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Abstract: This paper addresses how to design a cache algorithm for achieving high cache hit rate and high packet
forwarding rate of Named Data Networking (NDN) software routers. Although sophisticated cache eviction algo-
rithms like LFU and Adaptive Replacement Cache (ARC) successfully achieve high cache hit rate, they incur heavy
computational overheads to choose a victim Data packet from the cache. In contrast, cache admission is expected to
achieve high cache hit rate with light-weight computation since it decides simply whether an incoming Data packet
should be inserted into the cache or not. In this paper, we design a frequency-based cache admission algorithm, Filter,
with light-weight computation by simply counting frequencies of incoming Data packets in a fixed time window. A
simulation-based evaluation proves that Filter achieves high cache hit rate comparable to sophisticated cache eviction
algorithms like ARC. By implementing a prototype of an NDN software router with Filter, we validate that the NDN
router with Filter improves packet forwarding rate compared to that with a sophisticated cache eviction algorithm like
ARC and even that with a simple one like FIFO.
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1. Introduction

Named Data Networking (NDN) [1], which naturally sup-
ports caching, mobility and multicasting by adopting name-based
routing/forwarding, is promising network architecture. Despite
the fact that NDN provides numerous useful functions, time-
consuming caching and name-based forwarding raise an issue re-
lated to forwarding speed [2], and hence high-speed NDN router
implementation has become a hot research topic. While many
studies successfully improve name-based forwarding speed fo-
cusing on efficient longest prefix matching based on hash ta-
bles [3], [4], few studies focus on fast computation of caching,
which is computationally heavy due to its per-packet processing.

This paper addresses cache algorithm design to achieve both
high packet forwarding rate and high cache hit rate according
to the following two steps, whereas most NDN router proto-
types [3], [5], [6] adopt a lightweight cache eviction algorithm
based on First In First Out (FIFO) at the sacrifice of cache hit
rate. We choose candidates of cache algorithms among the many
classes of cache algorithms in the first step and then consider how
to design high-speed implementations of such algorithms in the
second step.

As the first step, we choose Least Frequently Used (LFU)
based cache algorithms as the candidates according to the ob-
servations in the study of Sun et al. [7]. A key motivation of this
study is to answer the following two questions: The first ques-
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tion is whether cache algorithms of routers on a delivery path
should cooperate with each other to achieve both high cache hit
rate and small capacity of caches on the path or not. The second
question is what kinds of cache algorithms each router should in-
dependently use if the cooperation is not necessary. Based on
simulations for many traffic traces, the study concludes that so-
phisticated LFU-based cache algorithms executed independently
on individual routers reduce total traffic in a whole network and
realize sufficiently high cache hit rate compared with coopera-
tive cache algorithms [8], [9], [10]. Reducing the total amount of
traffic in a network contributes to reducing the total computation
time for forwarding packets at all routers in the network, and we,
hence, choose LFU-based cache algorithms, which are indepen-
dently executed on individual routers, as the candidates.

As the second step, we address how to achieve high speed
for LFU-based cache algorithms, of which computation is well
known to be heavy. In order to address this issue, we first analyze
how individual blocks of a simple FIFO cache eviction algorithm,
which is much lighter than LFU-based cache algorithms, spends
computation time based on our previous study [11], where we an-
alyzed computation time of individual function blocks of the cur-
rent state-of-the-art NDN router implementation [3]. This objec-
tive is to know how even a simple FIFO cache eviction algorithm
spends computation time on a PC based platform.

We have identified the two obstacles by carefully analyzing
CPU cycles consumed by individual function blocks. First, the
packet processing flow in the case of a cache miss consumes more
CPU cycles than that in the case of a cache hit. This is because a
router consumes CPU cycles for receiving the Data packet, which
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would not be needed if the Interest packet *1 hit the cache, in ad-
dition to those for forwarding an Interest packet, which is needed
regardless of a cache hit. Second, cache insertion of a Data packet
is relatively time-consuming among function blocks which are
executed when a cache miss occurs. It means that the insertion of
unpopular Data packets which are not hit later wastes many CPU
cycles.

This implies that cache algorithms for NDN routers need to
increase cache hit rate and reduce unpopular Data packet in-
sertion rate simultaneously without incurring computation over-
heads. We propose cache admission as a better candidate than
cache eviction for the two reasons: First, cache admission ob-
viously resolves the second obstacle because only the selected
Data packets are inserted into the cache. Second, computation of
cache admission is lighter than that of cache eviction to achieve
high cache hit rate. Sophisticated cache eviction algorithms like
Least Frequently Used (LFU) and Adaptive Replacement Cache
(ARC) [12] incur computational overheads for choosing sophis-
ticatedly a victim Data packet, which will be evicted from the
cache. The heavy computation of cache eviction comes from
the fact that a cache eviction algorithm decides exactly one Data
packet evicted from the cache by maintaining an eviction priority
queue, where all the Data packets are sorted according to their
eviction priority values in the cache according to recency or fre-
quency. On the contrary, a cache admission algorithm performs
lighter computation such that it only decides whether an incom-
ing Data packet should be inserted into the cache or not and hence
it does not need to maintain the eviction priority queue.

The goal of this paper is to develop a cache admission algo-
rithm with low computation but with high cache hit rate. In our
previous study [11], we have developed a lightweight cache ad-
mission algorithm, Filter, which consumes about only 100 CPU
cycles, and have compared Filter with another cache algorithms,
the TinyLFU admission algorithm [13] and the FIFO eviction al-
gorithm, in terms of a part of computation time which is spe-
cific to cache admission or eviction. In this paper, we extend the
study [11] from the following three aspects: First, we quantita-
tively evaluate computation time of cache admission and cache
eviction algorithms by analyzing packet processing flows of an
NDN router with both cache eviction and admission algorithms
to understand their influences on total computation time of packet
processing. Second, we prove the efficiency of Filter by compar-
ing it with a well-known cache admission algorithm in terms of
both computation time and cache hit rate to show that Filter is
one of the lightest cache admission algorithms. Third, we em-
pirically evaluate the overall packet forwarding speed of an NDN
router with Filter based on its prototype implementation, whereas
we have evaluated only computation time for processing packets
in our previous study.

The contributions of the paper are three-fold:
• As far as we know, this is the first study which sheds light

on wasteful computation of handling packets of unpopular
content, whereas some studies focus on its negative effects

*1 Interest and Data packets are request and response packets in NDN, re-
spectively. Interest packets transfer requests of consumer and Data pack-
ets do the corresponding data objects.

on cache hit rate [8], [9].
• We carefully design a lightweight cache admission algo-

rithm, Filter on the basis of the results of the empirical mea-
surement of an NDN software platform. As a result of the
careful design, Filter consumes a few tens of CPU cycles on
average while providing as high cache hit rate as ARC.

• We implement a proof-of-concept prototype of an NDN
router with Filter, which haa all functionalities including
name-based forwarding and caching on a commercial off-
the-shelf computer, and empirically prove that Filter im-
proves forwarding speed of the NDN router.

The rest of this paper is organized as follows. Section 2
overviews the related work. We introduce a problem of waste-
ful caching computation and propose an NDN packet forwarding
scheme with the caching admission based on Filter in Section 3
and Section 4, respectively. Section 5 analytically investigates
cache hit rate of caching with Filter. Section 6 evaluates perfor-
mance of Filter and the proposed NDN packet forwarding scheme
with Filter. Finally, Section 7 concludes this paper.

2. Related Work

Perino and Varvello investigate Content-Centric Networking
(CCN) software in detail and claim that CCN deployment is fea-
sible at ISP scale, whereas today’s technology is not yet ready
to support an Internet scale deployment of NDN/CCN [14]. To
achieve high-speed NDN packet processing, many researches at-
tack issues of heavy NDN functions, focusing on efficient longest
name prefix matching [3], [4] and efficient caching [3].

To cope with the issue of time-consuming longest prefix
matching, Yuan and Crowley propose a longest prefix matching
algorithm based on binary search of hash tables, which reduces
the worst case computation complexity [4]. So et al. design an
NDN forwarding engine with a) fast name lookup via hash ta-
bles with fast collision-resistant hash computation, b) efficient
FIB lookup algorithm that provides good average and worst case
FIB lookup time, and c) multi-threaded forwarding that exploits
computing capabilities of multi-core CPUs [3].

In contrast to longest prefix matching, only a few studies focus
on fast computation of caching. Although Mansilha et al. propose
a caching algorithm which hides insufficient memory bandwidth
between the main memory device and the secondary memory de-
vice used for a per-packet caching [15], it requires heavy compu-
tation with multiple CPU cores.

In this paper, we propose to use cache admission according to
the observation that handling Data packets of unpopular content
is wasteful. At first, cache admission algorithms [8], [9], [10] are
designed by leveraging the cooperation of caches of routers in a
network so that the same Data packet is not likely to be inserted
into different caches. ProbCache [8] and Betweenness [10] in-
sert Data packets equally into caches on a delivery path, whereas
Leave Copy Down (LCD) [9] focuses on off-path caching. Nev-
ertheless, we use cache admission algorithms without such coop-
eration, i.e., cache admission algorithms working independently
on individual routers, being inspired by the observation found by
Sun et al. [7] that the LFU-based cache algorithms without such
cooperative cache admission achieves higher traffic reduction in
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a whole network as well as sufficiently a similar cache hit rate
compared with the cache admission algorithms with cooperation.
The reason why we choose these algorithms is described in Sec-
tion 1. A cache admission algorithm without such cooperation is
simply referred to as a cache admission algorithm, hereafter.

Precisely, we adopt a frequency-based cache admission algo-
rithm which is executed independently from the other caches.
TinyLFU [13] is a frequency-based cache admission algorithm
and inserts Data packets which are received often recently into
a cache. Although our proposed Filter is also a frequency-based
cache admission, Filter focuses on fast computation of cache ad-
mission itself compared to the TinyLFU, as we will discuss later
in Section 4.4.

3. Computation Time Analysis of Cache Algo-
rithms

In this section, we analyze computation time of two types of
cache algorithms, i.e., cache eviction and admission algorithms,
to show that cache admission is better than cache eviction by an-
alyzing the packet processing flows of the NDN software pro-
posed in Ref. [6]. The software is chosen among several plat-
forms [3], [6], [16] since it is highly optimized.

3.1 Named Data Networking
NDN realizes request/response communication of named con-

tent between consumers and producers. The communication is re-
alized by two NDN packet types, Interest and Data packets. Both
types of packets carry a name, which uniquely identifies a piece
of content, and only a Data packet carries the piece of content.
A consumer requests a piece of content by generating an Inter-
est packet with its name and a producer responds to the Interest
packet by generating a Data packet with the piece of content and
its name. An intermediate NDN node, i.e., an NDN router, deliv-
ers Interest and Data packets by forwarding them to a next hop
router based on their names. Interfaces of next hop routers for
Interest packets and those for Data ones are stored in data struc-
tures of Forwarding Information Base (FIB) and Pending Interest
Table (PIT), respectively. Received Data packets are stored in the
cache called Content Store (CS). Hereafter, we use CS and cache,
interchangeably.

3.2 NDN Packet Processing with Cache Algorithms
A cache algorithm is classified into cache eviction and cache

admission. Cache eviction determines a victim, i.e., a Data packet
evicted from the cache when an incoming Data packet is inserted
into the cache, i.e., the CS, whereas cache admission decides
whether an incoming Data packet is inserted into the cache or
not. A common objective of them is to identify popular/unpopular
Data packets by using a history of incoming requests to Data
packets. The word “popular” means that a popular data packet
is likely to be requested in the future.

This section compares computation time of NDN packet pro-
cessing flows with both cache eviction and cache admission al-
gorithms by carefully analyzing how individual function blocks
consume CPU cycles of the flows.

Fig. 1 Packet processing flow with cache eviction.

3.2.1 Packet Processing Flows with Cache Eviction
This section describes the request/reply NDN packet process-

ing flows with cache eviction in the cases of both cache hits
and misses according to the diagram illustrated in Fig. 1, where
blocks B2 and B12 are used for cache eviction. First, block B1

receives and decodes an incoming Interest packet. B2 updates the
history of incoming requests to Data packets, which is later used
for cache eviction, and B3 checks whether a data piece of a Data
packet corresponding to the Interest packet is stored in the CS. If
the data piece is in the CS, B4 fetches it and composes the Data
packet with it, and B11 sends back the Data packet to the incom-
ing interface.

Otherwise, i.e., if the Interest packet does not hit the CS, B4

inserts the incoming interface into the PIT. After B5 gets an out-
going interface from the FIB by performing longest name prefix
matching, B6 sends the Interest packet to the outgoing interface.
When a returned Data packet corresponding to the Interest packet
arrives at the router, B6 receives and decodes the Data packet, and
then B7 gets and deletes an outgoing interface from the PIT. Af-
ter B12 chooses and evicts a victim from the cache according to
the history of incoming requests to Data packets, B8 inserts the
incoming Data packet into the CS. Finally, B9 sends the Data
packet to the outgoing interface.

We group the blocks so that the average CPU cycles spent for
handling a pair of an Interest and a Data packet are calculated
with the two parameters, the cache hit rate and the cache inser-
tion rate, as below:
• G1 is the set of blocks executed always for each Interest

packet: B1, B2, B3 and B11.
• G2 is the block executed at a cache hit: B4.
• G3 is the set of blocks executed at a cache miss except for

the blocks for cache eviction, i.e., B12 and B10: B5, B6, B7,
B8 and B9.

The average CPU cycles spent for processing a pair of an Interest
and a Data packet CAvg

Evi are defined by Eq. (1), where pHit is the
cache hit rate, Cb,i is the CPU cycles of block Bi, and Cg,i is the
CPU cycles of group Gi. pHit is defined as the probability that
Interest packets hit the cache.

CAvg
Evi = Cg,1 + pHitCg,2 + (1 − pHit)(Cg,3 +Cb,12 +Cb,10) (1)

3.2.2 Packet Processing Flows with Cache Admission
The packet processing flows with cache admission is illustrated

by the diagram in Fig. 2. The flow in the case of a cash hit is the
same as the flow with cache eviction illustrated in Fig. 1. Pre-
cisely, the CPU cycles of B2 for the cache eviction and admission
algorithms are slightly different. On the contrary, in the case of a
cash miss, the flows with cache admission are explicitly different
from those with cache eviction as follows. First, block B12 for
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Fig. 2 Packet processing flow with cache admission.

cache eviction is replaced with B13 for cache admission. Please
note that the CPU cycles of B13 are less than those of B12. Sec-
ond, B10 for cache insertion is executed only when B13 decides to
insert a Data packet into the CS.

The average CPU cycles CAvg
Adm are defined by Eq. (2), where

pInsertion is the cache insertion rate. pInsertion is defined as the prob-
ability that Data packets are inserted into the cache by block B13.

CAvg
Adm=Cg,1+pHitCg,2+(1−pHit)(Cg,3+Cb,13+pInsertionCb,10)

(2)

3.3 Cache Eviction vs. Cache Admission
Assuming that the cache hit rates of both cache eviction and

cache admission are same, the difference between the average
CPU cycles of cache eviction and admission, i.e., CAvg

Evi −CAvg
Adm, is

(1 − pHit)((Cb,12 −Cb,13) + pInsertionCb,10). If the difference is pos-
itive, the average CPU cycles CAvg

Adm is smaller than CAvg
Evi , which

means that cache admission is faster than cache eviction.
To validate the above claim preliminarily, we estimate the aver-

age CPU cycles of the ARC eviction algorithm and the TinyLFU
admission algorithm and the difference between the average CPU
cycles of them based on the measurements of the blocks’ CPU
cycles in Section 6. Precisely, we do so, assuming that the cache
hit rate pHit of all cache algorithms of ARC and TinyLFU is 30%
and that the cache insertion rate pInsertion of TinyLFU is 10%. The
measurement results in Section 6 show that the CPU cycles Cb,12

of ARC, the CPU cycles Cb,12 of TinyLFU and the CPU cycles
Cb,10, are 202, 282 and 188 CPU cycles, respectively. Thus the
average CPU cycles of cache eviction CAvg

Evi of ARC and those of
cache admission CAvg

Adm of TinyLFU are 1,817 and 1,705 CPU cy-
cles, respectively, and CAvg

Adm is 112 CPU cycles smaller than CAvg
Evi .

We have obtained the following observations from the above
estimation results: First, cache admission reduces the CPU cy-
cles of cache eviction by about 6%. Second, however, computa-
tion time of deciding whether a Data packet is inserted or not, i.e.,
the CPU cycles Cb,13, is larger than the time of deciding a victim,
i.e., the CPU cycles Cb,12. This implies that there is still room
for reducing CPU cycles by improving the CPU cycles Cb,13 of
TinyLFU. Thus, in the rest of this paper, we focus on a lighter
cache admission algorithm than TinyLFU, whereas it realizes the
similar cache hit rate to TinyLFU.

4. Design of Cache Admission Algorithm

4.1 Overview
The goal of the cache admission algorithm is to identify un-

popular Data packets for filtering them out in order to increase
the cache hit rate and reduce the cache insertion rate. Obviously,
an increase in cache hit rate contributes to improving forward-

ing speed of NDN routers. A few cache admission algorithms
have been proposed [8], [9], [13]; however, computation time for
filtering unpopular Data packets out is not carefully considered.
We design a simpler cache admission algorithm, named Filter.
In the rest of this section, we firstly describe the design rationale
behind Filter, and we then design Filter according to the design
rationale. Finally, we compare Filter with a well-known cache ad-
mission algorithm, TinyLFU [13], in terms of cache hit rate and
computation time.

4.2 Design Rationale
The design rationale behind Filter is that accesses to slow

memory devices, such as dynamic random access memory
(DRAM) devices, should be eliminated since the time spent by
one DRAM access accounts for a large part of the entire com-
putation time. Our previous study [6], for instance, empirically
revealed that one DRAM access spends about 11% of the average
computation time of entire NDN packet processing.

We therefore do not adopt TinyLFU [13] because it is diffi-
cult to eliminate DRAM accesses from the packet processing of
TinyLFU. TinyLFU compares the frequency of an arriving Data
packet and that of a victim Data packet, which is chosen among
Data packets in the cache, and it inserts the arriving Data packet
to the cache only if its frequency is larger than that of the vic-
tim Data packet. Though this enables it for TinyLFU to decide
whether the arriving Data packet is inserted into the cache or not
without any threshold, this incurs unavoidable DRAM accesses
due to the fact that the victim Data packet is, in general, in DRAM
devices.

In contrast to TinyLFU, Filter is designed so that it avoids ac-
cesses to DRAM devices by comparing the frequency of an arriv-
ing Data packet with a predefined threshold value, both of which
are not stored in DRAM devices, instead of comparing it with the
frequency of a victim Data packet. Since the advantage of not
accessing to DRAM devices causes a necessity to tune the pre-
defined threshold in compensation for the fast computation, we
will develop an analytical model of Filter in Section 5 to clarify a
guideline of choosing the threshold.

4.3 Design of Filter
Filtering unpopular Data packets is equivalent to admitting

only highly popular Data packets. Filter identifies highly pop-
ular Data packets on the basis of the intuition that the number of
highly popular Data packets is much smaller than that of unpopu-
lar ones. To identify highly popular Data packets, Filter identifies
Interest packets that appear several times within a certain time
window. The main intuition behind Filter is that Interest packets
for highly popular Data packets may appear often and such pack-
ets will arrive again in the near future. To realize this idea with
light computation, we design Filter as follows.

Our Filter consists of lightweight computation and two sim-
ple data structures to memorize ingress Interest packets: A FIFO
queue to store a history of Interest packets, i.e., a sequence of past
Interest packets, and a hash table to store the frequency of appear-
ances of the Interest packets within the history. We refer to the
FIFO queue and the hash table as history queue and counter hash
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Fig. 3 Schematic of data structures of Filter.

table, respectively. The schematic of Filter is shown in Fig. 3.
The history queue holds hashes of content names in the past q In-
terest packets, {xn−1, xn−2, . . . , xn−q} in order of their arrivals. xn

is the hash of the content name in the n-th Interest packet and it is
used as an index to access the counter hash table. The xn-th slot
of the counter hash table, H[xn], holds the frequency of appear-
ances of Interest packets, of which hash is xn, within the past q

Interest packets.
The Filter algorithm is summarized as follows. When an In-

terest packet arrives (B2 in Fig. 2), Filter computes the hash of its
content name, xn, and updates the history queue and the counter
hash table, as shown in Fig. 3. That is, Filter dequeues an en-
try, xn−q, from the head of the history queue and enqueues xn

to the tail of it. Then, Filter increments H[xn] and decrements
H[xn−h]. When a Data packet arrives (B13 in Fig. 2), Filter de-
termines whether the packet should be inserted into the cache or
not by checking the counting hash table without updating the his-
tory queue and the counter hash table. That is, if its frequency
of appearances, H[xn], satisfies H[xn] ≥ θ, where θ is a thresh-
old parameter, then the packet is forwarded to the CS Insertion

function block (B10), otherwise B10 is bypassed and the packet is
forwarded directly to the Data Transmission function block (B11).

To keep the computation of Filter fast, hash collisions in the
counter hash table are not resolved by allowing a certain degree
of false positives, i.e., several Interest packets that have different
content names with the same hash are mapped to the same slot in
the counter hash table. However, such false positives rarely oc-
cur as described below: The probability of false positives pFP can
be derived by using well-known analytical models for hash col-
lisions [17]. Given the assumption that hash values are perfectly
random, pFP is calculated as pFP = 1 − (1 − 1/h)q, where q and
h are the length of the history queue and the counter hash table,
respectively. Due to space limitations, we omit the details of the
equation. In the case of q = 104 and h = 224, pFP is 0.0596%,
whereas the history queue with 104 64-bit hash values and the
counter hash table with 224 16-bit integer values consume only
32 Mbytes. Thus, we conclude that pFP is sufficiently low.

4.4 Comparison with TinyLFU
Finally, we discuss the advantage and the disadvantage of our

proposed Filter for existing cache admission algorithms focus-

ing on cache hit rate and computation time. As a reference for
Filter, we choose TinyLFU [13] among several cache admission
algorithms [8], [9], [13] because its implementation is highly op-
timized, whereas other algorithms [8], [9] have focused on only
high cache hit rate.

The key advantage of Filter is that its computation time is
shorter than that of TinyLFU. We implement Filter and TinyLFU
on the proposed NDN forwarding scheme, and then measure how
they spend the CPU cycles for decision of cache insertion at block
B13 in Fig. 2. Please note that the measurement conditions are the
same as those summarized in Section 6.1. The measured num-
ber of the CPU cycles for Filter and that for TinyLFU is 28 and
288, respectively. Filter reduces computation time of TinyLFU
because it eliminates DRAM accesses by using the predefined
threshold value instead of frequency of the victim Data packet in
TinyLFU, as described in Section 4.2.

The disadvantage of Filter is that if Filter selects an ineffective
threshold value, it misidentifies popular Data packets as unpop-
ular ones in its insertion decision. That is, Filter with the inef-
fective threshold value causes lower cache hit rate than TinyLFU.
In the next section, we select the threshold value for Filter based
on its characteristic analysis, and then in Section 6, we evaluate
cache hit rates of Filter with the selected threshold and TinyLFU.

5. Characteristic Analysis of Filter

5.1 Overview
In this section, we analyze how parameters of Filter, i.e., the

threshold and the history length affect the performance of Filter.
We develop an analytical model of Filter, focusing on two per-
formance metrics: cache hit rate and cache insertion rate. Cache
hit rate, which is defined as the probability that Data packets re-
quested with incoming Interest packets exist in the cache, is one
of the most important metrics for both cache eviction and cache
admission algorithms. In addition, in the case with a cache ad-
mission algorithm, Data packets are inserted into the cache only
when the cache admission algorithm admits them, and hence
cache insertion rate, which is defined as the probability that in-
coming Data packets are inserted to the cache, is also an impor-
tant metric. To simplify notation, we refer to cache hit rate and
cache insertion rate as hit rate and insertion rate, respectively.
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5.2 Analysis Model
Firstly, we compute an insertion rate for Data packet c,

pInsertion
c , wherein an insertion rate is a probability that a received

Data packet c is selected to be inserted into the cache. For sim-
plicity, we assume that Interest packets for Data packets c arrive
according to a Poisson process with rate λc. The insertion rate
pInsertion

c , is derived with the conditional probability that the In-
terest packets for c appears θ − 1 times and more in the history
queue subject to the next arrival of the Interest packet. Since the
future arrival events are independent from the past ones, the in-
sertion rate is equivalent to P[Xc ≥ θ−1], where Xc is a stochastic
variable to express the number of arrived Interest packets for c in
the history queue. Since the history queue holds the past q In-
terest packets, the time window W, which is the time difference
between the most and least recent Interest packet arrivals in the
history queue, is approximately W = q/

∑
c λc. To simplify the

notation, we define λ′c as λ′c = λc/
∑

k λk, which is the arrival rate
for Data packet c normalized by that for all Data packets. By
using the cumulative distribution function of the Poisson distri-
bution, pInsertion

c is derived as

pInsertion
c = P[Xc ≥ θ − 1] = 1 − P[Xc ≤ θ − 2]

= 1 −
⎛⎜⎜⎜⎜⎜⎜⎝exp
(−qλ′c

) θ−2∑

k=0

(
qλ′c
)k

k!

⎞⎟⎟⎟⎟⎟⎟⎠ . (3)

The average insertion rate for all Data packets pInsertion is

pInsertion =

∑
c∈G λc(1 − pHit

c )pInsertion
c∑

c∈G λc(1 − pHit
c )

, (4)

which is the average of insertion rates for each Data packet
weighted by its arrival rate λc(1 − pHit

c ). pHit
c is the cache hit rate

of Interest packet for Data packet c. pHit
c is derived as follows.

As we select in Section 6.1, we use the FIFO eviction algorithm
behind the Filter admission algorithm. In this case, the cache hit
rate of Interest packet for Data packet c to the cache is derived
by the analytical model of a FIFO eviction algorithm [18] and the
insertion rate for Data packet c. In Ref. [18], the cache hit rate
of Interest packet for Data packet c in a FIFO pHit

c is the proba-
bility that Data packet c is in the cache and pHit

c is expressed as
λInsertion

c τc, where λInsertion
c is the frequency at which Data packet

c enters the cache and τc is its mean cache eviction time. Since
a Data packet c is inserted into the cache only when an Inter-
est packet for Data packet c misses at the cache and then a Data
packet c is inserted, λInsertion

c is λc(1 − pHit
c )pInsertion

c . Since τc can
be approximated to be a constant independent of each Data packet
when the cache size is large [18], we assume τc to be a constant
value τ. From the above, the cache hit rate of Interest packet for
Data packet c to the cache with FIFO eviction and inserted Data
packet selection is expressed as

pHit
c =

λc pInsertion
c τ

1 + λc pInsertion
c τ

. (5)

We can obtain τ for a cache of size C by solving

C =
∑

c∈G

λc pInsertion
c τ

1 + λc pInsertion
c τ

. (6)

Therefore, the average cache hit rate pHit is expressed as

pHit =

∑
c∈G λc pHit

c∑
c∈G λc

, (7)

which is the average of the cache hit rate for all Data packets
weighted by arrival rates of Interest packets requesting for them.

5.3 Threshold Value
Determining the optimal value for the threshold θ, which real-

izes both high cache hit rate and low cache insertion rate, is not
trivial because it depends on many factors, such as a cache size
and traffic patterns. Instead of determining the optimal value, this
section determines it according to the facts found in the existing
studies.

The threshold θ is set to 2 according to the following two facts:
one is that many objects, video objects in particular, are requested
only once [19] and the other is that immediately evicting one-
timer objects, which are not requested until they are evicted from
the cache, contributes to high cache hit rate [20]. More precisely,
Gill et al. [19] measured requests to YouTube videos at a gate-
way of a campus network and revealed that 68.1% of requests
to YouTube videos from the campus network are observed only
once. Imai et al. [20] analytically investigated that evicting such
one-timer objects immediately from the cache greatly contributes
to high cache hit rate. These studies imply that the threshold θ = 2
prevents such one-timer Data packets from being inserted to the
cache, and hence it contributes to high cache hit rate with suffi-
ciently low cache insertion rate.

In the following subsection, we will analytically investigate
that θ = 2 realizes sufficiently high cache hit rate and low cache
insertion rate under a condition where requests are generated ac-
cording to the Poisson process, although the cache hit rate and the
cache insertion rate are not always optimal. In Section 6, we will
validate the above claim through simulations.

Fig. 4 Effects of the length of the history queue q and the threshold θ on
insertion rates, and hit rates.
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5.4 Analysis Results
We analyze how the threshold θ and the history length q affects

cache hit rate and cache insertion rate of Filter. Please note that
we employ the same analysis conditions as those in Section 6.1,
where the number of unique Data packets and the cache size are
1 × 107 Data packets and 1 × 105 Data packets, respectively, and
Data packets are requested according to the Zipf distribution with
the parameter α = 0.8. Figure 4 shows the cache insertion rate
pInsertion and the cache hit rate pHit when the history length q varies
from 1 × 104 to 1 × 106 and the threshold θ varies from 1 to 30.
The horizontal axis indicates the threshold θ. Figure 4 (a) indi-
cates that pInsertion is sufficiently low when θ is larger than 2 under
all settings of q. In Fig. 4 (b), the threshold 2 obtains near optimal
cache hit rate among various threshold values under all settings
of q. In the rest of this paper, for small memory consumption of
Filter, we set 1 × C to the history length q, where C is the cache
size.

6. Performance Evaluation

In this section, we evaluate performance of an NDN packet
forwarding scheme with our proposed Filter in the following
steps: First, we prove that Filter achieves high cache hit rate and
low cache insertion rate comparable to existing cache algorithms.
Second, we evaluate how NDN packet processing with Filter re-
duces computation time compared to that with a cache eviction
algorithm. Third, we implement a prototype of an NDN router
with Filter and measure its packet forwarding speed as an overall
performance.

6.1 Evaluation Conditions
6.1.1 Experiment Platform

For experiments, we use two computers with a Xeon E5-2699
v4 CPU (2.20 GHz × 22 CPU cores), eight DDR4 16 GB DRAM
devices, and two Intel Ethernet Converged Network Adapter
XL710 (dual 40 Gbps Ethernet ports) NICs. The operating sys-
tem on the computers is Ubuntu 16.04 Server.

One computer is used as our router and the other is used as
a consumer and a producer. The two computers are connected
with four 40 Gbps direct-attached QSFP+ copper cables. The two
links are used for connecting the consumer and the router and the
other two are used for the router and the producer. That is, the to-
tal bandwidth between the consumer and the router and the router
and the producer is 80 Gbps. The consumer sends Interest pack-
ets to the producer via the router, and the producer returns Data
packets in response to the Interest packets via the router. If In-
terest packets hit the cache of the router, the router returns Data
packets instead of the producer.

To generate packets and FIB entries for experiments, we use
the results of the analysis on HTTP requests and responses of the
IRCache traces [21] conducted in Ref. [3]. 13,548,815 FIB en-
tries are stored at the FIB. The average number of components
in prefixes of FIB entries are set to 4 so that the average number
of FIB lookup operations per one Interest packet is slightly larger
than that in Ref. [3]. The average number of components in an
Interest and a Data packet is set to 7 and the average length of
each component is set to 9 characters. Interest and Data packets

conform to the NDN TLV packet specification [22], and they are
encapsulated by IP packets so that sizes of an Interest packet and
a Data packet are 121 bytes and 1,143 bytes, respectively.
6.1.2 Traffic Loads

We use traffic loads generated on the basis of two typical pop-
ular applications in the Internet, i.e., web and video, because they
account for a large portion of the current Internet traffic [23]. We
assume that web objects are small enough so that each object con-
sists of one Data packet. In contrast, a video is divided into mul-
tiple Data packets. We choose YouTube as a video application
because it is one of the most famous video applications. Simula-
tions for YouTube videos allow us to evaluate how Filter behaves
in the condition that traffic loads are not created according to the
Poisson process, whereas the analysis in Section 5 uses traffic
loads according to it.

We create three types of traffic loads. The first workload is
web traffic. The producer stores 1 × 107 unique web objects
where one web object corresponds to one Data packet and the
consumer generates Interest packets for these Data packets ac-
cording to the Poisson process and the Zipf distribution with the
parameter α = 0.8 [23]. The second workload is video traffic.
The producer stores 1 × 104 videos where the size of each video
is 10 Mbytes [19] and each video consists of 104 Data packets
with 1,024 bytes payload. Assuming that a few thousands of
consumers are accommodated on the router and each consumer
views one video per day with 5 Mbps bit rate, consumers gener-
ate requests for the video, i.e., Interest packets for the first Data
packet of the video, according to the Poisson process with the
average rate 0.5 [request/sec] and Interest packets for the subse-
quent Data packets in the constant time interval with the constant
rate 625 [packet/sec]. The third workload is the combination of
web and video traffic. We set the ratio of the amount of web traf-
fic to that of video traffic to 0.7 in this workload, as Fricker et al.
investigated in Ref. [23].

We evaluate the cache hit rate and the cache insertion rate at an
edge router, to which consumers are directly connected, that is,
the aforementioned Interest packets directly arrive without being
cached between the consumers and the router. This is because
cache hit rate in a realistic ISP network was already evaluated by
Sun et al. [7] and they conclude that LFU is the best algorithm
in terms of traffic reduction in the entire network and the second
best one in terms of cache hit rate. Hence, we focus on validating
that the performance of Filter is close to that of LFU at an edge
router.
6.1.3 Reference Cache Algorithms

As a reference cache eviction algorithm for Filter, we select
ARC [12] among existing cache eviction algorithms [12], [24]
which exploits the history of incoming requests to Data packets
because ARC realizes the fast computation with sufficiently high
cache hit rate. Although frequency-based cache eviction algo-
rithms such as LFU and WLFU [24] provide high cache hit rate,
they cause heavy computational overheads with logarithmic time
complexities. However, the computation complexity of ARC is
O(1) and its computational overhead is low comparable to that
of Least Recently Used (LRU). Nevertheless, ARC provides the
high cache hit rate comparable to WLFU as Einziger et al. inves-
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Fig. 5 Comparisons of cache insertion rate for Filter and TinyLFU admissions.

Fig. 6 Comparisons of cache hit rate for FIFO eviction, Random eviction, LFU eviction, ARC eviction,
Filter admission and TinyLFU admission.

tigated in Ref. [13]. In this evaluation, we implement the ARC
eviction based on data structures and algorithms which the au-
thors of ARC have proposed in Ref. [25]. Please note that we
use the FIFO eviction algorithm behind the Filter admission al-
gorithm.

6.2 Cache Insertion and Hit Rates
First, we evaluate the cache insertion rates of Filter and

TinyLFU and the cache hit rates of Filter and other cache algo-
rithms through simulations.

Figure 5 shows the cache insertion rate pInsertion with Filter un-
der three workloads of web traffic, video traffic and traffic includ-
ing both web traffic and video traffic. In Fig. 5, the cache size
varies from 1% of the number of total Data packets stored in the
producer to 10% of it. For comparison purposes, we also plot the
cache insertion rate with TinyLFU, which was chosen as a ref-
erence cache admission algorithm for Filter in Section 4.4. As
Einziger et al. [13] selected for the TinyLFU admission, we select
the Random eviction, which randomly chooses a victim among
Data packets stored in the cache, behind the TinyLFU admission.
Note that the window size of TinyLFU is set to a sufficiently large
number, 50 × C, where C is the cache size. The horizontal and
vertical axes indicate the cache size and the cache insertion rate,
respectively. Figure 5 indicates that the cache insertion rate with
Filter is lower than that with TinyLFU under all of the three work-
loads.

Next, we show that Filter achieves the sufficiently high cache
hit rate even if it is used in conjunction with a simple cache evic-
tion algorithm, such as FIFO and Random. For comparison pur-
poses, we also plot the cache hit rates of the FIFO eviction, the
Random eviction, the LFU eviction, the ARC eviction, and the
TinyLFU admission. Figure 6 shows simulation results of the
cache hit rate under three workloads of web traffic, video traffic
and traffic including both web and video traffic. Since we obtain
similar results under all of three workloads, we explain the result
under the workload of web traffic of Fig. 6 (a). In the case where
the cache size is 1 × 105, the cache hit rates of FIFO, Random,

Table 1 CPU cycles spent for processing blocks of packet processing
shown in Figs. 1 and 2.

B1 B3 B4 B5 B6 B7 B8 B9 B10 B11

571 148 72 188 413 56 188 73 329 50

Table 2 CPU cycles spent for processing blocks of cache eviction and ad-
mission algorithms shown in Figs. 1 and 2.

B2 (History Update) B12 (Eviction) B13 (Admission)
Filter 83 0 28

TinyLFU 91 0 282
ARC 173 202 0

Random 0 62 0
FIFO 0 0 0

LFU, ARC, TinyLFU, and Filter are 0.238, 0.241, 0.389, 0.366,
0.376, and 0.341, respectively. Although the cache hit rate of
Filter is slightly lower than those of LFU, TinyLFU, and ARC,
Filter improves the cache hit rate of FIFO and Random by about
1.4 times and 1.4 times, respectively. Under this evaluation con-
dition, where popularity distribution of Interest packets does not
change over time, the LFU eviction achieves the optimal cache
hit rate, as Fricker et al. claimed [23]. The results in Fig. 5 and
Fig. 6 suggest that Filter efficiently increases the cache hit rate
and reduces the cache insertion rate compared with simple cache
eviction algorithms such as Random and FIFO.

6.3 CPU Cycles Spent for NDN Packet Processing
In this subsection, we estimate the average CPU cycles of the

NDN software with Filter, ARC, FIFO, Random, and TinyLFU
on the PC platform. We conduct the estimation with the work-
load of web traffic in the following three steps:

First, we measure the CPU cycles of individual function blocks
illustrated in Fig. 1 and Fig. 2. Table 1 and Table 2 summarize
the measured CPU cycles of the blocks of the NDN software. Ta-
ble 2 shows the CPU cycles of the blocks for cache eviction and
admission, i.e., B2, B12 and B13. Note that the CPU cycles depend
on cache eviction/admission algorithms, i.e., Filter, ARC, FIFO,
Random, and TinyLFU.

Second, we estimate the CPU cycles for various cache sizes by
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Fig. 7 Comparison of the average CPU cycles for NDN packet processing
with Filter, TinyLFU, FIFO, Random and ARC under various cache
sizes.

assigning the measured CPU cycles of the blocks and the cache
hit and the insertion rates estimated with simulations, shown in
Fig. 5 and Fig. 6, to Eqs. (1) and (2). Figure 7 shows the CPU
cycles in the case of Filter, FIFO, Random, TinyLFU, and ARC
when the cache size varies from 1 × 105 to 10 × 105 packets. Fil-
ter reduces 16%, 11%, 15% and 9% of the average CPU cycles
compared with ARC, FIFO, Random, and TinyLFU, respectively,
when the cache size is 1 × 105 packets.

We obtain the following observations from Fig. 7. i) Cache
admission, such as Filter, is successful at reducing CPU cycles
in the cases of the various cache hit rates by avoiding redundant
cache insertions, as described in Section 6.2. ii) The average of
the CPU cycles for NDN packet processing with Filter is even
smaller than those with FIFO, whereas the cache hit rate of Filter
is higher than that of FIFO. The light computation of block B13

of Filter contributes to this phenomenon.
Third, we compare two cache admission algorithms, i.e., Fil-

ter and TinyLFU, in terms of trade-offs between cache hit rate
and CPU cycles. Regarding cache hit rate, Filter just degrades
the cache hit rate by 3% compared with TinyLFU when the cache
size is 1×105 packets under the workload of web traffic, as evalu-
ated in the previous section. This 3% degradation in the cache hit
rate of Filter results in increasing 28 cycles in the average CPU
cycles spent for NDN packet processing since the heavy compu-
tation of FIB Lookup must be executed in the case where a cache
miss occurs. However, Filter entirely reduces 9% of the average
CPU cycles for NDN packet processing because the light-weight
computation of block B13 of Filter contributes to this reduction,
as shown in Fig. 7. From these results, we conclude that Filter
provides fast computation in return for a small sacrifice, i.e., the
small cache hit rate degradation.

6.4 Forwarding Speed
Finally, we measure the forwarding speed of NDN software

routers with Filter, FIFO, and ARC. The software is executed in
a single-threaded environment. We measure the number of for-
warded Interest packets per second and that of forwarded Data
packets per second and calculate the sum of those numbers as the
total forwarding speed. Figure 8 shows the measured results.

The total forwarding speed of the NDN router with Filter in-
creases by 1.3 times and 1.1 times larger than that with ARC
and that with FIFO, respectively. In the experiment conditions,
where the sizes of an Interest and a Data packet are 121 bytes and

Fig. 8 Packet forwarding speeds of NDN routers with Filter, ARC and
FIFO.

1,143 bytes, the NDN router with Filter achieves the 16.1 Gbps
forwarding speed in a single-threaded environment while that
with ARC and that with FIFO do the 11.2 Gbps and the 13.9 Gbps
forwarding speeds, respectively. These results prove that Filter
achieves fast packet forwarding in NDN software routers com-
pared to FIFO and ARC, while keeping a similar cache hit rate to
ARC.

7. Conclusion

In this paper, we propose to use cache admission for achiev-
ing both high cache hit rate and fast packet forwarding speed in
NDN software routers. A key of this technique is Filter, which
identifies highly popular Data packets by filtering out unpopular
Data packets from the cache. We design Filter so that it is imple-
mented by a lightweight code of consuming a few tens of CPU
cycles. A simulation-based evaluation proves that Filter achieves
high cache hit rate comparable to sophisticated cache eviction al-
gorithms such as ARC. We implement a prototype of an NDN
software router with Filter and empirically validate that the NDN
router with Filter improves forwarding speed compared to that
with sophisticated cache eviction like ARC and even that with
simple cache eviction like FIFO.
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