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Abstract: Mobile app stores, such as Google Play, play a vital role in the ecosystem of mobile device software dis-
tribution platforms. When users find an app of interest, they can acquire useful data from the app store to inform their
decision regarding whether to install the app. This data includes ratings, reviews, number of installs, and the category
of the app. The ratings and reviews are the user-generated content (UGC) that affect the reputation of an app. There-
fore, miscreants can leverage such channels to conduct promotional attacks; for example, a miscreant may promote a
malicious app by endowing it with a good reputation via fake ratings and reviews to encourage would-be victims to
install the app. In this study, we have developed a system called PADetective that detects miscreants who are likely
to be conducting promotional attacks. Using a 1723-entry labeled dataset, we demonstrate that the true positive rate
of detection model is 90%, with a false positive rate of 5.8%. We then applied our system to an unlabeled dataset of
57 M reviews written by 20 M users for 1 M apps to characterize the prevalence of threats in the wild. The PADetective
system detected 289 K reviewers as potential PA attackers. The detected potential PA attackers posted reviews to 136 K
apps, which included 21 K malicious apps. We also report that our system can be used to identify potentially malicious
apps that have not been detected by anti-virus checkers.
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1. Introduction

With more than four million apps [1], mobile app markets, such
as Google Play and Apple App Store, play a vital role in distribut-
ing apps to customers. To help users look for apps and for devel-
opers to promote their apps, mobile app markets provide a variety
of information about the apps, such as descriptions, screenshots,
and number of installations. In addition, most markets involve
reputation systems, through which users can rate the apps and
write down reviews, to facilitate other users to select apps. Since
apps with higher ratings usually get more downloads [2], recent
studies report that some developers adopt unfair approaches to
manipulate their apps’ ratings and reviews [3], [4], even if such
behaviors are prohibited by FTC [5] and app markets. Note that
attackers also employ such an approach to promote malicious
apps and lure victims to install them. We call such malicious
apps campaign as promotional attacks (PAs).

Although a few recent studies have revealed the paid re-
views [3] and colluded reviewers [4], there have been no system-
atic examinations on the promotional attacks in mobile app stores.
To fill in the gaps, we conducted the first large-scale investigation
on PAs with the aim of answering the following two questions:

1 Waseda University, Shinjuku, Tokyo 169–8555, Japan
2 NTT Secure Platform Laboratories, Musashino, Tokyo 180–8585, Japan
3 The Hong Kong Polytechnic University, Hong Kong, China
a) sunshine@nsl.cs.waseda.ac.jp
b) csxluo@comp.polyu.edu.hk
c) akiyama.mitsuaki@lab.ntt.co.jp
d) watanabe@nsl.cs.waseda.ac.jp
e) mori@nsl.cs.waseda.ac.jp

(1) How can we detect PAs systematically? and (2) How preva-
lent are PAs in the wild?

It is non-trivial to address these two questions because the so-
lution should be accurate to capture PA attackers with low false
positive rate, scalable to quickly handle millions of apps and re-
views in app stores, and robust to raise the bar for sophisticated
attackers to evade the detection. Existing studies cannot achieve
these goals. For example, high computational complexity lim-
its the scalability of Ref. [3], and requiring the similar reviews in
keyword level affects the accuracy of Refs. [6], [7]. Moreover, to
our best knowledge, none of the existing studies have examined
market-scale apps.

To tackle these challenges, we propose and develop a novel
system, named PADetective, to identify PA attackers accurately
and efficiently. PADetective adopts supervised learning to char-
acterize PA attackers according to 15 features (e.g., day intervals,
semantic similarity), and then applies the trained model to detect
other PA attackers. It is worth noting that these new and effec-
tive features are carefully selected from not only UGC but also
metadata in order to enhance the robustness of PADetective. In
particular, features from metadata have not been used by existing
works, and they could contribute to the robustness of PADetective
because it is easier for attackers to manipulate UGC than meta-
data. We employ the information entropy and the coefficient of
variation for quantifying the features from metadata, and leverage

The preliminary version of this paper was presented at Computer Secu-
rity Symposium 2016 (CSS2016) in October 2016, and recommended to
be submitted to Journal of Information Processing (JIP) by the program
chair of CSS2016.
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the state-of-the-art NLP technique (i.e., Paragraph vector [8]) to
extract features from UGC because it can extract similar reviews
at semantic level and therefore increase the accuracy. Moreover,
we employ the TRUE-REPUTATION [9] algorithm to calculate
the true reputation scores for detecting abnormal ratings. These
algorithms are lightweight, and we only need to recompute the
true reputation scores and similarity word weight vectors for new
UGC and metadata. This feature extraction approach empow-
ers PADetective to handle large-scale dataset. In our evaluation,
PADetective processed 57 million reviews in one day. We eval-
uate PADetective using real PA data, and the result shows that
PADetective’s true positive rate is up to 90% with a low false
positive rate of 5.8%.

Moreover, we conduct the first large-scale investigation on PA
by applying PADetective to 1 million apps in Google Play, which
has 57 million reviews posted by 14 million users. PADetec-
tive flagged 289 K reviewers as suspicious promotional attackers.
These reviewers posted reviews to 136 K apps, which included
21 K malicious apps. Among the top 1 K reviewers who were
flagged as promotional attackers with high probability score, 136
reviewers posted reviews only for malicious apps, and another
113 reviewers posted reviews for apps where more than half of
the apps were detected as malicious. It is worth noting that PAs
detected by PADetective can contribute to the detection of poten-
tially malicious apps.

Major contributions of this work are summarized as follows:
• We developed a novel system, named PADetective, which

aims to detect PA attackers from a large volume of reviewers
with high accuracy and low false positive rates. The exten-
sive experiments demonstrated that PADetective can achieve
90% true positive rate with low false positive rate of 5.8%.

• Using the PADetective, we conducted the first large-scale
measurement study on PAs by examining 57 million reviews,
posted by 14 million users for 1 million apps in Google Play,
and obtained interesting observations and insights.

• Our extensive analyses revealed that the detected PAs can be
used to discover potentially malicious apps, which have not
been detected by popular anti-virus scanners.

We believe that this research sheds a new light on the analysis
of UGC and metadata of app stores as a complementary chan-
nel to find malicious apps for enhancing the widely used anti-
malware tools or for market operators and malware analysts.

The remainder of this paper is organized as follows. We spec-
ify our problem in Section 2. We describe the high-level overview
and details of the PADetective in Section 3. A performance eval-
uation of the PADetective is given in Section 4. In Section 5, we
study the promotional attackers in the wild, by applying PADe-
tective to a market-scale measurement data. Section 6 discusses
the limitation and future work of our system. Section 7 sum-
marizes the related work and compare them with ours. Finally,
conclusions are presented in Section 8.

2. Problem Statement

This section aims to specify the problem we are addressing in
this paper. We first present the high-level overview of our prob-
lem using a model that represents the user feedback system com-

Fig. 1 High-level overview of the problem.

monly adopted in the mobile app distribution platforms. We then
define our problem in the mathematical way.

Figure 1 presents the high-level overview of the problem. We
note that although this work targets Google Play as an example
of mobile app distribution platforms, the model is applicable to
other platforms as well. In the model, a reviewer posts review
comments and rating scores for several apps published in the app
store. For the apps commented/rated by the reviewer, we can ex-
tract the UGC and the metadata associated with the apps. The
UGC includes comment posting time, review comment, and rat-
ing score; these are generated by the reviewer. The app metadata
includes the number of installs, a set of developers of the app, and
a set of the categories of the app; these are the data of the apps
commented/rated by the reviewer.

We now turn our attention to the problem we are addressing in
the paper. For a given reviewer, we first compile the UGC and
app metadata; we then extract a feature vector from the compiled
data. Our goal is to classify the reviewer into two classes: a legit-
imate reviewer and a promotional attacker. To this end, we apply
a supervised machine learning algorithm to the extracted feature
vector. In summary, our problem is to determine whether a given
reviewer is a promotional attacker or not by analyzing the UGC
and the metadata associated with apps commented on or rated by
the reviewer.

To formulate the problem in a mathematical way, we introduce
the variables summarized in Table 1. We note that we only exam-
ine the reviewers with mi ≥ 3 because it takes time and efforts for
promotional attackers to create zombie accounts for commenting
apps and therefore they often reuse these accounts for posting re-
views. We discuss how to relax this restriction in Section 6. Of
the valuables shown in Table 1, ci j, si j, and ti j are UGC data and
ni j, di j, and ki j are the metadata. Using these six values for all the
apps in A(ri), we compute a feature vector F(ri) = { f i

1, f i
2, . . . f i

15}
for a given reviewer ri. Our goal is to build an accurate classi-
fier g(F(ri)) that determines whether ri is promotional attacker or
not. The details of computing a feature vector from the observed
variables will be described in the next section.
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Table 1 Notations used for our problem.

Symbol Definition

ri the i-th reviewer (i = 1, 2, . . .)

A(ri) a set of apps reviewed by the reviewer ri.

mi number of apps reviewed by the reviewer ri. mi = |A(ri)|.
ci j

review comment posted by the reviewer ri for the j-th app.
j = 1, 2, . . . ,mi.

si j
rating score posted by the reviewer ri for the j-th app.
j = 1, 2, . . . ,mi.

ti j
time at whch the reviewer ri posted a comment for the j-th
app. j = 1, 2, . . . ,mi.

ni j
number of installs for the j-th app reviewed by the reviewer
ri. j = 1, 2, . . . ,mi.

di j
developer of the j-th app reviewed by the reviewer ri.
j = 1, 2, . . . ,mi.

ki j
category of the j-th app reviewed by the reviewer ri. j =
1, 2, . . . ,mi.

3. PADetective System

In this section, we first provide an overview of PADetective,
and then detail its four core components: data collection, data
preprocessing, feature extraction, and detection.

3.1 Overview
Figure 2 presents an overview of PADetective, which consists

of four core components. First, the data collection component
has a crawler to collect data from the Google Play Store. Second,
the data pre-processing component involves 8 steps in remov-
ing noisy data. Third, the feature extraction component obtains
the values for the 15 new features from the pre-processed data.
Fourth, the detection component selects the most suitable detec-
tion model to predict promotional attackers and to determine the
correlation between promotional attackers and malicious apps.

3.2 Data Collection
We first create a list of apps to be downloaded by using the

list of package names provided with PlayDrone [10]. Then, we
collect metadata for each app by accessing its description page
according to its package name and employing our HTML parser
to extract all metadata in the page. The UGC cannot be ob-
tained from the page directly because listing them involves asyn-
chronous communication with the server. To address this is-
sue, we developed a UGC crawler based on the review collec-
tion API [11] provided by Google Play Store. More precisely, our
crawler sends an HTTP request, which contains the package name
and the page index as parameters, to the server and then parses the
JSON file in the HTTP response. Figure 3 shows the statistics of
the number of reviews in each app. We note that the Google Play
review collection service only allows 4,500 most recent reviews
to be crawled for each app. We could fetch the reviews continu-
ously for circumventing this limitation, thanks to our automated
process of data collection. To follow the acceptable use policy
of the API, we deployed our crawler on 100 servers around the
world to collect UGC for a large number of apps.

We used the crawler to collect UGC and metadata for
1,058,259 apps from the Google Play app store in November
2015. The data set involved 57,868,301 reviews from 20,211,517

Fig. 3 Histogram for the number of reviews in each app.

Fig. 4 Percentage of review numbers with different rating.

unique users. The statistics for the collected UGC and metadata
are presented in Table 2.

Figure 4 shows the statistics for the collected rating data. The
rating scale in the Google Play Store ranges from 1 to 5. We can
see that over 55% of ratings are 5 stars. It may be due to either
the users’ tendency to give high ratings or PAs. Therefore, it is
a challenge to distinguish promotional attackers from legitimate
reviewers who are actually satisfied with the apps.

3.3 Data Preprocessing
Before creating the feature vector for the classifier, we develop

an 8-step process to remove the noisy and meaningless data.
Step 1: Remove all reviews under the default reviewer name “A
Google User,” because we cannot extract the string features from
the default reviewer name. We discuss how to tackle this limita-
tion in Section 6.
Step 2: Extract the reviewers who have commented on at least
three apps. The limitation introduced by this step is discussed in
Section 6.
Step 3: Remove reviews written in languages other than English
as PADetective currently only handles English.
Step 4: Split all sentences into words.
Step 5: Transform all letters into lowercase.
Step 6: Remove all stop words such as “is”, “am”, “the.”
Step 7: Consolidate variant forms of a word into a common form
(i.e., word stemming), for example, convert “running” to “run.”
Step 8: Correct the misspelling English words for all the reviews.

For Steps 3–8, we implement the natural language processing
based on NLTK [12] and TextBlob [13]. NLTK is a widely used
Python library for natural language processing, and TextBlob was
developed on the basis of NLTK for simplifying text processing.
TextBlob enables us to realize language detection and spelling
correction in the data preprocessing stage as well as sentiment
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Fig. 2 Overview of PADetective.

Table 2 Description of UGC and metadata.

Type Item Description

Reviewer name The name ID of each reviewer

User-generated content Rating The score attached to each app by reviewer. The range of score is from 1 to 5

Post time The date of review creation

Review The comment text written by reviewer

Number of installs The count of app downloaded by mobile users, i.e., 1,000–5,000, 10,000+

Metadata Category The cluster name of apps with similar function, i.e., Entertainment, Communication, Sports

Developer The name of an individual or a company who creates the app

analysis during the feature extraction stage. After the 8 steps,
23,255,180 reviews are removed from our dataset. The unique
users are only reduced in first 3 steps. The remaining steps are
used to preprocess each review by using the natural language pro-
cessing techniques. In the steps 1, 2, 3, the number of distinct
users are reduced to 14,191,879, 2,678,217, 2,606,791, respec-
tively.

3.4 Feature Extraction
We profile each reviewer ri by using 15 features extracted from

the UGC and metadata. These features form a feature vector
F(ri) = { f i

1, f i
2, . . . f i

15}, and we classify them into 6 categories,
which are detailed in Section 3.4.1–Section 3.4.6.
3.4.1 Posting Time

f i
1: Day intervals. Promotional attackers are likely to launch a

rating promotion attack within a short day intervals. For exam-
ple, Xie and Zhu found that reviewers hired by app promotion
web services tend to complete their review promotion missions
within 120 days [4]. Therefore, we calculated the day intervals
between the earliest and the latest post time max(Ti) − min(Ti),
where Ti = {ti1, . . . , timi }, and defined f i

1 = max(Ti) −min(Ti).

f i
2: Day entropy. Promotional attackers are likely to write re-

views within the same day, because they may use automated post-
ing process or want to get paid as quickly as possible. To measure
the proportion of same-day reviews, we defined f i

2 using the in-
formation entropy as follows:

f i
2 = H(X) = −

mi∑

j=1

P(ti j) log P(ti j)

where P(ti j) is the frequency of same-day reviews: ti j

sum and
sum =

∑mi

j=1 ti j is the sum of days reviewed by reviewer ri. We
note that H (Greek capital letter eta) expresses Shannon entropy.
If all the reviews are posted on the same day, the entropy of the
post time will be 0.

3.4.2 Reviews
f i
3: Bi-gram matching. Promotional attackers often post sim-

ilar reviews. Detecting similar reviews is important due to the
presence of made-up words that are used to express strong feel-
ings, such as “goooooood” and “coooooool.” Made-up words
cannot be reformed by existing spelling correction algorithms be-
cause they are designed to correct misspelled words instead of in-
tentionally created words. To address this problem, we converted
each word into a bi-gram and then used bag of bi-gram to build
a feature vector for each ci j. Finally we calculated the average of
the cosine similarity score of each pair of reviews by the reviewer
ri. In other words,

f i
3 =

∑mi

j=1

∑mi

k=1 cosim(ci j, cik)

m2
i

where cosim is cosine similarity score. We set the threshold of
cosine similarity as 0.9

f i
4: Semantic similarity. Since reviewers may use different

words and expressions to express the same feeling, we identify
similar words and expressions using the Paragraph Vector (PV)
algorithm [8], because it performs a semantic analysis in discov-
ering similar words and expressions. More precisely, the PV al-
gorithm has each document represented by a dense vector, which
is trained by stochastic gradient descent and back-propagation, to
predict the similarity of words in the different documents. The
PV algorithm is designed in a distributed way such that it can
train a large amount of unlabeled data in a very short period of
time. For example, by applying the PV algorithm realized in the
Python library gensim [14] to 57,868,301 reviews in our dataset,
we get the predicted model after around 1 hour. We defined f i

4

as the average of the similarity scores predicted from the trained
model for each pair of reviews.

f i
4 =

∑mi

j=1

∑mi

k=1 D(ci j, cik)

m2
i
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Table 3 Examples of similarity score computed with the trained Paragraph
vector model.

word1 word2 similarity score

adware malware 0.88

ads spam 0.64

camera permission 0.74

hack access 0.71

internet location 0.62

good nice 0.60

Table 4 Example of score predicted by sentiment analysis classifier.

Sentence The score of sentiment analysis

That is my opinion 0.0

Awesome game. 0.3

Nice graphics and I love it. 0.55

Very bad game. −0.65

I hate all the covers I’m
here to look for the songs
made by the artist not covers. −0.8

Where D is the distance of two different documents computed by
PV algorithm.

Table 3 presents some examples of the similarity scores com-
puted by the trained PV model. It is clear that the model can infer
the correlations between not only different words with the same
purpose but also security-related similarity words without using
the labeled data. Note that although we used words to demon-
strate the effectiveness of the approach, we actually apply the al-
gorithm to the entire review texts.

f i
5: Sentiment analysis. Promotional attackers usually post

positive reviews to promote apps for monetary benefit and/or lur-
ing more victims to install malicious apps. Sentiment analysis is
an approach used to classify the feeling of a given text into three
categories: negative, neutral, positive. By using the sentiment
analysis, we can extract potential promotional attackers who have
posted only positive reviews to the apps.

We use TextBlob [13] to conduct the sentiment analysis of all
the reviews. The sentiment analysis in TextBlob was imple-
mented by a supervised learning naive bayes classifier that is
trained on the labeled movie reviews provided by NLTK. The
bag-of-words approach is used for feature vector creation. The
accuracy of the sentiment analysis classifier is between 80% and
90%. In our case, both the training data (movie reviews) and pre-
dicted data (android app store reviews) were different types of re-
views with similar characteristics. Therefore, the sentiment anal-
ysis classifier could achieve a high prediction accuracy of 90%
for our review data. We defined f i

5 as the average score for each
pair of reviews predicted by the sentiment analysis classifier. Ta-
ble 4 shows an example of the scores predicted by the sentiment
analysis classifier. If the score is zero, it means the sentiment of
the review is neutral. We found that our classifier had identified
the sentiment of the reviews correctly.

f i
6: The average length of the reviews. Fake reviews injected

by promotional attackers are likely to be short, because they
may use an automated posting process or want to get income
as quickly as possible. Therefore, we defined f i

6 as the average
length of the reviews written by the reviewer ri.

3.4.3 Ratings

f i
7: True Reputation Score. Users often rely on the average

ratings of the apps, computed by the app stores, in selecting the
apps. Unfortunately, promotional attackers can easily manipulate
the average ratings by giving high ratings to their target apps. We
defined f i

7 as the average of the margin between the app’s rat-
ing and the reviewer’s rating based on the true reputation score of
each app instead of the average rating. This score is calculated ac-
cording to the TRUE-REPUTATION algorithm [9], which takes
into account the user confidence in terms of user activity, user
objectivity, and user consistency.

User activity, objectivity, and consistency are in the range of
[0, 1]. If the activity score of a user vr is 1.0, the user is the most
active user and posts many app ratings. The user objectivity or in-
dicates the aggregated objectivity of the ratings posted by a user,
with a value of 1.0 indicating the most objective user. The user
consistency is is used to detect abnormal ratings by applying box-
plot analysis. A reviewer with legitimate behavior is given a high
user consistency score. After computing these three scores, the
confidence of a rating s, us, can be calculated as

us = vr × or × is, s ∈ Sr,

where r is a reviewer and Sr is set of ratings posted by reviewer,
r. Finally the true reputation score is defined as

ua =

∑
s∈Sa

(s × us)∑
s∈Sa

us
,

where a is an app and Sa is the set of ratings for app a. Based on
ua, f i

7 is computed as:

f i
7 =

∑mi

i=1(si j − ua j)

mi
,

where mi is the number of apps reviewed by reviewer ri.

f i
8: Average ratings. Since promotional attackers will give high

ratings to malicious apps for attracting more downloads, we de-
fined f i

8 as the average ratings posted by reviewer ri.

f i
9: Coefficient of variation of ratings. We defined f i

9 as the

coefficient of variation of all the ratings posted by each reviewer
to measure their distribution. The coefficient of variation is the
ratio of the standard deviation to the mean.

f i
9 =

σ(Si)∑mi

j=1 si j
,

where σ is standard deviation and Si = {si1, . . . , simi }. If a re-
viewer posts identical ratings, the coefficient of variation will be
0.
3.4.4 Number of Installs

f i
10: Average number of installs. Since the number of installs

is an important metric affecting users’ selection of apps, we de-
fined f i

10 as the average number of installs for reviewer ri.

f i
10 =

∑mi

j=1 ni j

mi
,

f i
11: Coefficient of variation of the number of installs. To

measure the distribution of the number of installs, we define
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Fig. 5 f i
1: Day Intervals. Fig. 6 f i

10: Average number of installs. Fig. 7 f i
12: Developer Entropy.

f i
11 as the coefficient of variation of the number of installs for

reviewer ri. The computation of f i
11 can be referred to the

equation defined by f i
10.

If a reviewer posts reviews to apps with the same number of
installs, the coefficient of variation will be 0.
3.4.5 Developer and Category

f i
12: Developer Entropy. Promotional attackers are more likely

to promote apps produced by the same developer because the tar-
geted malicious apps should be associated with each other. There-
fore, we defined f i

12 as the entropy of developer for reviewer ri.
The computation of f i

12 can be referred to the equation defined by
f i
2. If a reviewer only posts reviews for apps from the same de-

veloper, the entropy of the developers related to reviewer ri will
be 0.

f i
13: Category Entropy. As a promotional attacker may target

apps that are popular or in the money-making category such as
game category. Similar with f i

12, we defined f i
13 as the entropy

of category for reviewer ri. The computation of f i
13 can also be

referred to the equation defined by f i
2. If a reviewer only posts

reviews for apps having a small number of distinct categories, the
entropy of the categories related to reviewer ri will be 0.
3.4.6 Reviewer names

f i
14: Length of reviewer name. Legitimate reviewers usually

use their own name as the reviewer name, whereas the reviewer
names selected by promotional attackers are likely to be unusu-
ally short or long. Hence, we defined f i

14 as the length of the
reviewer name.

f i
15: Number of digits and symbols in reviewer name. The

reviewer names of promotional attackers are often randomly
generated, and therefore they are likely to contain digits and
symbols such as “!”, “*”, “@.” According to this observation, we
defined f i

15 as the number of digits and symbols in the reviewer
names.

3.5 Effectiveness of feature
In the following, we demonstrate how our features work in de-

tecting promotional attackers. In particular, we picked the top-3
feature that contributed most to the classification. The top-3 fea-
tures are f i

1: Day intervals, f i
10: Average number of installs, and

f i
12: Developer Entropy. f i

1: Day intervals is the most influential
one in these features. We extracted these three features by using
a tree-based feature selection method [15], which uses forests of
trees to evaluate the importance of features.

Figure 5 shows the Cumulative Distribution Function (CDF)
of the day intervals of promotional attackers and those of normal
reviewers. We can see that promotional attackers usually have
shorter day intervals than normal reviewers. It is likely that pro-
motional attackers want to get revenue quickly or are required by
their employers to do so. Figure 6 shows the CDF of the number
of installs of promotional attackers and those of normal review-
ers. We can figure out that promotional attackers tend to promote
apps whose number of installs is not very large due to the prohibi-
tion of promotion activity by Google Play [16]. Figure 7 shows
the CDF of the developer entropy of promotional attackers and
those of normal reviewers. We can see that promotional attackers
tend to promote apps produced by the same developer. Because
promotional attackers are probably hired by the same developer.

We note that these three features are informative for identify-
ing promotional attackers from normal reviewers. We also found
that the features extracted from metadata are more effective than
those from UGC in PA detection, because it is not easy for attack-
ers to manipulate the metadata such as developer and number of
installs.

3.6 Detection
We built our detection model based on the machine-learning al-

gorithms implemented in the Python library scikit-learn [17] be-
cause this library is efficient. Considering the performance of
each machine learning method, we adopted standard supervised
learning methods, i.e., support vector machine (SVM), k-nearest
neighbor (KNN), random forest, decision tree, and adaBoost. To
determine the best machine-learning algorithm and parameters,
we leveraged our labeled dataset to test all the selected models
using classifiers and parameters. The detailed model selection
process and its results are presented in Section 4. Finally, we ap-
plied the best detection model to perform a large-scale analysis
of our real-world dataset.

4. Performance Evaluation

This section presents the evaluation result of PADetective. We
first introduce how we prepare the labeled dataset (i.e., the ground

truth), and then describe the evaluation method and the result, re-
spectively.

4.1 Training Dataset
We first generate the training dataset with the ground truth.
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Considering that there may be legitimate reviewers who comment
on a bad app or post reviews to malicious apps by mistake, we de-
fine a promotional attacker as a reviewer who posts reviews only
to malicious apps, and the number of malicious apps is at least
three apps because it is likely that promotional attackers promote
more malicious apps to increase infected devices or monetary
benefits quickly. In contrast, legitimate reviewers post reviews
only to benign apps.

We determine whether an app was malicious by submitting the
app to VirusTotal [18] and making the decision based on the re-
sults from a set of antivirus systems. Note that we did not verify
all the apps in our dataset to generate the training dataset because
of the limitation of time and computer resources. The number
of apps we used for collecting UGC and metadata is 1,058,259.
After the data preprocessing, 234,139 apps are left for the large-
scale analysis. We also note that VirusTotal usually classifies ma-
licious apps into two categories: malware and adware. VirusTotal
provides several detection names of a given malware or adware.
We can use the names to distinguish between malware and ad-
ware. If we observe the names for both malware and adware, we
adopt the most frequent types as our choice. We did not distin-
guish between these categories because PAs would likely be used
to promote both malware and adware apps. With this approach
and additional manual inspection, we identified 723 promotional
attackers. Aside from this, we randomly selected 1,000 legitimate
users to create the training dataset. The reason why we randomly
sampled legitimate users was to achieve a good balance between
the two classes when we trained our classifiers.

4.2 Evaluation Method
Figure 8 shows the flow of performance evaluation. We ran-

domly divided the labeled data into two sets. Containing 70% of
labeled data, the first dataset is the training dataset used to op-
timize each machine learning model and select the best model.
For optimizing the machine learning algorithms, we specify a
set of carefully chosen values for each parameter in machine
learning algorithms. i.e. for random forest, we set parameter
“n estimators” to a set of values: 50, 100, 150, 200, 250. Then
we evaluated machine learning algorithms with different param-
eters by using 10-fold cross-validation. Finally we selected best
result in consideration of accuracy, false positive and false nega-
tive. Having 30% of labeled data, the second dataset is the test
dataset utilized to evaluate PADetective’s performance after the
best model is selected. Given that we did not use this test set for
optimizing/selecting the model, the prediction results for it can
be thought as test for the unknown data.

To measure the accuracy of various supervised learning al-
gorithms, we use three metrics: false positive rate (FPR), false
negative rate (FNR) and accuracy (ACC), where FPR = FP

FP+TN ,
FNR = FN

TP+FN , and ACC = TP+TN
TP+TN+FP+FN , respectively. TP is true

positive, FP is false positive, TN is true negative and FN is false
negative. We also show the performance of the best detection
model through the ROC curve, which can be used to determine
the best combination of true and false positive rates.

Fig. 8 A flow of evaluating the accuracy of PADetective.

Table 5 Classification accuracy. The means and standard deviations are cal-
culated using 10-times 10-fold cross-validation tests for each ma-
chine learning algorithm.

4.3 Evalutaion Result
Table 5 lists the accuracy of different machine learning algo-

rithms used by PADetective. Most of these algorithms predicted
the promotional attackers with high accuracy and low false neg-
ative or false positive rate. Among the five machine-learning al-
gorithms we tested, RandomForest achieved the highest accuracy
(i.e., 93.3%) with the lowest false positive (i.e., 0.083) and false
negative (i.e., 0.053) rates. Moreover, its standard deviations of
the accuracy, false positive rate, and false negative rate of Ran-
domForest are also low, indicating that RandomForest can iden-
tify promotional attackers effectively. We use the grid search to
determine the best parameter for RandomForest, and find that 50
is the optimal number of trees. Based on these results, we select
RandomForest as our detection model. With regard to the metrics
we used, F-measure is one of the useful metrics that can capture
the trade-offs between the accuracy and error. We adopted an-
other metric that can also capture this trade-off. As we showed in
Table 5, the random forest algorithm achieved the highest accu-
racy while achieving the lowest FPR. It also achieved the second
lowest FNR. Although kNN achieved the lowest FNR, its accu-
racy and FPR are not better than random forest. Given these ob-
servations, we can conclude that Random Forest works the best
for our problem. Meanwhile, we optimize all the machine learn-
ing algorithms we used. Generally, it is not a straightforward task
to identify the reason why one machine learning algorithm works
the best. Although not conclusive, we conjecture that the reason
why Random Forest works the best in our study might come from
the fact that it tends to have less variances [19].

To better understand the root causes of false negative rate and
false positive rate in our system, we conduct error analysis with
manual inspection. It turns out that PADetective failed to detect
the promotional attackers who had posted reviews for a period of
two years or longer. On the other hand, PADetective wrongly
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Table 6 Statistics of detected promotional attackers and apps. “–” indicates that we were not able to
perform the evaluation due to the lack of resources.

# reviewers # apps # malicious apps # apps deleted by app store

All observed reviewers 2,605,068 234,139 32,367 –

Potential promotional attackers 289,000 135,989 20,906 –

Detected promotional attackers with high confidence 1,000 2,904 486 148

Fig. 9 Evaluation of detection model using test set. Note that we did not
use test set to train the classifier.

flagged the legitimate reviewers whose behaviors were similar
to a promotional attacker (e.g., their reviews seemed to be fake,
but the apps reviewed were not detected by the VirusTotal). It is
worth noting that advanced malware may evade the online virus
checkers.

Finally, using the optimized RandomForest algorithm, we test
PADetective’s accuracy using the test dataset. Figure 9 shows
that it can achieve 90% true positive rate with low false positive
rate of 5.8%. We can claim that such accuracy is good for the
unknown set, indicating that the classification scheme is robust.
In the next section, we will use this classification model to inves-
tigate the PAs in the large-scale data.

5. Promotional Attacks in the Wild

5.1 Large-scale Measurement
Using PADetective, we conducted a large-scale analysis of

real-world data collected from the Google Play Store, and found
289,000 potential promotional attackers from 2,605,068 review-
ers. In Section 4.1, we used a 1723-entry labeled dataset (a small
portion of all the dataset) to build and test our classifier. In Sec-
tion 5.1, we conducted a large-scale analysis on the remaining
“unlabeled” data by using the classifier we built in Section 4.1.
Table 6 summarizes the number of reviewers/apps detected by
PADetective. The number of unique malicious apps reviewed by
the potential promotional attackers was 20,906, accounting for
approximately 65% of the malicious apps reviewed by all ob-
served reviewers. It is worth noting that many malicious apps
having reviews were associated with the potential promotional
attackers. Note that the majority of malicious apps detected by
VirusTotal had no user reviews. It is likely that malicious apps are
detected and deleted by mobile app stores in the early stage of dis-
tribution, so there are no users to use and comment on such mali-
cious apps. Another possibility is that mobile app stores deleted
both malicious apps and their information including reviews si-
multaneously, so we can not collect the reviews from mobile app
store.

Then, we ranked the reviewers in descending order according

Table 7 Top-10 types of malicious apps reviewed by the detected PAs.

Type of malicious app The number of type

Android.RevMobAD.A (AdWare) 18.5%

Adware.Android.Gen 8.4%

Android.Airpush.G (AdWare) 4.7%

Android.Leadbolt.A (AdWare) 3.5%

Trojan.AndroidOS.Generic.A 2.9%

Android.Airpush.H (AdWare) 2.9%

Adware/ANDR.StartApp.A.Gen 2.7%

Adware.AndroidOS.Startapp 2.1%

Riskware.Android.Leadbolt.dkzuxh 1.9%

Adware/ANDR.Leadbolt.B.Gen 1.6%

to the probability of being a promotional attacker, and investi-
gated the top 1,000 reviewers detected as promotional attackers.
The top 1,000 reviewers posted reviews for 2,904 of apps, which
include 486 of malicious apps and 148 of apps deleted by the
app store for some reasons, e.g., malware or potentially harmful
apps. Among the 486 malicious apps, approximately 66% of ma-
licious apps are labeled as adware. We present the top 10 types
of malicious apps that are reviewed by the detected promotional
attackers in Table 7. Most of them are also labeled as adware.
Promotional attackers tend to promote adware so that they can
make more profiles and collect users’ information.

Among the 1,000 promotional attackers, 136 reviewers
(13.6%) posted reviews only for malicious apps or the deleted
apps. We found that other detected reviewers posted reviews for
not only malicious apps, but also for apps that were not regarded
as malware/adware by VirusTotal. We note that using the online
virus checkers could be one of the sources of false detection. We
leave the checking of the code of those undetected apps for our
future work.

Figure 10 shows the top 10 categories of the apps reviewed
by promotional attackers. Three categories (approximately 15%
in total) are related to game, which was the primary target of the
PAs. To study the impact of apps promoted by the promotional
attackers, Fig. 11 illustrates the top 10 number of installs of the
apps reviewed by promotional attackers. We can see that the ma-
jority of such apps do not have many installs. This observation
indicates that PAs are used when the app is not so popular. There
may be other reasons that the data was captured when the PA was
just launched (i.e., not yet finished),

We also investigate whether the detected promotional attackers
can be used to discover malicious apps. More precisely, we com-
pare the time when the promotional attackers posted reviews on
malicious apps and the time when the malicious app was first sub-
mitted to VirusTotal. If all the posting times are earlier than the
first submission time, then our PA detection scheme has the po-
tential to identify new, previously unknown malicious apps soon
after publication.
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Table 8 A set of apps reviewed by a detected promotional attacker.

App Name Reviews Ratings

True
Reputation

Score Post Time Category Developer Downloads
VirusTotal
Detection

com.wb.atones Great. Application 5 3.71 2013.12.20 MUSIC AND AUDIO Navjot Singh 10, 000+ ANDR.RevMob.A

com.wb.bankpo Great app for.
Preparing banking
exams.

5 4.05 2013.12.20 EDUCATION Navjot Singh 5, 000+ Android.RevMobAD.A

com.wb.bhangra Great boliyan 5 2.85 2013.12.20 MUSIC AND AUDIO Navjot Singh 10, 000+ ANDR.RevMob.A.Gen

com.wb.dbreed Great dogs. Name 5 3.88 2013.12.20 EDUCATION Navjot Singh 1, 000+ Android.RevMobAD.A

com.wb.htones Awesome horror
tones.

5 3.07 2013.12.20 MUSIC AND AUDIO Navjot Singh 10, 000+ ANDR.RevMob.A

com.wb.piczzle Piczzle app great
application. It is a
awesome app

5 4.54 2013.12.20 GAME PUZZLE Navjot Singh 500+ Trojan.AndroidOS.
Generic.A

com.wb.sukhmani Waheguru wahe-
guru

5 4.34 2013.12.20 EDUCATION Navjot Singh 10, 000+ Trojan.AndroidOS.
Generic.A

Table 9 A set of unknown malicious apps reviewed by a detected promotional attacker.

App Name Reviews Ratings Post Time Category Developer Downloads
VirusTotal
Detection

First submission date
on VirusTotal

com.ArabicAlphabets
.memory.mathes

Nice 5 2014.02.03 GAME PUZZLE GameLab 5, 000+ AndroidOS/GenBl.
F33291AF!Olympus

2014.08.03

com.electricity.billinf
o.free

Nice 5 2014.02.03 ENTERTAINMENT GameLab 5, 000+ AndroidOS/GenPua.
14444BDA! Olympus

2014.07.30

com.siminfo.gsm.free Good 5 2014.02.03 ENTERTAINMENT GameLab 5, 000+ AndroidOS/GenPua.
A0CB31EE! Olympus

2014.07.30

Fig. 10 Top 10 categories of apps reviewed by the detected promotional at-
tackers.

Fig. 11 Top 10 number of installs for apps reviewed by the detected promo-
tional attackers.

We examine the top 241 detected promotional attackers who
only reviewed malicious apps, and find that 72 of them reviewed
malicious apps before these malicious apps were detected by
VirusTotal. Among all the apps reviewed by these 72 promotional
attackers, 217 apps were labeled as malicious app by VirusTotal.
It is worth noting that other apps reviewed by the promotional
attackers might also be suspicious.

In summary, PADetective discovered 289 K reviewers as poten-

tial promotional attackers. They posted reviews for 136 K apps,

which included 21 K malicious apps. Among the top 1,000 re-

viewers who were flagged as promotional attackers with high con-

fidence, 136 reviewers posted reviews only for malicious apps,

and another 113 reviewers posted reviews for apps, most of which

were detected as malicious apps. The result also suggests that

PADetective could be used to detect malicious apps in the early

stage of distribution.

5.2 Case Studies
Herein, we detail two PAs to demonstrate the effectiveness of

our PADetective system.
promotional attackers in the wild. Table 8 lists a set of apps re-
viewed by a promotional attacker. This promotional attacker gave
high ratings and posted similar positive reviews for seven mali-
cious apps on the same day. These malicious apps belonged to
different category, were not very popular, and were created by the
same developer. Moreover, the average of the difference between
the true reputation scores and ratings was larger than 1.0, indicat-
ing that the reviewer attempted to promote all the malicious apps
using high ratings. This example illustrates the common features
of promotional attackers in the wild.
Detecting previously unknown malicious apps. As shown in
Table 9, this promotional attacker gave high ratings and wrote
very short positive reviews for three malicious apps on the same
day. Moreover, all the posting times are earlier than the first sub-
mission time in VirusTotal. The apps reviewed by this promo-
tional attacker would be more likely to be malicious. The secu-
rity expert and market operator can therefore discover new, pre-
viously unknown malicious apps by analyzing the apps related to
this promotional attacker detected by PADetective.
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6. Discussion

This section discusses some limitations of PADetective and fu-
ture research directions.
Evasion. Advanced attackers may evade the PADetective system
by employing lots of user accounts with different names and/or
mimicking the reviewing behaviors of normal users. It is worth
noting that such evasion strategies require much more resources
and efforts. For example, attackers may acquire lots of fake user
accounts and use each account to just post one comment in or-
der to degrade the detection accuracy of PADetective. However,
since mobile app stores (e.g., Google Play) usually adopt ad-
vanced techniques [20] to deter automated account registration,
it will cost the attackers lots of resources and efforts to create
many accounts and it does not benefit the attackers if these ac-
counts are just used to post one comment. Note that the pri-
mary goal of the attackers is to increase the success rate of at-
tacks with lower costs [21]. Even if an attacker can afford to
adopt such an expensive approach, the stakeholders of mobile
app stores can enhance PADetective with additional information
about each account, such as IP address which could be correlated
with user accounts to detect malicious users [22]. The attackers
may also mimic the reviewing behaviors of normal users by writ-
ing short/long reviews, reviewing both legitimate and malicious
apps, adjusting the posting time, and etc. It will also significantly
increase the cost of attacks. We leave the challenge of differenti-
ating such advanced attacks and human reviewers in future work.
Number of apps reviewed by each reviewer. PADetective does
not consider reviewers who posted comments for only one or
two apps. This constraint originates from the fact that comput-
ing some features such as entropy or coefficient variants requires
more than two samples. In this work, we empirically set the num-
ber as 3 because increasing the number was not sensitive to the
final outcomes. Since attackers usually employ the accounts to
post a number of comments as we discussed above, we believe
that this number is reasonable to capture promotional attackers.
As the number of apps reviewed by a reviewer may exceed the
threshold, 3, over time, PADetective could identify them by con-
tinuously collecting and analyzing the comments. We will con-
struct a real-time detection system for fetching and examining
UGC and the metadata continuously in future work.

7. Related Work

This section introduces mostly related work in three categories.

7.1 UGC analysis
Review Analysis. Kong et al. [23] designed AutoREB to au-
tomatically identify users’ concerns on the security and privacy
of mobile apps. They applied the relevance feedback technique
for the semantic analysis of user reviews and then associated
the results of the user review analysis to the apps’ behaviors by
using the crowd-sourcing technique. Mukherjee et al. [6], [7]
proposed new approaches to detect fake reviewer groups from
Amazon product reviews. They first used a frequent itemset
mining method to identify a set of candidate groups, and then
adopted several behavioral models based on the relationships

among groups such as the review posting time and similarities.
Fu et al. [24] proposed WisCom to provide important insights
for end-users, developers, and potentially the entire mobile app
ecosystem. They leveraged sentiment analysis, topic model anal-
ysis, and time-series analysis to examine over 13 M user reviews.
Gomez et al. [25] analyzed user reviews and permissions using an
unsupervised learning approach to detect apps that contain bugs
and errors.
Rating Analysis. Xie et al. [3] proposed a new method for dis-
covering colluded reviewers in app stores. They built a relation
graph based on the ratings and the deviations of the ratings, and
applied a graph cluster algorithm to detect collusion groups. Oh
et al. [9] developed an algorithm that calculates the confidence
score of each app. Market operators can replace the average rat-
ing of each app with the confidence score to defend against rating
promotion/demotion attacks. Lim et al. [26] devised an approach
to measure the degree of spam for each reviewer based on the
rating behaviors, and evaluated them using an Amazon review
dataset.

Previous works [3], [6], [7] are closely related to our work. The
major differences between PADetective and Xie et al. [3] is the
scalability. More precisely, their system is not scalable because it
is not possible to build a tie graph of large-scale dataset in physi-
cal memory. Moreover, they performed the evaluation on a small
and local dataset (200 apps collected from the china apple store).
In contrast, since our detection model uses static features, our
system can conduct large-scale analysis. Moreover, we investi-
gate the prevalence of PAs in the official Android app store by
collecting information on more than 1 M apps.

The method of review analysis is the main difference between
PADetective and Refs. [6], [7]. Since they aimed to identify copy
reviews used by spammers, their method only extracts the simi-
lar reviews in keyword level, e.g., “good app” and “good apps”.
Since users can express the same opinion using different words
and expressions, e.g., “nice app” and “good app,” we leveraged
the state-of-the-art NLP technique called Paragraph vector [8] to
extract similar reviews at the semantic level for better accuracy.

7.2 Metadata Analysis
Xie et al. [4] studied the mobile app reviews traded on the

underground market. They analyzed the metadata of the pro-
moted apps collected from the underground market, including av-
erage ratings, total number of reviewers, category distributions,
and developers. WHYPER [27] was the first system that ana-
lyzes text descriptions semantically to perform risk assessments
of mobile apps. Qu et al. [28] developed AutoCog for measuring
description-to-permission fidelity in Android applications. Peng
et al. [29] designed an app risk scoring and ranking system based
on probabilistic generative models in order to improve risk com-
munication mechanism for Android apps. The system was trained
on the metadata including the developer name, the category, and
the set of permissions requested by the app. Yu et al. [30] pro-
posed a novel approach to automate the detection of incomplete,
incorrect and inconsistent privacy policy by combining descrip-
tion and code analysis. Unlike these systems, PADetective can
extract features from not only the metadata mentioned above but
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also UGC in a more comprehensive way.

7.3 App Analysis
Several studies [31], [32], [33], [34], [35], [36], [37], [38], [39],

[40] have analyzed the permission, API call, and runtime behav-
ior derived from code to detect malicious apps or prevent system
and application vulnerabilities from being abused by attacker.

Kirin [31] is a lightweight system that can flag potential mal-
ware applications at the time of installation using a set of secu-
rity rules that match malware characteristics. DroidScope [32]
rebuilds both the OS-level and Java-level semantics simultane-
ously and seamlessly to unveil malicious intent and the inner
workings of a malware application quickly. DroidRanger [33]
applies a heuristics-based filtering scheme to discover unknown
malicious apps from real-world datasets. RiskRanker [34] can
automatically identify zero-day Android malware by examining
apps’ runtime behaviors. Unlike DroidRanger, it does not require
malware specimens to detect zero-day malware. DREBIN [35]
is a lightweight and automatic Android malware detection sys-
tem. DroidMiner [37] can automatically mine malicious program
logic from known Android malware using behavioral graph and
machine-learning techniques. PADetective complements to these
studies by investigating the relationships among UGC, metadata,
and malicious apps to detect promotional attackers and reveals
malicious apps.

8. Conclusion

In this study, we propose and develop PADetective, which can
identify unknown promotional attackers in mobile app stores, us-
ing UGC and metadata as well as machine-learning techniques.
We extracted 15 features from the UGC and metadata and se-
lected the most suitable machine-learning methods for our detec-
tion model. The extensive experiment results demonstrate that
our detection scheme can achieve a high true positive rate of up
to 90% and a low false positive rate (i.e., 5.8%). We also ap-
plied PADetective to a large-scale analysis of unlabeled reviewer
data; it detected 289 K reviewers as potential promotional attack-
ers, who posted reviews to 136 K apps, including 21 K malicious
apps. Moreover, the large-scale evaluation and case study analy-
sis illustrate that PADetective can effectively and efficiently dis-
cover previous unknown malicious apps.
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Editor’s Recommendation
This paper establishes a new problem, namely promotional at-

tacks, and proposes a novel machine learning-based method to
identify unknown promotional attackers. The paper also reports
evaluation results using large real datasets along with insightful
discussions, which reliably shows the effectiveness of the pro-
posed method, and thus is selected as a recommended paper.
(Masayuki Terada, program chair of Computer Security Sympo-
sium 2016 (CSS2016))
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