantly. A concatenation expression often deducts functions
and decreases the maximum rank of functions. As a result,
a concatenation like above seemed to decrease the number
of states of the ATA significantly and improve the execution
times of typechecking. In other words, even if a transforma-
tion can be represented as an MTT, we can improve the per-
formance of typechecking by describing it in an MFT with
concatenation expressions.

Comparison with Frisch’s implementation In typechecking
for MTTs and in particular for appT, our implementation
made more states of an ATA and took a long time for
typechecking. Our implementation treats pairs of states
instead of states to be specifically designed for MFTs.
As a result, our implementation seemed to consider more
needless states and to cause worse results than above. On
the other hand, in typechecking for MFTs of appF, book,
and fib, our implementation made fewer states of an ATA
and took a shorter time for typechecking. In particular,
typechecking for fib in Frisch’s implementation did not end
within ten minutes. In Frisch’s implementation, since an

MFT is represented by a composition of MTTs, this result
seemed to be caused by two-fold computation of inverse
type inference. In our implementation, since inverse type
inference for MFTs is direct, there is no inverse image in
the middle. Based on the above, our implementation seems
to specialize in typechecking for MFTs.

7. Related Work

7.1 Typechecking for MTT with ATA
A typechecking method for MTTs with an ATA was pro-

posed by Frisch and Hosoya [6] and was implemented [8]. It is
known that an MFT can be represented by the composition of two
MTTs [2]. We can convert any MFT T into an MTT by replac-
ing a concatenation f1 f2 with @〈 f1〉 f2 using the special symbol
@. In addition, we can construct an MTT T@ that transforms
@〈 f1〉 f2 into f1 f2. Therefore, assuming that T ′ is an MTT with
@ converted from an MFT T , we can express T as a compo-
sition of MTTs such that T (f) = T@(T ′(f)) for any forest f .
Based on this fact, their inverse type inference method for MTTs
as it stands provides inverse type inference for MFTs. However,
in this method, typechecking for T@ has an ATA accepting the
inverse image under T ′ as an output type and then increases the
number of states of an ATA accepting the inverse image under T .
Let |Q| and |P| be the numbers of states of a DBTA representing
an output type and functions of an MFT, respectively, and let k

be the maximum rank of functions of the MFT. In particular, the
number of states of an ATA constructed is O(exp(2|P| |Q|1+k)).

In contrast, we extended Frisch and Hosoya’s method to MFTs
and proposed a direct typechecking method for MFTs. This
method constructs O(|P| |Q|2(1+k)) states of an ATA, that is, the
number of states is reduced compared to their method. Actually,
Section 6 shows the superiority of our method in typechecking
for MFTs when comparing execution times.

7.2 Typechecking for Higher-order Multi-parameter Tree
Transducers

Kobayashi et al. [9] proposed higher-order multi-parameter
tree transducers and a forward typechecking method for them
and implemented a typechecker. Their typechecking method
is incomplete, but it is complete for linear higher-order multi-
parameter tree transducers whose expression is restricted. By
using continuation-passing style, they supposed each partially
applied function of an MTT is an argument of a continuation
and showed a method to convert from any MTT into a linear
higher-order multi-parameter tree transducer. A linear higher-
order multi-parameter tree transducer that was created by this
method is 3-order because of (1) using continuation and (2) an
argument of continuation is a partially applied function of an
MTT. Similarly, supposing a forest is an unary function, an MFT

c© 2017 Information Processing Society of Japan 973

Journal of Information Processing Vol.25 962–974 (Dec. 2017)

is converted into a 4-order linear height-order multi-parameter
tree transducer and can be typechecked by their typechecking
method. For a n-order higher-order multi-parameter tree trans-
ducer, let |T |, |Qin|, and |Qout| be the size of the transducer, num-
ber of states of an input type TA and number of states of an out-
put type TA, respectively. Their typechecking method runs in
time O(|T | expn((|Qout|+ |Qin|)1+ε)) for any positive number ε and
a function expn defined by exp0(x) = x, expn(x) = 2expn−1(x).
Thus, for an MFT with |P| functions, their typechecking method
runs in time O(|P| exp4((|Qout| + |Qin|)1+ε)). In addition, this time
complexity for a linear higher-order multi-parameter tree trans-
ducer converted from an MFT is refined into O(|P| exp2((|Qout| +
|Qin|)1+ε)) because of (1) using each continuation only once and
(2) considering only deterministic TAs as input and output types.
In contrast, since our typechecking method runs in exponential
time for |P| + |Qout| + |Qin|, it is superior to their method with re-
gard to complexity with the number of states of TAs. However,
their method runs in reasonable time despite high complexity. For
example, their typechecker takes 19 ms, 12 ms, and 6 ms for type-
checking for MFTs of appF, book, and fib, respectively.

8. Conclusion

In this paper, we extended an inverse type inference method for
MTTs of Frisch and Hosoya to an inverse type inference method
for MFTs with an ATA and showed the correctness of it. In addi-
tion, we showed a direct typechecking method for MFTs by this
inverse type inference method and found that an implementation
of it can typecheck in reasonable time.

Typechecking for more expressive tree transducers is our fu-
ture work. Macro tree transducers with Holes (HMTTs) [15] are
known as tree transducers that are more expressive than MFTs.
While MFTs deal with forests, that is, tree-structured data with
just a single ‘hole’, HMTTs deal with tree-structured data with
an arbitrary number of holes. Concatenation of forests in MFTs
is generalized by HMTTs as ‘hole-application’. We expect that an
ATA for an inverse image under an HMTT could be constructed
similarly to the inverse type inference method for MFTs in this
paper. Following our implementation technique, the emptiness
of the ATA could be efficiently checked as shown in the exper-
iments of Frisch and Hosoya [6]. Thereby, we might be able to
implement a practical typechecker for HMTTs.

Acknowledgments We are grateful to Naoki Kobayashi for
giving fruitful information about a typechecking method for
higher-order multi-parameter tree transducers in Section 7.2. Fur-
ther, we wish to express our gratitude to Alain Frisch for provid-
ing his source code of a typechecker for MTTs, and Hiroshi Unno
for providing a typechecker for higher-order multi-parameter tree
transducers. We also thank Hideya Iwasaki and anonymous re-
viewers for their valuable comments. This work was supported by
JSPS KAKENHI Grant Number JP25730002 and JP17K00007.

References

[1] Engelfriet, J. and Vogler, H.: Macro tree transducers, Journal of Com-
puter and System Sciences, Vol.31, No.1, pp.71–146, Academic Press
(1985).

[2] Perst, T. and Seidl, H.: Macro forest transducers, Information Pro-
cessing Letters, Vol.89, No.3, pp.141–149, Elsevier (2004).

[3] Nakano, K. and Mu, S.-C.: A pushdown machine for recursive XML
processing, Proc. 4th Asian Conference on Programming Languages
and Systems (APLAS), pp.340–356 (2006).

[4] Hakuta, S., Maneth, S., Nakano, K. and Iwasaki, H.: XQuery stream-
ing by Forest Transducers, Proc. IEEE 30th International Conference
on Data Engineering (ICDE), pp.952–963 (2014).

[5] Maneth, S., Berlea, A., Perst, T. and Seidl, H.: XML type check-
ing with macro tree transducers, Proc. 24th ACM SIGMOD-SIGACT-
SIGART Symposium on Principles of Database Systems (PODS),
pp.283–294 (2005).

[6] Frisch, A. and Hosoya, H.: Towards practical typechecking for macro
tree transducers, Proc. 11th International Symposium on Database
Programming Languages (DBPL), pp.246–260 (2007).

[7] Slutzki, G.: Alternating tree automata, Theoretical Computer Science,
Vol.41, pp.305–318, Elsevier (1985).

[8] Frisch, A.: Experiment in exact type-checking for XML trans-
formations with accumulators, available from 〈https://github.com/
alainfrisch/mtt〉.

[9] Kobayashi, N., Tabuchi, N. and Unno, H.: Higher-order multi-
parameter tree transducers and recursion schemes for program veri-
fication, Proc. 37th Annual ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages (POPL), pp.495–508 (2010).

[10] Hosoya, H.: Foundations of XML processing, Cambridge University
Press (2010).

[11] Comon, H., Dauchet, M., Gilleron, R., Löding, C., Jacquemard, F.,
Lugiez, D., Tison, S. and Tommasi, M.: Tree automata techniques
and applications, available from 〈http://www.grappa.univ-lille3.fr/
tata〉 (2007).

[12] Faßbender, H. and Maneth, S.: A strict border for the decidability of E-
unification for recursive functions, Proc. 5th International Conference
on Algebraic and Logic Programming (ALP), pp.194–208 (1996).

[13] Rounds, W.C.: Mappings and grammars on trees, Mathematical Sys-
tems Theory, Vol.4, No.3, pp.257–287, Springer (1970).

[14] Nakano, K.: Automatic derivation of XML stream processors from
macro forest transducers (in Japanese), Proc. 22nd JSSST Annual Con-
ference, pp.1–11 (2005).

[15] Maneth, S. and Nakano, K.: XML type checking for macro tree trans-
ducers with holes, Proc. International Workshop on Programming
Language Technologies for XML (PLAN-X) (2008).

Kazuhiro Abe was born in Tokyo, 1994.
He received his B.E. degree in Infor-
matics and Engineering from the Univer-
sity of Electro-Communications, Japan,
in 2016. He has been a student in
the Graduate School of Informatics and
Engineering, the University of Electro-
Communications since the same year. He

is interested in functional programming languages, formal lan-
guages, and tree transducers.

Keisuke Nakano is an associate pro-
fessor at the University of Electro-
Communications. He received his Ph.D.
degree from Kyoto University in 2006. He
worked as a researcher at University of
Tokyo from 2003 to 2008, and as an as-
sistant professor at the present university
from 2008 to 2012. His research interests

include formal language theory, programming language theory,
and functional programming. He is a member of ACM, IPSJ, and
JSSST.

c© 2017 Information Processing Society of Japan 974

