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Technical Note

Evaluation of Three Quads Using Matrix Transpose
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Abstract: For medium scale commodity cluster, a high cost performance interconnection network named Three
Quads was proposed. Topological features of Three Quads include 1) diameter of two, 2) embed-ability of 3D torus
and many well-known topologies, and 3) fault tolerance and path diversity. All the hardware components of Three
Quads are essentially small-scale and off-the-shelf commodity hardware to achieve superior cost performance. In this
paper, the performance of the Three Quads is evaluated using a matrix transpose application and results show that the
Three Quads gives appealing performance comparable to a large scale and expensive enterprise switch fabric.
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1. Introduction

Low-latency data analysis of large streaming data is gradually
becoming of greater importance as an HPC application. In this
context, in analysis of temporal results of on-going simulation,
in situ visualization for simulations plays an important role be-
cause it could avoid costly data transfer for post-visualization,
and thus could save valuable supercomputer time in the exascale
era [1]. Furthermore, in the interactive simulation environments,
users may wish to steer the simulation process as a reaction to
the visualization results, or data analysis, thus the simultaneous
and interactive execution of simulation and visualization is re-
quired [2]. In such environments, two different kinds of commu-
nication patterns for simulation and visualization would co-exist
at the same time, so that the system for the interactive simulation
should have a network architecture which can efficiently deal with
these types of communication. In order to satisfy these require-
ments, we had proposed a high cost performance interconnection
network named Three Quads [3].

Three Quads was designed for the medium scale commodity
cluster expecting that a system on this scale would serve as a com-
puting resource for various interactive use cases. All the hard-
ware components of Three Quads are essentially small-scale and
off-the-shelf commodity switches, rather than an expensive large-
scale enterprise switch, to achieve superior cost performance. In
order to investigate this performance of Three Quads in real sys-
tem [4], we have focused on a matrix transpose application as an
demonstrative application and developed a parallel matrix trans-
pose algorithm for Three Quads. We then measured performance
on an actual system. As the results, we could confirm that Three
Quads shows appealing performance comparable to a large-scale
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expensive enterprise switch fabric.
In the following sections, the architecture of Three Quads and

the parallel matrix transpose algorithm are respectively described
in Sections 2 and 3. Our experiment is then described in detail in
Section 4.

2. Background

2.1 The Scube
The Scube is a 64 node PC-based cluster system equipped with

multi-core CPU and GPU as accelerators on each node. The
Scube is capable of simultaneously computing simulation and vi-
sualization tasks in parallel using both CPU and GPU. Through
a host PC as the client terminal of simulation servers, users can
steer simulations and observe the final result of the visualization
task.

Since both simulation and visualization tasks themselves are
expected to be executed in parallel using 64 nodes of Scube, the
interconnection network is mandatory to have the capability to
satisfy the bandwidth requirements for both tasks.

2.2 Three Quads
Three Quads is an interconnection network for medium scale

PC cluster for interactive scientific simulation. For such a sys-
tem, there exist several communication patterns, like 3D near-
neighbor communication and 3D reduction type communication,
which must be implemented efficiently. Needless to say, 3D near-
neighbor communication pattern is mandatory to directly map 3D
simulation space onto processor space. And 3D reduction type
communication pattern is required to deliver and gather informa-
tion to or from processors in both simulation and visualization
applications, like real-time 3D image composition [5].

In addition to such architectural requirements, we also severely
considered the hardware cost to implement the network. It was
because we thought this kind of interactive simulation system
would be owned by a relatively small organization such as a lab-
oratory in a university or a research institute, as their dedicated
resources, rather than a huge supercomputing center where the
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Fig. 1 Node assignment to switches in Three Quads (In case of 64 nodes).

batch and queue-based resource sharing is enforced. As a result,
in the practical development of Scube, we focused on the medium
scale commodity cluster system and limit the use of fairly ex-
pensive giant switch. Thus, Three Quads could be implemented
merely with inexpensive small-scale Gigabit Ethernet switches.
Nevertheless, Three Quads makes it possible to use of different
kinds of simulation and visualization by utilizing its redundant
subnetworks and appropriate scheduling of communications.

Figure 1 illustrates the topology of Three Quads. The up-left
subfigure shows one possible nodes arrangement in the case of
64 nodes where each node of whole cluster is logically arranged
along three axes, Z, Y, and X. According to its position along
each axis, each node could be labeled with a 3D coordinates
(Nz,Ny,Nx) (0 ≤ Nz,Ny,Nx ≤ 3, in 64 nodes case). The structure
of Three Quads is built by three groups of switches (SW-Z, SW-Y,
SW-X) that each consists of several independent small-scale off-
the-shelf Gigabit Ethernet switches (GbE SW, for short). Nodes
labeled with (i, ∗, ∗) are connected to SW-Zi, nodes labeled with
(∗, j, ∗) are connected to SW-Y j and nodes labeled with (∗, ∗, k)
are connected to SW-Xk.

In “Three Quads”, “Three” refers to there are three indepen-
dent subnetworks, and “Quads” refers to the fact that each cover-
age of any GbE switch is the nodes locating inside a rectangular
area of X-Y, Y-Z, or Z-X planes. Three Quads can be thought as a
2D extension of base-m 3-cube [6] *1. In this sense, Three Quads
can be represented as a base-m2 3-cube. Here we briefy summa-
rize the main features as follows: diameter of two, embed-ability
of many well-known topologies like 3D torus, fault tolerance and
path diversity [3].

3. Parallel Matrix Transpose Algorithm for
Three Quads

Matrix transposition is a fundamental and frequently used op-
eration in numerical computations whereas along with all-to-all
communications that incur severe network congestion and lower
the overall network throughputs, in many network topologies.
So we choose it as the representive application to evaluate the
practical performance of Three Quads. Here we propose a par-

*1 Through this extension, not only the 3D 7 neighbour communication but
also 3D 19 neighbour communication [2], [7] can be achieved in one hop.

Fig. 2 Matrix transpose on Three Quads.

allel matrix transpose algorithm as the demonstrative application
to show how matrix transposition could be solved efficiently on
Three Quads without any congestion.

Assume that the size of the whole matrix to be transposed on
64 nodes Scube is M by M, and each node will be assigned a N

by N submatrix (M = 8N). Figure 2 describes the main pro-
cess considering the two dimensional expansion of switches of
Z-subnetwork. And we also assume the submatrix Mi j of whole
matrix M is assigned to the node at the i-th row and j-th column
in Fig. 2. For simplicity of explanation, the matrix M can be rep-
resented using four submatrices A, B, C, and D which could be
further divided into sub-matrices ai j, bi j, ci j, di j (0 ≤ i, j ≤ 3) as
follows. Now the transpose of the whole matrix can be done in
two steps.

M =

⎛
⎜⎜⎜⎜⎝

A B

C D

⎞
⎟⎟⎟⎟⎠ . (1)

First Step computes At, Bt, Ct, Dt. It’s very obvious that any
communication to get transpose of each submatrices in this step
could be done within a single SW-Z switch. Therefore we can get
a new matrix M′ without any network congestion.

M′ =
⎛
⎜⎜⎜⎜⎝

At Bt

Ct Dt

⎞
⎟⎟⎟⎟⎠ . (2)

Second Step swaps Bt and Ct. In this step, there is nothing to
do for At and Dt. Just consider the 3D coordinates of two nodes
in swapping bt

i j and ct
i j, we can find that the two digits of the co-

ordinates of each communication pair’s nodes are totally same.
It means any communication in this step can be done in a single
switch belonged to SW-X or SW-Y. So there is still no congestion
in this step.

Further optimizations, like blocking and communication
pipelining, of this algorithm make it possible to fuse these two
steps into one step because the sub-networks used in these two
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steps are distinct and all the communications required in this al-
gorithm are congestion free.

4. Perfomance Evaluation Using Matrix
Transpose

4.1 Experimental Environment
4.1.1 Detailed Implementation of Parallel Matrix Transpose

Algorithm
In order to demonstrate the benefits of Three Quads topology,

we have implemented the two-steps matrix transpose algorithm
illustrated in the previous section. Whole 64-nodes of Scube clus-
ter are used in this experiment *2.

Each node will be in charge of partial submatrix and exchange
its data with its corresponding partner in each step of the algo-
rithms. Submatrix Mi j of size 8,192 by 8,192 is initially assigned
to Nodek where k = (i/4) × 32 + (i%4) × 4 + ( j/4) × 16 + ( j%4),
by default *3.

The workloads of each node may differ according to their sub-
matrix’s location in whole, for example, some may require both
step 1 and step 2, some may merely require one step, and nodes
on the diagonal line have no need to perform any inter-node com-
munication.

In order to demonstrate the possibility of network traffic
scheduling, a synchronization of all nodes is enforced after step 1.
Therefore, exactly one group of switches (SWX, SWY or SWZ)
is used at each of step 1 and step 2. It means that the two-hop
connectivity between any two nodes can be preserved without in-
terfering with network traffic in step 1 and step 2.

Furthermore, to extract the performance of the full duplex com-
munication between two nodes, we have improved the above pro-
gram. The improved program creates two threads in each node:
one for the socket server and the other for the socket client and
establishes two socket connections in parallel between two nodes.
In this program, for each socket, one directional communication
is made from server to client, thus full duplex communication
becomes possible by using two sockets simultaneously. In con-
trast, the original program performs bidirectional communication
over a single socket connection, thus it can extract only half du-
plex performance of the network. In the following discussion,
if we need to identify these two programs, the original and the
improved programs are referred to as HD program and FD pro-
gram, respectively. Here, we have to mention that the improved
program may apply a high message volume handling pressure to
achieve full duplex communication speed.
4.1.2 Hardware Environment

The Three Quads interconnection is built by three groups of
small-scale Gigabit Ethernet switches. In case of 64 nodes con-
figuration, 16 ports switch is sufficient as each of these switches.
However, in order to investigate the performance of Three Quads,
we prepare an enterprise switch [8] which can accommodate
whole 64 nodes in one switch. Logically, this enterprise switch

*2 Due to maintenance needs, some nodes and switches have slightly dif-
ferent configurations. But the differences are negligible in analyzing per-
formance behaviors.

*3 In this experiment, matirix size was set relatively large to demonstrate
the topological advantage.

behaves like a full crossbar, so that matrix transpose can be writ-
ten in one step based on direct swapping of submatrices between
corresponding two nodes pairs.

But physically, almost all enterprise switches are implemented
as two-layered switch where several switch modules are inter-
connected through an upper layer backbone switch or high-
bandwith buses *4. Due to this internal structure of the switch, a
performance bottleneck may appear if high throughput all-to-all
communication is required.

In this experiment, for simplicity, we replace the 4 SW-X
switches with one enterprise switch with 4 switch modules. When
we investigate the performance of Three Quads, we let each of 4
switch modules works as one of 4 SW-X switches of Three Quads
and logically prohibit communication across two different switch
modules. When we execute the programs designated for Three
Quads, we use Y subnetwork during step 1 and X subnetwork
during step 2.

4.2 Results and Discussions
Elapsed time of matrix transpose programs is measured on

Scube cluster using two network configurations: Three Quads
and Enterprise Switch. The results are summarized in Table 1.

In this table, we could confirm that Enterprise Switch always
outperforms Three Quads. This is because the estimated theoreti-
cal speed of the one step matrix transpose program for Enterprise
Switch is roughly twice as fast as the two steps program for Three
Quads, theoretically. However, we have to emphasize that the ob-
served differences are not 100% but rather they are 46% and 14%
for half duplex and full duplex environments, respectively.

In both network configurations, the FD program is faster than
the HD program and the observed speedup of FD program ver-
sus the HD program is respectively 1.63 times and 1.27 times for
Three Quads and Enterprise Switch. So, we could confirm that
the advantage of full duplex communication is better utilized in
Three Quads than in Enterprise Switch.

In total, cost effective Three Quads shows the reasonable and
appealing performance against the expensive Enterprise Switch.

For further analysis of these results, we made a detailed analy-
sis of the exection time on each node in the case of Three Quads
configurations. Figures 3 and 4 show the detailed breakdown of
the elapsed time on each node, for HD program and FD program,
respectively. In these figures, each bar represents the breakdown
of the execution time on each node and the bars are aligned hori-
zontally in increasing order of execution time.

The execution time on each node is composed of several com-
ponents: initialization, the local submatrix transposition, step 1
communication, waiting time, step 2 communication. Initializa-

Table 1 Elapsed time for matrix transpose [s].

Network Configuration Three Quads Enterprise Switch
Half Duplex 19.2 13.2
Full Duplex 11.8 10.4

*4 Network latency of these switches is negligible in this experiment and is
up to 6 us in Enterprised Switch [8]. Though the latency information of
the switches [9] used in Three Quads is not available, its successor [10]
has a latency of 3.4 us.
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Fig. 3 Execution time of each node on Three Quads with HD program.

Fig. 4 Execution time of each node on Three Quads with FD program.

tion includes local submatrix initialization and socket initializa-
tion for inter node communication required in both step 1 and
step 2.

In Fig. 3, distribution of the execution time of HD program is
shown. According to the workloads of each node, they can be
categorized in four groups: 1) Nodes without communication;
2) Nodes with communication only in step1; 3) Nodes with com-
munication only in step2; 4) Nodes with communication in both
step 1 and 2. The bars shown in this figure exactly correspond to
these groups. The execution time of the nodes in the same group
is almost equivalent in this figure and the time for group 3 and
group 4 is also the same since we enforce synchronization at the
end of step 1. We could also confirm that the time for step 1 and
step 2 is quite similar.

In Fig. 4, distribution of the execution time of HD program is
shown. Similar results are observed between two figures, except
that the communication time reduces to roughly 60% in FD pro-
gram. However, unlike the figure for the HD program, we were
able to find the evidence that there is some difference in commu-
nication time even in between the nodes belonging to the same
group. This phenomenon is taking place in both steps 1 and 2.
And we also find some differences in the communication time for
steps 1 and 2. At the slowest nodes, they are 5.7 s and 6.3 s for
step 1 and step 2. These differences seem to be incurred because
of the heavy traffic needed to achieve all-to-all full duplex com-
munication inside a switch.

On the other hand, in order to analyze the optimal performance
of Enterprise Switch, we also made some additional experiments.
At first, we reconsidered the initial node assignment of submatri-
ces to maximize the communication which can complete inside
a switch module of Enterprise Switch, though this assignment is
not natural but rather ad hoc. As a result of this reassignment,

*5 We have made some other experiments to confirm the saturation phe-
nomenon under full duplex communication.

the execution time slightly reduced to 11.2 s and 10.1 s for half
duplex and full duplex communication, respectively. Even in this
situation, Three Quads were 1.71 times and 1.17 times slower
than Enterprise Switch in half duplex and full duplex respectively,
which are still faster than the estimated theoretical speed.

However we could not obtain the benefit of full duplex com-
munication even in this assignment, due to the saturation phe-
nomenon inside a switch module and the existence of inter-
module communication *5. As long as the internal structure
of Enterprise Switch is not the pure crossbar, these disadvan-
tages cannot be alleviated, thus the relative performance of Three
Quads versus the Enterprise Switch becomes even better.

5. Conclusions

Results from the performance study of congestion free matrix
transpose algorithm allowed confirming that Three Quads shows
reasonable and appealing performance versus the expensive En-
terprise Switch.

Due to the high one-hop coverage of Three Quads, many use-
ful simulation programs can be implemented without any specific
routing functionality. So we did not address the issue of a routing
mechanism for Three Quads, so far. However, in order to utilize
many other interesting features of Three Quads, as a future work,
we would like to consider the FPGA-based hardware implemen-
tation of the routing functionality to achieve low-latency routing
without suffering loss in computation resources in any node.
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