
Journal of Information Processing Vol.26 813–824 (Dec. 2018)

[DOI: 10.2197/ipsjjip.26.813]

Recommended Paper

Taint-assisted IAT Reconstruction against
Position Obfuscation

Yuhei Kawakoya1,a) Makoto Iwamura1,b) JunMiyoshi1,c)

Received: April 18, 2018, Accepted: September 7, 2018

Abstract: Windows Application Programming Interface (API) is an important data source for analysts to effectively
understand the functions of malware. Due to this, malware authors are likely to hide the imported APIs in their mal-
ware by taking advantage of various obfuscation techniques. In this paper, we first build a formal model of the Import
Address Table (IAT) reconstruction procedure to keep our description independent of specific implementations and
then formally point out that the current IAT reconstruction is vulnerable to position obfuscation techniques, which
are anti-analysis techniques obfuscating the positions of loaded APIs or Dynamic Link Libraries (DLLs). Next, we
introduce an approach for API name resolution, which is an essential step in IAT reconstruction, on the basis of taint
analysis to defeat position obfuscation techniques. The key idea of our approach is that we first define taint tags, each
of which has a unique value for each API, apply the taint of the API to each of its instructions, track the movement
of the API instructions by propagating the tags, and then resolve API names from the propagated tags for IAT recon-
struction after acquiring a memory dump of the process under analysis. Finally, we experimentally demonstrate that
a system in which our proposed API name resolution has been implemented enables us to correctly identify imported
APIs even when malware authors apply various position obfuscation techniques to their malware.

Keywords: malware, IAT-reconstruction, Taint Analysis, Anti-analysis, Windows API

1. Introduction

Manual static analysis by an analyst, i.e., reading machine in-
structions one by one, is our last resort to fight against malware
because anti-analysis techniques implemented by recent malware
have been drastically sophisticated and can hinder dynamic anal-
ysis. However, a manual static analysis is time-consuming since
it requires analysts to read a vast number of machine instructions,
which are more difficult to read than high-level programming lan-
guages, such as C or Python. In this situation, Windows Ap-
plication Programming Interfaces (APIs), which are called from
some of the instructions, are a key data source to efficiently pro-
ceed static analysis since they are well-documented and human-
friendly.

Malware authors understand this situation well, so they apply
various types of obfuscation to their malware to hide APIs used in
them [28], [29]. One example of obfuscation is that they remove
the metadata of imported APIs or make it unreachable from the
header of their malware. More concretely, they remove Import
Name Tables (INTs), dereference both INTs and Import Address
Tables (IATs) from the Portable Executable (PE) header and then
replace them with their own loader that resolves API dependen-
cies at runtime. This removal or dereferences cause disassem-
blers, e.g., IDA [9], to fail to recognize imported APIs in disas-
sembled code. We call this process IAT obfuscation.

1 NTT Secure Platform Laboratories, Musashino, Tokyo 180–8585, Japan
a) kawakoya.yuhei@lab.ntt.co.jp
b) iwamura.makoto@lab.ntt.co.jp
c) miyoshi.jun@lab.ntt.co.jp

Background. When we (malware analysts) statically analyze
malware whose imported APIs are obfuscated, we try to restore
the removed and dereferenced metadata of imported APIs, i.e.,
INTs and IATs, before starting to read machine instructions. We
call this process IAT reconstruction, and its steps are as follows:
(1) Acquire a memory dump, (2) Identify IATs, (3) Resolve API
names, and (4) Restore the PE header.

In step (1), we execute malware in an environment under con-
trol and stop its execution when all APIs imported by the mal-
ware have been dynamically resolved by their own loader and
then generate a memory dump. In step (2), we first search the
executable memory regions of the malware’s process in the mem-
ory dump for the indirect call or jump instructions, such as call
[0x1001000] or jmp [0x1001000]. The memory area refer-
enced by an indirect instruction becomes a candidate for an IAT
entry. Then, we regard as an IAT the memory area where many
IAT entry candidates are gathered in a cluster like a table. In
step (3), we relate all addresses in the IATs with the API name
by matching them with those calculated from the base address
of a loaded Dynamic Link Library (DLL) and the offset of each
export API listed in the Export Address Table (EAT) in its PE
header and then rebuild the INT corresponding to an IAT. Many
analysis tools acquire the base address of a loaded DLL from the
Process Environment Block (PEB) or a Virtual Address Descrip-
tor (VAD), which are Windows-managed data structures. In step

The preliminary version of this paper was presented at Computer Secu-
rity Symposium 2017 (CSS2017) in October 2017, and recommended to
be submitted to Journal of Information Processing (JIP) by the program
chair of CSS2017.

c© 2018 Information Processing Society of Japan 813

Journal of Information Processing Vol.26 813–824 (Dec. 2018)

(4), we optionally restore the removed parts of the PE header and
fix the pointers to the IATs and INTs. As a result of IAT recon-
struction, disassemblers become able to correctly recognize the
imported APIs.

Problem. However, when malware authors apply position ob-
fuscation techniques to their malware, they could make IAT re-
construction, especially the API name resolution step, infeasible.
Position obfuscation is an anti-analysis technique to place API
code or a DLL on a memory area, which is different from the
memory area where the program loader originally places. They
are classified into two types on the basis of the target: API or
DLL. Stolen Code [29] and Copied API Obfuscation [28] are ex-
amples of position obfuscation techniques. These techniques are
used to obfuscate the positions of placed APIs by making copies
of them. DLL Unlinking [16] and Stealth Loader [12] are exam-
ples of DLL position obfuscation techniques. These techniques
obfuscate the locations of loaded DLLs by hiding data structures
containing their metadata.

We build a formal model of IAT reconstruction, which is in-
dependent of specific implementations and suitable for analyzing
problems in its design, which most existing IAT reconstruction
tools follow. Then, we analyze the formal model to find design
flaws. So far in our analysis, we have found that the current IAT
reconstruction is vulnerable to position obfuscation techniques,
and we believe this is because it is implicitly dependent on two
assumptions.
• The addresses in an IAT, i.e., the pointers to the codes of

each API, are directly computed from the offsets in the EAT
and the base address of the DLL.

• The loaded addresses of each DLL are correctly managed
by an Operating System (OS) and can be accessed through
specific data structures of the OS.

Position obfuscation techniques attack these two assumptions by
intentionally creating a situation in which either or both are not
satisfied. Since this causes each address in an IAT to not match
any calculated addresses, we fail to resolve the API names from
the addresses. As such IAT reconstruction fails. Since posi-
tion obfuscation techniques can directly affect API identification,
which is a fundamental component in most API-based security
products and research, malware may hide specific behaviors, es-
pecially the most harmful ones, from those security mechanisms
by using position obfuscation techniques. This would be an ad-
vantage for attackers to potentially evade security in many places.

Our Approach. To overcome position obfuscation techniques,
we introduce a new API name resolution approach based on taint
analysis. The key idea is that we first define taint tags, each of
which has a unique value for each API. We then apply the taint
of the API to each of its instructions. Next, we run a malware
under analysis in an isolated environment while performing taint
analysis using the tags. In particular, we propagate them by fol-
lowing pre-defined rules when the malware under analysis moves
or makes a copy of API code. Then, we acquire the dump files
of taint tags as well as that of (virtual) physical memory when
dynamic analysis has completed. Finally, we perform IAT recon-
struction on the basis of the dump files. In the IAT reconstruction,
we resolve the API names of each address in an IAT from the taint

tags of the code pointed to from each address in the IAT.
This approach has two advantages for countering position ob-

fuscation techniques. First, we can conduct fine-grained tracking
for API code and identify it correctly even when it is wholly or
partly placed out of the memory range where a DLL has been
mapped. This is because we can track the movement of the in-
structions of each API at instruction-level granularity with taint
analysis. Second, we can identify the positions of each DLL or
API without depending on specific data structures that the OS
manages. This is because we manage them with the tags used
for tainting API code and propagated independently from OS’s
behaviors. These advantages allow our API name resolution to
be independent of the two assumptions and not be affected by
position obfuscation techniques.

We have implemented this approach in a system, which is
composed of preprocessing, dynamic analysis, and dump anal-
ysis phases. In the preprocessing phase, we correctly identify
the position of each target DLL in a disk image by using a disk
forensics tool, The Sleuth Kit (TSK) [3], and then set taint tags
on them. For dynamic analysis, we use API Chaser [11], which
is a sandbox with taint analysis capability. We have extended
API Chaser to generate dump files at any arbitrary time during
the execution of the malware. For dump analysis, we have ex-
tended The Volatility Framework (Volatility) [16] with capabili-
ties of reading taint tags and disk forensics. We call this extended
Volatility TaintVolatility. We have developed a plugin running on
TaintVolatility on the basis of impscan [16]. We call this plugin
tf impscan. Using tf impscan with TaintVolatility, we identify
the IATs and resolve the API names from taint tags for IAT re-
construction. Finally, for an output of this system, we generate
an IDC (IDA script) for adding resolved API names to the disas-
sembled code of IDA.

Experiments. To assess the effectiveness of our system, we
have conducted three types of experiments. The first one is for
evaluating whether our approach is more resistant to position ob-
fuscation techniques than existing IAT reconstruction tools. For
that purpose, we prepared several Windows executables and ob-
fuscated their APIs by using the 4 position obfuscation techniques
mentioned above. Then, we analyzed them using our system and
3 other IAT reconstruction tools: impscan, impscan++ *1, and
Scylla [18]. The results show that only our system could cor-
rectly identify all imported APIs, whereas the others could not
because of position obfuscation techniques. The second one is
for showing the effects of disk forensics integration. For that pur-
pose, we analyzed several Windows executables with differently
configured TaintVolatility, i.e., with or without disk forensics in-
tegration. The results of this experiment show that the disk foren-
sics capability of TaintVolatility works correctly and contributes
to generating better results for IAT reconstruction. The third one
is for measuring the performance degradation of TaintVolatility,
compared to impscan. The results of this experiment show the
degradations are within practical range and do not impose seri-
ous impacts on the effectiveness of TaintVolatility.

Contribution. We make the contributions of this paper to be

*1 A tool we developed for this experiment.

c© 2018 Information Processing Society of Japan 814

Journal of Information Processing Vol.26 813–824 (Dec. 2018)

as follows.
• We formally model the IAT reconstruction process and

clearly illustrate that the process is vulnerable to position
obfuscation techniques because it is implicitly dependent on
the two above assumptions. We also experimentally illus-
trate that existing major IAT reconstruction tools in which
the process is implemented are ineffective against position
obfuscation techniques.

• We introduce an API name resolution approach based on
taint analysis, which is generic and effective against posi-
tion obfuscation techniques. Then, we also describe an im-
plementation of a system that uses this approach for IAT re-
construction. This implementation contains TaintVolatility,
which is the first integration of Volatility with TSK, which
can be used for offline memory dump analysis without being
pre-configured.

• We demonstrate the effectiveness of our API name resolu-
tion through the experiments and show it is independent of
the two assumptions and robust against position obfuscation
techniques.

2. Position Obfuscation

In this section, we first define a formal model for IAT recon-
struction and we use the abstract formal model to keep our de-
scription independent of implementation. Next, we explain po-
sition obfuscation techniques, which are anti-analysis techniques
for hindering IAT reconstruction. Finally, we analyze a problem
of the existing IAT reconstruction procedure using the defined
model.

2.1 Abstract Model of IAT Reconstruction
First, we model the memory dump of a program and then de-

fine both procedures of IAT obfuscation and IAT reconstruction
with the model. For preparation, we define several notations and
functions. We denote by A the set of addresses of the data storage
for a program such as a memory and disk. In this model, we do
not distinguish a memory from disk as a data storage. We can ac-
cess the data stored at the specific position of the storage with the
address a ∈ A. We also denote by P the set of programs in a pro-
cess memory dump. In addition, we denote by Pexe ⊆ P the set of
executable programs and Pdll ⊆ P the set of library programs in a
memory dump. For notation, let Fp denote the set of functions in
a program p ∈ P, expFp ⊆ Fp the set of functions exported from
a program p, and impFp,q ⊆ Fq the set of functions imported by
p ∈ P from q ∈ Pdll, q � p. We let S denote the set of all possi-
ble symbols of the functions of all programs in a memory dump.
We denote by δ : Fp → A the function to return the address of
a function. We denote by ψ : P → A the function to return the
base address of a program. We denote by ϕ : A→ S the function
to resolve the symbol of an address if the address has the symbol.
Otherwise, the function returns ∅.

The memory dump of a process comes from the execution of
multiple program components including the main program and
the libraries it depends on. To model this, we define a program
p ∈ P in the memory dump as a tuple (Ip, ETp, IDp, Lp) where
Ip is the ordered set of instructions in the code regions of a pro-

input : Ip, Lp

output: Π

1 {iatq : q ∈ Lp} ← IdentifyIAT(Ip);

2 for iat ∈ iatq, q ∈ Lp do
// iat is the ordered set of virtual addresses.

3 imp table← ∅;
4 for va ∈ iat do
5 sym← ResolveName(va, LP);

// We define ’⇐’ as ’adjoin’
6 imp table⇐ (va, sym);
7 Π← Π ∪ {imp table};
8 return Π

Algorithm 1: IAT Reconstruction

gram p ∈ P, ETp is the ordered set of the metadata of functions
exported from p ∈ P, IDp is the set of ITp,q where ITp,q is the
ordered set of the metadata of functions imported by p ∈ P from
q ∈ Pdll, and Lp is the set of library programs loaded by p ∈ P:
Lp = {l : l ∈ Pdll}. For ETp, the metadata of an exported function
is defined as (rva, sym) where rva is the relative virtual address
of a function, i.e., the offset from the base address of a loaded
library program and calculated from δ(f) − ψ(p), f ∈ expFp;sym

is the symbol of the function and is acquired from ϕ(δ(f)). IDp

is the set of ITp,q∈Lp and each ITp,q is the ordered set of a tuple
(va, sym) where va is the virtual address of a function and is calcu-
lated from δ(f), f ∈ impFp,q∈Lp ;sym is the symbol of the function
and is acquired from ϕ(va).

IAT Obfuscation. When malware authors apply IAT obfusca-
tion for their malware, the IATs and INTs of the malware become
unreachable from its PE header and unavailable for analysis. To
model this action, we define IAT obfuscation as a function to drop
IDp from the memory dump of p. That is, when we define the
memory dump of a program whose API is obfuscated as p′, p′ is
modeled as a tuple (Ip, ETp′ , Lp′), Lp ⊂ Lp′ . To keep the expla-
nation simple, we do not consider any obfuscation for the code
regions. In addition, ETp′ is ∅ in the case of p′ ∈ Pexe. That is,
only Ip and Lp′ remain and are available for later analysis.

IAT Reconstruction. Algorithm 1 gives an overview for IAT
reconstruction. IAT reconstruction is a process of identifying
IATs, rebuilding the removed INTs by resolving API names, and
optionally restoring the PE header for INTs and IATs. As a re-
sult of this, it allows disassemblers to recognize an imported API
properly. Algorithm 1 receives Ip and Lp and then outputs Π,
which is the set of imp table. Since each imp table is the same
as ITp,q, the set of imp table, i.e., Π, is the same as IDp. The
algorithm first identifies IATs with IdentifyIAT (line 1), which
we will explain in detail in Algorithm 2. Then, the algorithm
enumerates all entries of each identified IAT and then resolves
the API name of each entry with ResolveName (line 5). The re-
solved API name sym is appended to imp table as a tuple with
va. At line 7, a imp table is appended to Π.

Algorithm 2 gives an algorithm for IAT identification. For no-
tation, let i[TA] *2 denote the address referenced by the instruc-
tion i, i.e., i[TA] ∈ A, when i is an indirect call or jump and let
∗i[TA] denote the value stored in the memory at the address i[TA].

*2 TA means Target Address of indirect call or jump instructions.

c© 2018 Information Processing Society of Japan 815

Journal of Information Processing Vol.26 813–824 (Dec. 2018)

1 Function IdentifyIAT(Ip)
Data: Ip

Result: Π

2 for i ∈ Ip do
// IS Aindirect is a set of indirect call

instructions.

3 if i ∈ IS Aindirect then
4 candidate⇐ (i[TA], ∗i[TA]);
5 sort(candidate);

6 Π← ∅;
7 iat← ∅;
8 for j← 0 do
9 iat⇐ candidate [j][1] ;

10 if candidate[j][0] != candidate[j + 1][0] − 4 then
11 Π← Π ∪ {iat};
12 iat ← ∅;
13 j← j + 1;
14 return Π;

Algorithm 2: IAT Identification

1 Function ResolveName (va, Lp)
Data: va, Lp

Result: symbol

2 for l ∈ Lp do
3 for (rva, sym) ∈ ETl do

// Here is an attack vector

4 if va == rva + ψ(l) then
5 return sym ;
6 return ∅;

Algorithm 3: Name Resolution

IdentifyIAT receives a set of instructions Ip, and then for each
instruction, it checks if the instruction is an indirect call or jump
(line 4). If it is, i[TA] and ∗i[TA] are included in candidate *3

as a candidate for an IAT entry. Then, candidate is sorted on
the basis of the address of each entry (line 5). After that, for each
entry in candidate, the algorithm checks if the addresses of the
two sequential entries in candidate are 4-byte aligned (line 11).
If so, the two entries belong to the same IAT; otherwise, they be-
long to different IATs.

Algorithm 3 shows the overview for API name resolution. For
each library l, it first enumerates the elements of ETl, which is a
set of (rva, sym) (line 3). The algorithm also calculates the base
address of l with ψ(l), adds rva to the base address to calculate
the virtual address of a function exported by l, and then compares
the virtual address with va, which is an entry in an identified IAT
(line 4). If they match, there is the function at va. Thus, the algo-
rithm returns the sym as the name of the function placed at va.

2.2 API Position Obfuscation
API position obfuscation is a technique for calling an API that

is copied to an allocated buffer from its original one. This in-
volves making a copy of all or a part of the code of an API
and then transferring the execution to the API via the copied in-
structions. This technique allows malware to avoid the hooks
for monitoring, which are often set on the first instruction of an
API. There are two types of API position obfuscation techniques:
Stolen Code [29] and Copied API Obfuscation [28].

*3 candidate is the ordered set.

Fig. 1 Stolen Code.

Fig. 2 Copied API obfuscation.

Stolen Code invokes an API via a few instructions copied from
the head of an API. In the example in Fig. 1, mov edi, edi
and push ebp are copied from 0x7c801000 to 0x0401000, and
jmp is put after them. This jmp transfers the execution to the in-
struction right after the copied instructions, i.e., mov ebp, esp
at 0x7c801003. Since many analysis tools set hooks on the head
of an API for monitoring, malware can avoid these hooks by us-
ing Stolen Code.

Copied API Obfuscation is an evolved version of Stolen Code.
Whereas Stolen Code makes a copy of a few instructions from
the API head, Copied API Obfuscation makes a copy of all in-
structions of an API. It invokes an API by executing the copied
instructions without jumping to the instructions placed at the orig-
inal position. In the example in Fig. 2, all instructions from mov
edi, edi at 0x7c801000 to ret are copied to the buffer at
0x0401000 and then executed.

2.3 DLL Position Obfuscation
DLL position obfuscation is a technique to hide the existence

of loaded DLLs by hiding their metadata. Since the base ad-
dress of a loaded DLL is often used for calculating the position
of an API, if it is hidden, the calculation results in a wrong ad-
dress. There are two types of DLL position obfuscation tech-
niques: DLL Unlinking [16] and Stealth Loader [12].

DLL Unlinking unlinks the entry of a specific DLL from the
linked lists in PEB, which are used for managing loaded DLLs.
Figure 3 shows a case when the entry of advapi32.dll is unlinked
from InLoadOrderModuleList. Due to this, even if an analysis
tool searches the list for the entry of advapi32.dll, it fails to find it
since the entry is unreachable from the list. As we already men-
tioned, if the loaded address of a DLL is not found, API name
resolution fails.

Stealth Loader [12] is a program loader totally independent of
the Windows standard program loader and is embedded into an
executable. When the executable starts to run, Stealth Loader

c© 2018 Information Processing Society of Japan 816

Journal of Information Processing Vol.26 813–824 (Dec. 2018)

Fig. 3 DLL Unlinking.

Fig. 4 Stealth Loader.

loads dependent Windows system DLLs, such as kernel32.dll or
ntdll.dll, by itself without leaving any footprints of loaded DLLs.
To do that, it avoids using map-related functions for allocating
code on memory or makes dependencies on only stealth-loaded
DLLs, as shown in Fig. 4. Since Stealth Loader does not leave
any footprints of loaded DLLs, a system DLL loaded with Stealth
Loader is not recognized as ‘loaded’ by analysis tools or even
Windows OS. In addition, the APIs exported from the DLL
loaded with Stealth Loader are callable with the same interface
as the original ones. Nevertheless, these API calls are not recog-
nized as ‘API call’ and look like unknown external function calls
since there is no evidence to identify the function as an API.

2.4 Problem Analysis
We analyze design problems in the current IAT reconstruction

procedure, which is modeled in Section 2.1 and on which many
IAT reconstruction tools depend. So far in our analysis of the al-
gorithms, we have found that Algorithm 3 contains an attack vec-
tor at line 4, which malware can exploit to evade IAT reconstruc-
tion. Position obfuscation techniques are designed to attack this
part. More concretely, they attack API name resolution, which is
an essential part of IAT reconstruction. In other words, malware
authors intentionally create a situation where va == rva + ψ(l)
(line 4 in Algorithm 3) is unsatisfiable to make API name resolu-
tion fail.

When a malware uses API position obfuscation techniques, it
makes a copy of the instructions of a certain API. To define
this action in our model, we denote I f as the ordered set of in-
structions i of a function f ∈ Fp: I f = (i0, i1, ..., in). When a
malware, for example, performs Stolen Code, it copies the first-
m, (0 < m < n) instructions to a buffer. We denote the copied in-
structions as I′f = (i′0, i

′
1, ..., i

′
m), and we also denote by μ : I f → A

the function to return the address of an instruction. Then the mal-
ware updates the entry in an IAT for f with μ(i′0). Due to μ(i0)
! = μ(i′0), va, which is the updated entry in the IAT and passed to
ResolveName as an argument, is not matched with any address
calculated from ψ(l) and rva. As a result, va == rva + ψ(l) is not
satisfied through any ETl entries, and then ResolveName returns
∅. DLL position obfuscation techniques also create a situation
where va == rva + ψ(l) is not satisfied by making ψ(l) infeasible,
which means the base address of a loaded DLL l is unknown. As
a result, we fail to calculate the correct addresses where each API
of hidden DLLs is placed and then ResolveName returns ∅.

In our analysis so far, we have found that existing API name
resolutions implicitly depend on two assumptions.
• The addresses in an IAT, i.e., the pointers to the code of each

API, are directly computed from the entries in the EAT of a
DLL and the base address of the DLL.

• The loaded addresses of each DLL are correctly managed by
an OS and can be accessed through specific data structures
of the OS.

API position obfuscation techniques attack the first assumption,
whereas DLL ones attack the second. Both intend to make
va == rva+ψ(l) unsatisfied so that IAT reconstruction fails. Since
API identification is a fundamental component of API-based se-
curity mechanisms, such as API monitoring, API behavior-based
malware detections or IAT reconstructions, all of these secu-
rity mechanisms could be affected by position obfuscation tech-
niques. That means, if a malware can intentionally create situa-
tions in which either of these two assumptions does not hold, it
can evade security mechanisms. This design flaw possibly be-
comes an attack vector for malware to evade security products
and technologies with the simple technique and thus conduct ma-
licious activities without being detected.

3. Our Approach

In this section, we introduce a taint-based API name resolu-
tion approach, which is independent of the two assumptions men-
tioned in Section 2. First, we define the goal and scope of this pa-
per. Second, we introduce a taint-based API name resolution. Fi-
nally, we explain a system for IAT reconstruction using our taint-
based API name resolution.

3.1 Goal and Scope
Our goal in this paper is to present the first generic approach

against position obfuscation techniques and to ensure a sys-
tem in which the approach implemented works well in practice.
‘Generic’ in this context means an approach commonly applica-
ble for both API and DLL position obfuscation techniques with-
out heuristics or adjustments depending on targets.

The scope of this paper is to solve the problem of API name
resolution, i.e., the existing API name resolution is vulnerable
to position obfuscation techniques. In other words, we focus on
an approach for realizing an API name resolution that is inde-
pendent of the two assumptions and robust enough against all
position obfuscation techniques mentioned in Section 2. Other
anti-analysis techniques targeting the other steps in the IAT re-
construction, such as memory dump acquisition or IAT identifi-

c© 2018 Information Processing Society of Japan 817

Journal of Information Processing Vol.26 813–824 (Dec. 2018)

cation, are beyond the scope of this paper.

3.2 Taint-based API Name Resolution
We introduce a new API name resolution approach for IAT re-

construction, taint-based API name resolution, which is generic
and resistant to position obfuscation techniques. Our approach
resolves the API name of a pointer stored in an IAT by taking
advantage of taint tags that are used to taint the API code before
starting the analysis and propagated during the analysis. In par-
ticular, we first identify the positions of each API code in a disk
and then taint their codes with the unique taint tags. Next, we
begin to run the malware. When the malware under analysis op-
erates the codes of the APIs on which taint tags have been set, we
track the movement of the code by propagating the taint tags. Af-
ter running the malware for a certain amount of time, we generate
a memory dump as well as dumps of taint tags and then analyze
them for IAT reconstruction. In the API name resolution phase
in IAT reconstruction, we resolve the API names from taint tags
that have a unique value to distinguish one API from the others.

We define our approach with the abstract model. To extend the
model defined in Section 2.1 with taint analysis capability, we in-
troduce two more notations and three more functions. T denotes
the set of defined tag f where tag f is the unique identifier for a
function f : T = {tag f : f ∈ ⋃ expFl, l ∈ Lp}. SS denotes the set
of tags used for tainting: SS = {sa : sa ∈ T, a ∈ A} where sa is the
tag which is set on the address a ∈ A. We denote by σ : T → S

the function to map tag ∈ T to the symbol of the corresponding
function f of tag f , ξ : Fp → T the function to map f to tag, and
γ : P(SS) × A → T the function to return the tag related to the
address a ∈ A where P(SS) is the power set of SS, which is all
possible subsets of SS.

Algorithm 4 gives an overview of the initial taint setting. It
sets the corresponding taint tag to all the instructions of each API.
The corresponding tag is acquired through the ξ function. After
the tags are set, they are stored in SS.

Data:
⋃

expFl∈Lp

Result: SS

1 SS← ∅;
2 for f ∈⋃ expFl∈Lp do
3 for i ∈ I f do
4 sμ(i) ← ξ (f);

5 SS← SS ∪ {sμ(i)};
6 return SS;

Algorithm 4: Preprocessing: Initial Tainting

Algorithm 5 gives an overview of taint-based API name reso-
lution. SS′ is the shadow storage after dynamic analysis has been
done. That is, some taint tags were propagated and stored in the
different addresses from SS. If the passed address va, which is an
entry in an IAT, has the taint tag, it acquires the symbol of the API
related to the tag using σ and then returns it. Otherwise, since the
address does not have any tag, it simply returns ∅. The difference
from Algorithm 3 is that Algorithm 5 resolves the API name of
va on the basis of tag, whereas Algorithm 3 relies on the calcu-
lation with va == rva + ψ, which is the attack vector targeted by
position obfuscation techniques. By avoiding the attack vector in

1 Function TaintResolveName (va, SS′)
Data: va, SS′

Result: symbol

2 tag← γ(va, SS′);
3 if tag � ∅ then
4 return σ(tag);

5 else
6 return ∅;

Algorithm 5: Taint-based Name Resolution

our algorithm, we can resolve the API name without depending
on the calculation.

A taint tag is a piece of data structure related to target data and
is used in taint analysis for tracking the flow of the data in the
host. Taint analysis itself is not new and has been used in much
security research, such as for detecting zero-day attacks [20] or
identifying sensitive information leaking [7]. A new aspect in this
paper is that we use taint analysis for assisting static analysis. In
other words, we use taint analysis for bridging the semantic gap
between dynamic and static analysis. In particular, we relate a
taint-tag with the symbol of code, manage the taint-tag in the vir-
tual machine monitor (VMM) layer independently from an OS
during dynamic analysis, and access the symbol of the code from
the tag for static analysis. IAT reconstruction is an application
of this approach. We believe that this approach is reasonable for
malware analysis because the symbols that a tag possesses are not
affected or modified by malware, unlike those of OS-managed
data structures, at instruction-level granularity. That means that
even when a malware intrudes the OS layer and successfully gains
the root privilege, the malware cannot access and modify the taint
tags because they are managed in the VMM layer and the VMM
is isolated from the malware running environment.

3.3 Taint-assisted IAT Reconstruction System
We have developed a system for IAT reconstruction whose API

name resolution is realized with our taint-based approach. Fig-
ure 5 shows the overview of the system and its workflow. The
workflow is mainly composed of three phases: preprocessing, dy-
namic analysis, and dump analysis. We explain the details of each
phase and their implementations below.
3.3.1 Preprocessing

In the preprocessing phase, we first define taint tags, each of
which has a unique value for each API and taint the instructions
of each target API in a disk with the tag. For an input for this
phase, we receive a disk image file on which a guest OS has been
installed. For an output, we generate a configuration file for set-
ting up a shadow disk, which is a data structure for storing taint
tags related to data on a disk. To do that, we first parse the re-
ceived disk image by using a forensics tool, analyze the file sys-
tem installed on it, and then identify the positions of each target
API in a disk. After that, we set a unique taint tag on each API.
Specifically, we store the taint tag to the corresponding entry in a
shadow disk.

This design (i.e., tainting data on a disk, not memory, before
starting an analysis) has two advantages. First, we do not need
to care about when the target code in a DLL is loaded onto a

c© 2018 Information Processing Society of Japan 818

Journal of Information Processing Vol.26 813–824 (Dec. 2018)

Fig. 5 Workflow of Our System.

physical memory. It is not easy to correctly capture this timing
because of on-demand loading. The timing depends on the be-
haviors of a running process on the OS and is difficult to predict
correctly. In contrast, our approach allows us to focus on only
taint propagation after setting taint tags. This design could make
the implementation simpler. Second, we can comprehensively set
taint tags on targets. It is also not easy to correctly identify all lo-
cations of specific data originally contained in a file after an OS
has been booted because an OS may copy or cache the data in
a temporal buffer or its original data structures on the memory.
However, before booting an OS, we can easily identify the loca-
tion of a target file on a disk, and we can say that the data has not
been copied to other locations by an OS.
3.3.1.1 Implementation

We use The Sleuth Kit (TSK) to identify the positions of tar-
get DLLs in a disk image in which a guest OS has been installed.
TSK is a disk forensics tool for parsing a disk image and ana-
lyzing various file systems. Using TSK, we acquire the sector
number, offset, and size of a target DLL and then extract the DLL
file. After that, we acquire the Relative Virtual Address (RVA) of
each target API from the PE header of the extracted DLL and then
calculate the position of each target API in a disk by adding the
RVA to the base address of DLL. Finally, we set the taint tags on
each API code. This process has to be completed before starting
the dynamic analysis.

We define 22 Windows system DLLs and 7,222 APIs exported
from the 22 DLLs as our target for our system. These 22 DLLs in-
clude kernel32.dll, ntdll.dll, advapi32.dll and the ones that export
APIs often used in a malware. The target DLLs are selected by
referencing IDA scope [19], which is an open-sourced IDA script
for accelerating static analysis. Using these 22 DLLs, we have
covered most APIs defined in IDA scope as remarkable ones,
which means we should pay attention to them in static analysis.
Thus, we consider that the current numbers of target DLLs and
APIs are enough for our purpose. If we need to add support DLLs
in the future, we can easily increase the number for a small cost,
i.e., simply add one line to a source code.
3.3.2 Dynamic Analysis

In the dynamic analysis phase, we boot an analysis environ-
ment as a guest OS from a disk image, run the malware on the
booted environment, and perform taint analysis. For an input, we

receive the configuration file for setting up a shadow disk. For an
output, we generate a set of dumps after executing the malware
for a certain amount of time. These dumps contain the (virtual)
physical memory, the shadow memory, the shadow disk, and the
disk image.
3.3.2.1 Implementation

For a dynamic analysis engine, we use API Chaser [11], which
is an API monitoring system with taint analysis capability. API
Chaser is built on QEMU [2] (Argos [20]) and performs API mon-
itoring and taint analysis in the VMM layer. API Chaser leverages
taint analysis for API monitoring. In particular, there are two ap-
plications of taint analysis for precise API monitoring. The first
is code tainting, which is a technique to identify the executions of
target code on the basis of taint tags set on the code. The second is
to capture the events of API call invocations on the basis of taint
tags. That is, we set taint tags on each API code before starting
analyses and then recognize as an API call the execution transfer
from an instruction that has the taint tags expressing a target code
to one that has the taint tags indicating API code.

We have extended API Chaser to enable it to generate dump
files on various types of events that have happened in a guest OS.
These events include API calls, process creation or termination,
module load or unload, or system shutdown. API Chaser provides
call-back mechanisms that invoke registered handlers whenever
specific hardware or software events happen. Therefore, to gen-
erate dump files at specific timings, we have simply developed a
small piece of code for calling the function for generating dump
files and register the code to appropriate call-backs as a handler.
3.3.3 Dump Analysis

In the dump analysis phase, we conduct IAT reconstruction as
a preparation for static analysis, following Algorithm 6. For IAT
identification, we first manually select a target process and then
identify the positions of the IATs in the virtual memory space of
the process using the IdentifyIAT function, in which our ap-
proach explained in Algorithm 2 is implemented. For API name
resolution, we resolve the API names of each entry in the identi-
fied IATs using TaintResolveName, which we explained in Sec-
tion 3.2. This function allows us to resolve API names without
being evaded by position obfuscation techniques, as we have al-
ready explained.

c© 2018 Information Processing Society of Japan 819

Journal of Information Processing Vol.26 813–824 (Dec. 2018)

input : Ip, S S ′

output: Π

1 {iatq : q ∈ Lp} ← IdentifyIAT(Ip);

2 for iat ∈ iatq, q ∈ Lp do
3 imp table← ∅;
4 for va ∈ iat do
5 sym← TaintResolveName(va, S S ′);
6 imp table⇐ (va, sym);
7 Π← Π ∪ {imp table};
8 return Π

Algorithm 6: Taint-assisted IAT Reconstruction

3.3.3.1 Implementation
We have developed TaintVolatility and tf impscan for dump

analysis. TaintVolatility is an extended version of The Volatil-
ity Framework (Volatility) with two new features: a capability
for reading dumps of taint tags and disk forensics integration.
For the capability of taint tag analysis, we have added options
to parse a shadow memory dump and then extract necessary in-
formation for API name resolution from taint tags. We have im-
plemented this capability as an extension of the Address Space
module of Volatility. This design comes from the consideration
that when we provide this capability as a function of a framework,
we can allow any plugin to use this capability. Specifically, we
provide the taint resolver(vaddr) interface for plugins, and
this function returns the information related to the taint tags set
on the virtual address specified with vaddr.

In addition, we have extended Volatility to integrate with TSK,
i.e., disk forensics capability. This capability is essential for our
system because we have often faced cases in which necessary
data has not been loaded to physical memory due to on-demand
loading when we generate a memory dump. To solve this, when
we parse a memory dump with TaintVolatility and find a mem-
ory page that is not mapped on memory, we first find the VAD(s)
related to the page and then extract the path of the file contain-
ing the memory page from the found VAD(s). After that, we use
TSK to parse the disk image and then obtain the location of the
page in the disk image. Then, we acquire the taint tags related to
the page in a disk from a shadow disk dump. We use pytsk [21],
which is a python wrapper for TSK to invoke TSK functions from
TaintVolatility.

tf impscan is a plugin designed to run on TaintVolatility and
perform IAT reconstruction by using the taint resolver inter-
face. tf impscan is built on impscan, which is a plugin for IAT
reconstruction. An extension of tf impscan over impscan is API
name resolution. tf impscan resolves the API name using the
taint resolver of TaintVolatility, whereas impscan does this
by reading the metadata of loaded DLLs from the PEB. For the
other steps of the IAT reconstruction procedure, i.e., IAT identi-
fication and PE header restoration, we reuse the code of impscan
with small changes.

4. Experiments

In this section, we describe the experiments we conducted to
evaluate the effectiveness of our system. Specifically, we con-
ducted three types of experiments. The first is for showing

the resistant capability against position obfuscation techniques.
The second is for showing the effectiveness of the integration of
TaintVolatility with a disk forensics tool. The third is for mea-
suring performance degradation of TaintVolatility, compared to
vanilla impscan, and then showing the degradation is within ac-
ceptable range.

4.1 Position Obfuscation Resistance
The goal of this experiment is to determine whether our system

is effective enough to resolve APIs obfuscated with the known
position obfuscation techniques better than current common IAT
reconstruction tools.
4.1.1 Procedure

We prepared several Windows executables whose imported
APIs were already known. Then, we obfuscated the APIs im-
ported by these executables using position obfuscation techniques
which we explained in Section 2 and Code Insertion, which is a
technique for obfuscating control flow between API call sites to
corresponding API codes. We used these obfuscated executables
as a dataset for evaluating our system. For simplicity, we did not
apply any obfuscation to the code of these executables. In this
experiment, we focus on only imported APIs exported from our
target DLLs. Moreover, we set out of scope the cases in which
an ordinal number, instead of an address, is stored in an entry in
IATs.

For comparison, we prepared 3 other IAT reconstruction tools,
such as impscan, impscan++, and Scylla. impscan and imp-
scan++ are plugins for Volatility. impscan++ is our developed
plugin, which resolves API names using VADs, whereas the orig-
inal impscan does this using PEB. Scylla is an open-sourced IAT
reconstruction tool popular among malware analysts.
4.1.2 Results

Table 1 shows the results of this experiment. Our system suc-
cessfully defeated all obfuscation techniques except for Code In-
sertion, whereas the others were evaded with some of them. This
is because these tools are designed to resolve API names by com-
paring the addresses in an IAT with ones calculated from the base
address of a loaded DLL and RVA acquired from the EAT of the
loaded DLL. To resolve the API name, these addresses need to
exactly match. However, due to Stolen Code and Copied API
Obfuscation, the addresses filled in the IATs point to buffers pre-
pared for the stolen or copied code, not the positions where APIs
were originally placed by a program loader. Thus, they did not
match the calculated ones. As a result of this, the comparison
tools failed to resolve API names. The reason impscan++ can
defeat DLL Unlinking is that it acquires the base addresses of
loaded DLLs from VADs, whereas DLL Unlinking hides them
from the PEB.

Regarding Code Insertion, all tools including tf impscan failed
to identify all imported APIs. The reason of this failure in
tf impscan will be discussed in Section 6.

4.2 Disk Forensics Integration
The goal of this experiment is to measure how much the in-

tegration of disk forensics capability with TaintVolatility con-
tributes to a better result of IAT reconstruction.

c© 2018 Information Processing Society of Japan 820

Journal of Information Processing Vol.26 813–824 (Dec. 2018)

Table 1 Results of resistant capability experiment.

- Stolen Code Copied API DLL Unlinking Stealth Loader Code Insertion

tf impscan -
impscan - - - - -
impscan++ - - - -
Scylla * - - - -

means that the tool successfully identified all APIs without being affected by position obfuscation
techniques. On the other hand, - means that it failed because it was affected by them. * means
when we gave the address of the original entry point, it could successfully identify imported APIs.

Table 2 Results of disk forensics integration experiment.

- calc notepad taskmgr services iexplore lsass cmd

of Imported APIs 380 242 363 300 143 91 233
of Target APIs 215 173 275 168 95 52 161
of Resolved APIs w/o DF 193 144 249 164 91 50 107
of Resolved APIs w/ DF 215(22) 173(29) 275(26) 168(4) 95(4) 52(2) 161(54)

of Imported APIs is the number of APIs imported by each executable. # of Target APIs is the number of
APIs exported from our target DLLs, which are defined in Section 3.3. # of Resolved APIs w/o DF and # of
Resolved APIs w/ DF are APIs that our system could resolve without and with disk forensics capability. The
numbers in parentheses are the APIs resolved from the shadow disk. DF means Disk Forensics capability.

Table 3 Results of performance experiment.

- calc notepad taskmgr services iexplore lsass cmd

impscan 11.6 8.5 10.4 8.5 13.8 8.3 7.5
tf impscan w/o DF 14.4 11.8 13.3 11.2 16.3 11.0 10.1
tf impscan w/ DF 19.9 15.9 20.0 15.4 20.3 14.3 13.7

The unit of the numbers is seconds. We measured the performance with time command.
These numbers are the sum of user and system times of time command.

4.2.1 Procedure
We first prepared several Windows executables and executed

them on our system. When we analyzed their memory dumps,
we resolved API names using TaintVolatility without disk foren-
sics capability. Then, we enabled the capability and resolved API
names again. Lastly, we compared the results of each resolution,
i.e., resolutions with or without disk forensics capability.
4.2.2 Results

Table 2 shows the results of this experiment. These results
shows that disk forensics capability is essential for our system.
Without it, our system failed to resolve some APIs. Whether an
API stays on a memory or not is totally dependent on the behav-
iors of each running process. If an API has been already called by
a process during dynamic analysis, the API is loaded on a mem-
ory and is likely to be still on the memory when we generate a
memory dump. However, if it is not, it may not be loaded on a
memory when we make a memory dump.

As we have explained, our approach can handle both cases
properly. When the code of API stays on memory, we simply
extract the information of the API from shadow memory. Addi-
tionally, when the code is on a disk, we do this from a shadow
disk using disk forensics capability.

4.3 Performance Measurement
The goal of this experiment is to measure performance degra-

dation of TaintVolatility, compared to vanilla impscan and show
that the degradation does not impose significant impact on the
effectiveness of TaintVolatility.
4.3.1 Procedure

We used the same memory dumps as the second experiment
(Section 4.2). When we analyzed the memory dumps with the

three tools, impscan, tf impscan without disk forensics capabil-
ity, and tf impscan with disk forensics capability, we measured
the elapsed seconds to complete their task, i.e., IAT reconstruc-
tion, with the time command. We used the sum of user and
system times as an indicator for comparison.

We conducted this experiment on a virtual machine on which
Ubuntu Linux 14.04 was installed. We assigned 2 CPU cores and
2 GB memory for the virtual machine. This virtual machine ran
on MacBook Pro, which had 3.1 GHz Intel Core i7, 16 GB mem-
ory, and 1 TB flush storage.
4.3.2 Results

Table 3 shows the results of this experiment. The degrada-
tion rates of tf impscan w/o DF were from x1.2 to x1.4, while the
ones of tf impscan w/ DF were from x1.4 to x2.0. These over-
heads mainly come from taint resolver. Especially, when it needs
to access a shadow disk, i.e., when a memory page containing the
target virtual address is not loaded onto a physical memory yet,
it takes more overhead because it has to take more steps for the
resolution, such as identifying the mapped file and the position
where the file is stored on a disk, and calculating the offset of
the corresponding address in the disk. Nevertheless, since even
the maximum degradation in this experiment was less than x2.0,
we consider that these performance degradations are not a seri-
ous limitation of TaintVolatility and may be accepted in practical
fields.

5. Related Work

In this section, we mention related work. We mainly focus on
differences and similarities between this work and our approach.

API Chaser [11] is a dynamic analysis environment using taint
analysis specialized for analyzing advanced malware armored

c© 2018 Information Processing Society of Japan 821

Journal of Information Processing Vol.26 813–824 (Dec. 2018)

with anti-analyses. The basic idea of this paper comes from API
Chaser’s API monitoring mechanism, i.e., tainting each API code
with a unique taint tag. However, since API Chaser is designed
for dynamic analysis, it can resolve the API names of only the
executed part of code when we apply API Chaser for API name
resolution for static analysis. On the other hand, our approach is
applicable for resolving the API names referenced from the parts
of code that are not executed during dynamic analysis.

Eureka [26] identifies API call references by analyzing the con-
trol flow graph (CFG) of the code of malware. To identify the
loaded addresses of each DLL for API name resolution, it re-
lies on monitoring a call of the NtMapViewOfSection API and
extracting its input and output arguments. Eureka relates the
mapped address, i.e., the loaded address of a DLL, with the DLL
name given to the API call. However, this approach is also vul-
nerable to Stealth Loader, because Stealth Loader does not use
map functions at all for loading a DLL.

Choi [5] proposed an approach for handling Stolen Code by
monitoring all memory accesses and identifying the destination
addresses of a copy of the code. Even though the implementa-
tions are different, his idea is similar to ours in that both ideas
focus on tracking the movement of API code. We use taint anal-
ysis for tracking, whereas Choi uses memory trace.

Rekall [25], which is a memory forensics tool cloned from
Volatility, can analyze both memory and disks but can only be
used in two situations. The first is when Rekall is running in
live forensics mode. That is, Rekall can analyze disks in the
environment where it is running. The second is when analysts
explicitly specify files when they acquire a memory dump in
AFF4 [17] file format. Using this format, they can add speci-
fied file contents to a memory dump, and Rekall can analyze the
added file contents when analyzing the memory dump. On the
other hand, TaintVolatility is mainly designed for analyzing both
memory and disks in offline mode, so we can use it without any
pre-configuration before starting an analysis.

Formal representations for malware analysis have been studied
in Refs. [6], [14], and [15]. The main difference between their
works and our paper is that their models are built on execution
traces, whereas our model is on a memory dump. To deal with a
memory dump, we introduce several new notations and functions.

Quist et al. [22] use VADs for identifying the mapped DLLs for
IAT reconstruction, whereas Raber et al. [23] use API hooking.
As with the approaches explained in Section 2, these approaches
are also vulnerable against position obfuscation techniques. For
example, Stealth Loader does not leave any traces of loaded DLLs
in VADs. Moreover, Stealth Loader does not execute the API
codes on which hooks are installed because it loads dependent
DLLs by itself.

6. Discussion

In this section, we discuss the limitations of our approach, the
validity of our experiments and platform dependency.

6.1 Limitation
We explain some limitations of our approach and then show

our considerations for each of them.

Code Insertion Our approach fails when code snippets are in-
serted in the control flow between each entry in an IAT and the
corresponding API code. This technique is used in API redirec-
tion [29]. In this situation, an entry in an IAT points to the inserted
code, not any API code, and the code does not have any taint tags.
Thus, we cannot resolve the API name simply by looking at the
taint tag of the instruction directly referenced from the IAT entry.
To overcome this, we are considering extending our approach by
applying CFG analysis, as used in Eureka [26]. When an entry in
an IAT points to the code that has no taint tags, we begin analyz-
ing the control flow starting at the entry and proceeding until it
reaches an instruction that has taint tags related to any API.

Incomplete Dynamic Analysis If the execution of a malware
does not reach the code for API name resolution during the dy-
namic analysis, our system cannot resolve the API names of IAT
entries. This is because the addresses in IAT are not filled in
when we generate a memory dump. As you know, there are sev-
eral anti-analysis techniques to detect the existence of VMM or
analysis environments [8], [24]. Thus, if our analysis environ-
ment is detected with some of these techniques, the execution is
possibly stopped in the middle. We consider that this is a differ-
ent problem from the target of our paper, so we set it as beyond
the scope because there have been several studies for tackling this
problem [6], [13].

DLL Static Linking When a system DLL is statically linked
to a malware executable, we cannot identify the APIs exported
from the DLL [1]. This is because the codes of the APIs exported
from the DLL do not have any taint tags, even though we need
taint tags to resolve the API names. However, we consider that
it is not easy to link a system DLL to a malware executable in
practice because there are several technical challenges. One ex-
ample is that doing so may cause a dependency problem between
incompatible DLL versions. Another is that the statically linked
system DLL loses its portability because the file is enlarged. We
consider that these difficulties probably reduce the attractiveness
of static linking for malware in practical fields.

Implicit Information Flow The implicit flow problem is a
general limitation of taint analysis. Taint propagation fails when
tainted data is processed with implicit flow [4]. If malware pro-
cesses API code with an implicit flow without changing its value
before performing position obfuscation techniques, the taint tags
set on the API code are cleared, i.e., malware can wash the taint
tags set on the data. As a result, we lose the relationship between
API code and the API name that we make in the preprocessing
phase. To overcome this, we will adapt the results of existing
research [10], [27] to our system.

6.2 Validity of Experiments
We consider that the experiments we had are reasonable for

achieving our goal in this paper, even though we did not have
any experiment using real-world malware. Our goal is to propose
an approach and develop a system resistant to position obfusca-
tion. To measure its resistance capability against position obfus-
cation, a malware in the wild is not appropriate because we do not
know its correct answers and a malware is basically a complex of
many anti-analyses and functions, i.e., it is difficult to identify

c© 2018 Information Processing Society of Japan 822

Journal of Information Processing Vol.26 813–824 (Dec. 2018)

the causes when we fail to get expected results from real-world
malware. On the other hand, we used Windows executables in
our experiments because we can download the symbols for these
executables and get the correct answers, i.e., which APIs are im-
ported by an executable. Considering this fact, answer-known
Windows executables are more appropriate and reasonable than
real-world malware in terms of evaluating our system.

6.3 Platform Dependency
We have developed our system with targeting for 32 bit-

Windows 7 platform as an analysis environment (guest OS).
However, our approach is not limited to a specific environment.
That is, taint-based name resolution is independent of platforms
and architectures. We believe that we could also apply our ap-
proach to an Executable and Linkable Format (ELF)-format exe-
cutable. In ELF-format executable, it has the Global Offset Table
(GOT) to store the addresses of each external function. Theo-
retically speaking, we can use the taint-based name resolution
approach to resolve the names of the addresses in GOT.

7. Conclusion

In this paper, we first mentioned the problem from which ex-
isting approaches for Import Address Table (IAT) reconstruction
currently, or will, suffer, i.e., position obfuscation techniques, and
then proposed a new Application Programming Interface (API)
name resolution based on taint analysis to solve the problem. We
also described system components for IAT reconstruction whose
API name resolution is realized with our approach. Addition-
ally, we demonstrated that this system is generically effective for
various types of position obfuscation techniques through experi-
ments.

As far as we know, our paper is the first to describe position
obfuscation techniques, clarify the impact they can have on ex-
isting security mechanisms, and introduce a generic and effective
approach against them. We consider that position obfuscation
techniques are a significant problem for us to work on because
they enable malware authors to effectively evade current security
mechanisms.

References

[1] Abrath, B., Coppens, B., Volckaert, S. and De Sutter, B.: Obfuscat-
ing Windows DLLs, 2015 IEEE/ACM 1st International Workshop on
Software Protection (SPRO), pp.24–30, IEEE (2015).

[2] Bellard, F.: QEMU, a Fast and Portable Dynamic Translator, USENIX
Annual Technical Conference, FREENIX Track, pp.41–46, USENIX
(2005).

[3] Carrier, B.: The Sleuth Kit (TSK) (online), available from
〈http://www.sleuthkit.org/〉 (accessed 2017-08-17).

[4] Cavallaro, L., Saxena, P. and Sekar, R.: On the Limits of Informa-
tion Flow Techniques for Malware Analysis and Containment, Proc.
5th International Conference on Detection of Intrusions and Malware,
and Vulnerability Assessment, DIMVA ’08, pp.143–163, Springer-
Verlag (2008).

[5] Choi, S.: API Deobfuscator: Identifying Runtime-obfuscated API
calls via Memory Access Analysis, Black Hat Asia (2015).

[6] Dinaburg, A., Royal, P., Sharif, M. and Lee, W.: Ether: Malware anal-
ysis via hardware virtualization extensions, Proc. 15th ACM Confer-
ence on Computer and Communications Security, CCS ’08, pp.51–62,
ACM (2008).

[7] Enck, W., Gilbert, P., Han, S., Tendulkar, V., Chun, B.-G., Cox, L.P.,
Jung, J., McDaniel, P. and Sheth, A.N.: TaintDroid: An Information-
Flow Tracking System for Realtime Privacy Monitoring on Smart-

phones, ACM Trans. Comput. Syst., Vol.32, No.2, pp.5:1–5:29 (on-
line), DOI: 10.1145/2619091 (2014).

[8] Ferrie, P.: Attacks on Virtual Machine Emulators, Symantec Security
Response (2006).

[9] Hex-Rays (online), available from 〈https://www.hex-rays.com/〉 (ac-
cessed 2017-08-17).

[10] Kang, M.G., McCamant, S., Poosankam, P. and Song, D.: DTA++:
Dynamic Taint Analysis with Targeted Control-Flow Propagation,
NDSS (2011).

[11] Kawakoya, Y., Iwamura, M., Shioji, E. and Hariu, T.: API Chaser:
Anti-analysis Resistant Malware Analyzer, Research in Attacks, In-
trusions, and Defenses: Proc. 16th International Symposium, RAID
2013, pp.123–143 (2013).

[12] Kawakoya, Y., Shioji, E., Otsuki, Y., Iwamura, M. and Yada, T.:
Stealth Loader: Trace-free Program Loading for API Obfuscation, Re-
search in Attacks, Intrusions, and Defenses: Proc. 20th International
Symposium, RAID 2017 (2017).

[13] Kirat, D., Vigna, G. and Kruegel, C.: Barecloud: Bare-metal Analysis-
based Evasive Malware Detection, Proc. 23rd USENIX Conference on
Security Symposium, SEC’14, Berkeley, CA, USA, USENIX Associ-
ation, pp.287–301 (2014) (online), available from 〈http://dl.acm.org/
citation.cfm?id=2671225.2671244〉.

[14] Korczynski, D.: RePEconstruct: Reconstructing binaries with self-
modifying code and import address table destruction, 11th Interna-
tional Conference on Malicious and Unwanted Software, MALWARE
2016, pp.31–38 (online), DOI: 10.1109/MALWARE.2016.7888727
(2016).

[15] Korczynski, D. and Yin, H.: Capturing Malware Propagations with
Code Injections and Code-Reuse Attacks, Proc. 2017 ACM SIGSAC
Conference on Computer and Communications Security, CCS 2017,
pp.1691–1708 (online), DOI: 10.1145/3133956.3134099 (2017).

[16] Ligh, M.H., Case, A., Levy, J. and Walters, A.: The Art of Memory
Forensics: Detecting Malware and Threats in Windows, Linux, and
Mac Memory, Wiley Publishing, 1st edition (2014).

[17] Michael Cohen, S.G. and Schatz, B.: Extending the Advanced Foren-
sic Format to Accommodate Multiple Data Sources, Logical Evi-
dence, Arbitrary Information and Forensic Workflow, The Digital
Forensic Research Conference DFRWS 2009 USA (2009).

[18] NtQuery (online), available from 〈https://github.com/NtQuery/Scylla〉
(accessed 2017-08-17).

[19] Plohmann, D. and Hanel, A.: SimpliFiRE.IDAScope, Hacklu (2012).
[20] Portokalidis, G., Slowinska, A. and Bos, H.: Argos: An emulator

for fingerprinting zero-day attacks for advertised honeypots with auto-
matic signature generation, Proc. 1st ACM SIGOPS/EuroSys European
Conference on Computer Systems 2006, EuroSys ’06, pp.15–27, ACM
(2006).

[21] py4n6 (online), available from 〈https://github.com/py4n6/pytsk〉 (ac-
cessed 2017-08-17).

[22] Quist, D., Liebrock, L. and Neil, J.: Improving antivirus accuracy with
hypervisor assisted analysis, Journal in Computer Virology, Vol.7,
No.2, pp.121–131 (online), DOI: 10.1007/s11416-010-0142-4 (2011).

[23] Raber, J. and Krumheuer, B.: QuietRIATT: Rebuilding the Import Ad-
dress Table Using Hooked DLL Calls, Black Hat DC Briefings (2009).

[24] Raffetseder, T., Krügel, C. and Kirda, E.: Detecting System Emula-
tors, ISC, pp.1–18 (2007).

[25] Rekall, available from 〈http://www.rekall-forensic.com/〉 (accessed
2017-12-19).

[26] Sharif, M.I., Yegneswaran, V., Saidi, H., Porras, P.A. and Lee, W.: Eu-
reka: A Framework for Enabling Static Malware Analysis., ESORICS,
Jajodia, S. and Lopez, J. (Eds.), Lecture Notes in Computer Science,
Vol.5283, pp.481–500, Springer (2008).

[27] Slowinska, A. and Bos, H.: Pointless tainting?: Evaluating the prac-
ticality of pointer tainting, Proc. 4th ACM European Conference on
Computer Systems, EuroSys ’09, pp.61–74, ACM (2009).

[28] Suenaga, M.: A Museum of API Obfuscation on Win32, Symantec
Security Response (2009).

[29] Yason, M.V.: The Art of Unpacking, Black Hat USA Briefings (2007).

Editor’s Recommendation
This paper shows malware obfuscation methods, the limits of

existing methods for that, so has high material value. The pro-
posed method considers practical use including cooperation with
IDA Pro, thus this paper is selected as a recommended paper.

(Program Chair of Computer Security Symposium 2017
(CSS2017), Yuji Suga)

c© 2018 Information Processing Society of Japan 823

Journal of Information Processing Vol.26 813–824 (Dec. 2018)

Yuhei Kawakoya received his B.E. and
M.S. in science and engineering from
Waseda University in 2003 and 2005, re-
spectively. He has been engaged in R&D
since 2005 on computer security. From
2013 to 2016, he was engaged in R&D of
NTT Innovation Institute, Inc. as a soft-
ware engineer. He is a member of IPSJ

and IEICE.

Makoto Iwamura received his B.E.,
M.E., and D.Eng. in science and engi-
neering from Waseda University, Tokyo,
in 2000, 2002, and 2012, respectively.
He joined NTT in 2002. He is currently
with NTT Secure Platform Laboratories,
where he is engaged in the Cyber Security
Project. His research interests include

reverse engineering, vulnerability discovery, and malware
analysis.

Jun Miyoshi received his B.E. and M.E.
degrees in system science from Kyoto
University in 1993 and 1995, respectively.
Since joining NTT in 1995, he has been
researching and developing network se-
curity technologies. From 2011 to 2016,
he was engaged in R&D strategy manage-
ment of NTT Secure Platform Laborato-

ries. Now he is a research group leader of Cyber Security Project
in the Laboratories. He is a member of IEICE.

c© 2018 Information Processing Society of Japan 824

