
Journal of Information Processing Vol.27 177–189 (Feb. 2019)

[DOI: 10.2197/ipsjjip.27.177]

Regular Paper

Evaluating Portable Mechanisms
for Legitimate Execution Stack Access

with a Scheme Interpreter
in an Extended SC Language

Masahiro Yasugi1,a) Reichi Ikeuchi1,†1 Tasuku Hiraishi2 Tsuneyasu Komiya3

Received: June 30, 2018, Accepted: September 26, 2018

Abstract: Scheme implementations should be properly tail-recursive and support garbage collection. To reduce the
development costs, a Scheme interpreter called JAKLD, which is written in Java, was designed to use execution stacks
simply. JAKLD with interchangeable garbage collectors was reimplemented in C. In addition, we have proposed an
efficient C-based implementation written in an extended C language called XC-cube, which features language mecha-
nisms for implementing high-level programming languages such as “L-closures” for legitimate execution stack access,
with which a running program/process can legitimately access data deeply in execution stacks (C stacks). L-closures
are lightweight lexical closures created from nested function definitions. In addition to enhanced C compilers, we
have portable implementations of L-closures, which are translators from an extended S-expression based C language
into the standard C language. Furthermore, we have another mechanism for legitimate execution stack access, called
“closures”. Closures are standard lexical closures created from nested function definitions. Closures can also be imple-
mented using translators. In this study, JAKLD was reimplemented in an extended SC language (S-expression based
C language) that features nested functions to evaluate (L-)closures and their implementations, including translators.
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1. Introduction

Implementations of the Scheme language [1], [12] are required
to be properly tail-recursive and to support an unbounded number
of active (pre-return) tail calls. For example, we can elegantly de-
fine a tail-recursive procedure (function) my-gcd that calculates
the greatest common divisor based on the Euclidean algorithm as
follows.
(define (my-gcd a b)

(if (= b 0) a (my-gcd b (remainder a b))))

In addition, Scheme implementations are required to support
garbage collection (called GC for short).

In a Scheme interpreter called “JAKLD” [19] that is written in
Java, as its basic design, compilation is not required and execution
stacks are simply used; this design makes it easy to maintain and
extend the Scheme implementation. In JAKLD, built-in functions
and special forms can be directly implemented. Although JAKLD
was, at first, designed and developed as a Lisp driver to be em-
bedded in Java applications, it can also be used as a stand-alone
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Scheme implementation. Later, JAKLD was reimplemented in C.
The implementation (called “JAKLD/C” in this paper) consists of
an interpreter and a memory manager. It features a customizable
memory manager so that it can serve as a GC research platform.

Early in the development history, JAKLD and JAKLD/C were
not properly tail-recursive. Later, JAKLD with trampolines
was developed as a properly tail-recursive implementation [20].
JAKLD/C with trampolines can also be developed as a properly
tail-recursive implementation.

Based on JAKLD/C, we have proposed a properly tail-
recursive implementation [18] (called “JAKLD/XC” in this pa-
per) written in an extended C language XC-cube [15], [16], which
features mechanisms for implementing high-level languages,
such as “L-closures” and “closures”. L-closures and closures are
mechanisms for legitimate execution stack access (called LESA

for short), with which a running program/process can legitimately
access data deeply in execution stacks (C stacks). The imple-
mentation scheme of JAKLD/XC is based on the key idea that
is to avoid stack overflow by creating a space-efficient first-class
continuation represented as a list containing only the “Frame”
objects necessary for the rest of the computation and immedi-
ately invoking the continuation. In our previous work [18], this
scheme has shown better performance than the trampoline based
properly tail-recursive implementation of JALKD/C. By using
LESA mechanisms for directly scanning GC roots, JAKLD/XC
has shown better performance [18] than JAKLD/C with (push/pop
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Table 1 The Scheme interpreters appearing in this paper. These interpreters simply use execution stacks
of their implementation language.

Interpreter Implementation
language

Garbage collection Proper tail recursion First-class continuation

JAKLD [19] Java by Java system trampoline exit-only
JAKLD/C [11] C a stack of root addresses trampoline exit-only
JAKLD/XC [18] XC-cube

(extended C)
scanning roots with nested
functions

creating a space-efficient first-class con-
tinuation and immediately invoking the
continuation

first-class continuation
captured with nested
functions

JAKLD/SC (this
study)

SC-NF
(extended SC)

same as previous in column same as previous in column same as previous in column

operations over) an auxiliary stack whose elements are addresses
of GC roots.

L-closures are lightweight lexical closures created from nested
function definitions. In our previous work, we have implemented
L-closures by enhancing C compilers [15], [16] and by develop-
ing translators from an extended S-expression based C language
into the standard C language [9], [14]. For transforming programs
written in (extended) S-expression based C languages (called SC
languages), we can employ the SC language system [10].

As another LESA mechanism, closures are standard lexical
closures also created from nested function definitions. We have
implemented closures by enhancing C compilers [14], [15], [16].
We can implement closures by developing translators; in fact, we
have newly developed such a translator in this study.

In this study, we also reimplemented JAKLD/XC as
“JAKLD/SC” written in an extended SC language featuring
nested functions (called the SC-NF language in this paper). With
JAKLD/SC, we evaluated not only enhanced-C-compiler based
LESA mechanisms but also transformation-based portable LESA
mechanisms.

Transformation-based implementations of LESA mechanisms
are preferable over enhanced C-compiler based implementations
in terms of portability and development costs. We developed the
extended C compiler [15] by enhancing GCC 3.4.6 at that time.
After GCC 4, the inside of the GCC compiler was significantly
changed, which made it difficult to enhance GCC for L-closures.
As a background for this study, these facts lead to a development
plan where we take transformation-based implementations or at
least combine them with relatively simple compiler enhancement.
As implementations of an LESA mechanism L-closures based
on translators from SC-NF into standard C, we have developed
an implementation which reduces creation/maintenance costs of
L-closures [9] which was published in 2006 and called the “ex-
ecution stack reconstruction technique.” Another implementa-
tion we developed which reduces creation/maintenance costs plus
invocation costs of L-closures [14] was published in 2013 and
called the “frame-by-frame restoration technique.” Note that the
new transformation-based implementation of an LESA mecha-
nism closures is realized as a translator into standard C by fol-
lowing the main idea of the compilation techniques for closures
in enhancing GCC 4 [14].

In addition to an intermediate report on JAKLD/SC presented
in a workshop [17], this paper includes the new transformation-
based implementation of closures for evaluating various imple-
mentations of LESA mechanisms.

The main contribution of this paper is five-fold.

• We developed a new implementation of an LESA mecha-
nism closures based on the translation from an extended SC
language that features nested functions (SC-NF) into stan-
dard C.

• We reimplemented JAKLD/XC proposed in Ref. [18] as a
new Scheme implementation JAKLD/SC written in the SC-
NF language. Through the reimplementation, we showed
that their difference in syntax made few troubles.

• With JAKLD/SC, we got results of performance mea-
surements on transformation-based implementations of
LESA mechanisms (namely, execution stack reconstruction
technique [9], frame-by-frame restoration technique [14],
and a new transformation-based implementation of clo-

sures) as well as enhanced C compilers, where the new
transformation-based implementation of closures showed
higher performance than other LESA mechanisms.

• We improved the transformation-based implementations of
L-closures by discovering some bugs in the implementations
and fixing them.

• Along with the evaluation, we discovered future work and
future directions for improving LESA mechanisms.

The remainder of this paper is organized as follows. In Sec-
tion 2, we describe enhanced-C-compiler based implementations
of LESA mechanisms (L-closures and closures). In Section 3,
we describe the Scheme language specification, and describe ex-
isting Scheme interpreters, JAKLD (written in Java), JAKLD/C
(reimplemented in C), and JAKLD/XC (written in an extended C
language XC-cube that features L-closures and closures). In Sec-
tion 4, we describe the extended SC language SC-NF in which
JAKLD/SC is written. We also describe existing transformation-
based implementations of LESA mechanism L-closures using the
SC language system. In this section we finally describe a new
transformation-based implementation of LESA mechanism clo-

sures using the SC language system. In Section 5, we describe the
(re-)implementation of Scheme interpreter JAKLD/SC written in
the SC-NF language. In Section 6, we present discovered bugs
in existing transformation-based implementations of L-closures,
and we address their fixes. We evaluate JAKLD/SC in Section 7
and describe related work in Section 8. We conclude this paper
with future work in Section 9.

Since various language mechanisms, languages, and imple-
mentations appear in this paper, we summarize their relationship
in Tables 1, 2 and 3. Please see them as well as Table 4 in Sec-
tion 4.2 if necessary.
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Table 2 The nested function-based language mechanisms appearing in this paper and their implementa-
tion strategies/techniques.

Language
mechanism

Language Implementation policy Implementation technique

trampolines C w/ GCC extensions compatibility with top level functions. implemented in the GCC compiler. A function
pointer points to an instruction sequence called
trampoline which is dynamically generated and
stored in the execution stack [3].

closures XC-cube
(extended C)

moderate creation and maintenance costs and
equivalent invocation costs to top level functions.

implemented in the enhanced C compiler. Vari-
able values are stored in the execution stack. A
function pointer points to a pair of an instruction
sequence and an environment [14], [15].

closures SC-NF
(extended SC)

moderate creation and maintenance costs and
equivalent invocation costs to top level functions.

Local variables accessed by nested functions are
translated into fields of a structure that represents
a closure’s environment.

L-closures XC-cube
(extended C)

reduces creation and maintenance costs at the ex-
pense of higher invocation costs. Lower mainte-
nance costs are achieved by not preventing regis-
ter allocation.

implemented in the enhanced C compiler. Two lo-
cations are prepared for each variable and coher-
ence between the locations is lazily kept. Initial-
ization of L-closures is delayed [15], [16].

L-closures SC-NF
(extended SC)

reduces creation and maintenance costs at the ex-
pense of higher invocation costs. Lower mainte-
nance cost is achieved by not preventing register
allocation. Incurs relatively small delay judgment
costs.

implementation based on translation into standard
C. Data in the execution stack are evacuated to an
explicit stack when an L-closure is called. The ex-
ecution stack is reconstructed after the execution
of the L-closure [9].

L-closures SC-NF
(extended SC)

reduces creation and maintenance costs at the ex-
pense of higher invocation costs, but alleviates the
increase in the invocation costs. Lower mainte-
nance costs are achieved by not preventing register
allocation. Incurs relatively small delay judgment
costs.

implementation based on translation into standard
C. Data in the execution stack are evacuated to an
explicit stack when an L-closure is called. After
the execution of the L-closure, the execution stack
is restored frame by frame when necessary [14].

Table 3 Combinations that can be evaluated (Yes) due to this study (2018). An asterisk (*) signifies
combinations that were evaluated in this study.

Scheme interpreter
Mechanism Language Implementation JAKLD/XC [18] JAKLD/SC (2018)
trampoline [3] extended C GCC-4.6.3 Yes Yes (2018) (*)
closure XC-cube enhanced GCC-3.4.6 [15] Yes [18] Yes (2018)
closure XC-cube enhanced GCC-4.6.3 [14] Yes Yes (2018) (*)
closure SC-NF translator into C (2018) Yes (2018) (*)
L-closure XC-cube enhanced GCC-3.4.6 [15] Yes [18] Yes (2018) (*)
L-closure SC-NF translator into C [9] Yes (2018) (*)

(execution stack reconstruction)
L-closure SC-NF translator into C [14] Yes (2018) (*)

(frame-by-frame restoration)

2. LESA Mechanisms: L-Closures and Clo-
sures

2.1 L-Closures: An LESA Mechanism
As will be described in Section 3.4, JAKLD/XC [18] em-

ploys an enhanced-C-compiler based implementation of a safe
LESA mechanism called L-closure [15]. For this implementa-
tion, we enhanced the GNU C compiler (GCC) 3.4.6 based on a
trampoline-based implementation [3] of nested functions (lexical
closures). Nested functions are introduced as a GCC-specific ex-
tension to C. To make them compatible with ordinary top-level
functions, GCC dynamically generates an instruction sequence
on its execution stack where the instruction sequence (also called
trampoline) sets up a static link and jumps. Note that this tech-
nique incurs considerable creation costs for flushing the instruc-
tion cache.

By using LESA mechanisms, we can manipulate values of
variables of callers deeply in execution stacks. Examples of the
typical use of L-closures will be shown in Fig. 2 in Section 3.4.

For the implementation of L-closures [15], [16], at that time,
we minimized the overhead of normal execution (the common

case) by aggressively reducing creation/maintenance costs of L-
closures and by accepting higher invocation costs. To reduce cre-
ation costs of L-closures, we proposed a technique for delaying
the initialization of an L-closure on memory until the L-closure
is actually invoked. To reduce maintenance costs of L-closures,
we proposed a technique for making variables accessed by an L-
closure still remain register allocation candidates during the nor-
mal execution and for delaying the saving of private values into
stack-memory locations accessible by the L-closure body until
the L-closure is actually invoked.

2.2 Closures: An LESA Mechanism More Moderate Than
L-Closures

We have also developed an enhanced-C-compiler based imple-
mentation of closures (an LESA mechanism more moderate than
L-closures) [14], [15]. Closures incur usual creation/maintenance
costs, and also they incur only as usual invocation costs as ordi-
nary top-level functions. Based on the trampoline-based imple-
mentation [3] of nested functions (introduced as a GCC-specific
extension to C and incurring considerable creation costs for com-
patibility), we have employed (1) a pair of a closure’s own en-

c© 2019 Information Processing Society of Japan 179



Journal of Information Processing Vol.27 177–189 (Feb. 2019)

vironment and code instead of an instruction sequence (trampo-
line) and (2) a type and calling convention both incompatible with
those for an ordinary function. Consequently, we have reduced
creation costs by initializing only an environment-code pair (two
words).

We have implemented closures by enhancing not only GCC
3.4.6 [15] but also GCC 4.6.3 [14]. After GCC 4, the inside of
the GCC compiler was significantly changed, which makes it dif-
ficult to enhance GCC. However, it was found that enhancing
GCC 4.6.3 for closures was not as difficult as for L-closures.

3. Existing Scheme Interpreters

3.1 The Scheme Language Specification
Implementations of the Scheme language [1], [12], which is

a dialect of Lisp, are required to be properly tail-recursive and
to support an unbounded number of active (pre-return) tail calls.
As was discussed in the previously proposed implementation [18]
(called JAKLD/XC), Clinger proposed a formal definition of
proper tail recursion for a subset of Scheme in terms of space effi-

ciency [4]. Reference [18] proposes an implementation technique
which satisfies this definition in terms of asymptotic space com-
plexities. This definition of proper tail recursion encompasses
systematic tail call optimization as well as Baker’s implementa-
tion of Scheme in the C language with CPS (continuation-passing
style) conversion [2]. The tail call optimization (for space) is
a widely used implementation technique for implementing tail
calls, where every tail call is converted to a jump (effectively with
an optional trampoline [13]). Note that the target of an optimized
call (a jump) may be another procedure, where a jump is (1) to
finish the current call (i.e., to discard the current environment)
before its return then (2) to start a new call by passing the com-
mon responsibility of returning (the very current continuation) as
well as new actual (evaluated) arguments.

In addition, Scheme implementations are required to support
GC and first-class continuations.

3.2 JAKLD: A Scheme Interpreter in Java
JAKLD [19] is “a Lisp driver to be embedded in Java applica-

tions”. Although, according to Ref. [19], JAKLD is designed and
developed to be embedded in Java applications, it can serve as a
standalone Lisp system.

According to Ref. [19], the key design goals of JAKLD are as
follows:
( 1 ) It should be easy for Java programmers to add, delete and

modify functionality without previous experience imple-
menting Lisp systems.

( 2 ) It should be easy to implement functionality for dealing with
software components written in Java.

( 3 ) The implementation of JAKLD should be compact.
( 4 ) The minimum debugging facilities should be provided,

though there is no need to provide powerful development
tools for Lisp programming.

( 5 ) The performance should be comparable, though not excel-
lent.

Especially when adding functionality, Scheme procedures and
special forms can be directly and easily implemented since

Fig. 1 Implementing “if” for JAKLD/C.

JAKLD is not a compiler. Evaluating subexpressions can be im-
plemented simply by invoking eval with arguments such as the
current environment.

JAKLD employs a nearly full set of the IEEE Scheme standard.
The functionality that does not conform to the IEEE standard in-
cludes continuations created by call/cc as Scheme procedures.
Continuations cannot be invoked after call/cc returns, i.e., they
are escape procedures. Thus, they can be used for performing
non-local exits like catch and throw in Common Lisp but they
cannot be used for implementing coroutines.

Although the original version of JAKLD is not properly tail-
recursive, a later version supports proper tail recursion by using
trampolines [20].

3.3 JAKLD/C: A Scheme Interpreter Reimplemented in C
In this study, we call a (re)implementation of JAKLD in C [11]

JAKLD/C. JAKLD/C is based on the language specification for
JAKLD without supporting so-called bignums. It consists of an
interpreter and a memory manager. It features a customizable
memory manager so that it can serve as a GC research platform.
Since all GC algorithms must be able to scan GC roots and scan
objects, necessary code has been implemented as a common part.
The system manages parameters and local variables as roots by
using a stack whose elements are addresses of roots. Unfortu-
nately, this scheme prevents such variables from being register-
allocated.

For example, Scheme’s if is directly implemented, as shown
in Fig. 1. Note that JAKLD/C uses l_if as a C function name
since if is a reserved keyword in C. JAKLD/C makes its code
compact by inheriting the advantages of JAKLD. For scanning
GC roots, it employs a macro for taking addresses of roots and
pushing them onto a stack whose elements are addresses of roots.

3.4 JAKLD/XC: Implemented in an Extended C Language
That Features L-Closures (or Closures)

JAKLD/XC [18] employs L-closures [15], [16] for improving
performance about GC. For example, Scheme’s if is imple-
mented, as shown in Fig. 2. By adding keyword lightweight
to nested function scan1, we can create an L-closure by evalu-
ating the nested function definition. To implement copying GC,
by e1 = mv(e1), we move a live object pointed to by root e1
into a To-space of the heap. In this code, L-closure scan1 calls
an L-closure scan0 to scan roots in the caller of l_if; this pro-
cess is repeated (e.g., for the caller of the caller) until all roots
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Fig. 2 Implementing copying GC with L-closures on implementing “if”
for JAKLD/XC.

Fig. 3 Implementing copying GC and first-class (captured) continuations
with L-closures on implementing “if” for JAKLD/XC.

(parameters/local variables) in the entire C stack are scanned.
The enhanced-C-compiler based implementations of L-

closures [15], [16] attempt not to prevent variables e1, e2, env
from being register-allocated. We prepare two locations for each
of these variables: one private location is a register allocation
candidate, and another shared location is put on stack memory.
operations for saving private values into shared locations are
delayed until an L-closure is actually invoked. During the
invocation of the L-closure, it accesses the shared locations. On
returning to the function that owns the variables, private values
are restored from shared locations. To reduce creation costs
of L-closures, Operations for initializing L-closures are also
delayed until an L-closure is actually invoked.

By using keyword closure in place of lightweight for
nested function scan1, we can create a closure by evaluating the
nested function definition.

JAKLD/XC [18] implements proper tail recursion based on the

key idea that is to “create a space-efficient first-class continuation
and immediately invoke it”. JAKLD/XC performs this for re-
setting the use of the execution stack every time execution stack
is about to overflow based on a criterion. By creating a space-
efficient first-class continuation, JAKLD/XC improves space effi-
ciency. By using a criterion that the stack space is less than some
fixed constant, the space consumption for an execution stack is
actually less than some fixed constant. When evaluating asymp-
totic space complexities according to Clinger’s formal definition,
we can ignore constant terms in space consumption functions.
Therefore, we can confirm that JAKLD/XC is a properly tail-
recursive implementation.

Scheme’s if is implemented for not only scanning GC roots
but also capturing continuations, as shown in Fig. 3. As an aux-
iliary function to execute the continuation captured as a list of
“Frame” objects, function l_if_c is added. In this implemen-
tation, variable last_val represents a result of the last evalu-
ation, and variable x_frame represents a frame being captured
or a frame to be executed next; both are employed like machine
registers. Variable scan_in_capture is used for scanning GC
roots even when GC is started during the capturing of continua-
tions. For more details, please refer to the paper [18].

4. Extended SC Languages with Nested Func-
tions

4.1 SC Language System
We can reduce development cost for transformation-based im-

plementations of language extensions by using the S-expression
based C language (SC language) system [10].

The SC language is a generic term for the C language with
S-expression based syntax and its extended languages. Among
them, the SC language with no extension is called the SC-0 lan-
guage. The SC language system provides a translator from the
SC-0 language to the C language. Thus, users can complete im-
plementations of extended SC languages by implementing trans-
lators to SC-0.

The SC language system consists of the following three kinds
of modules.
SC preprocessors

perform preprocessing such as inserting the contents of files
specified by %include directives and macro expansion (as
preprocessors of the C language),

SC translators
take an S-expression (source code) and a transformation
ruleset as inputs and transform the S-expression by apply-
ing the rules, and

The SC compiler
compiles SC-0 code into C.

Our implementation of the SC language system runs on Com-
mon Lisp.

4.2 SC-NF: An Extended SC Language with Nested Func-
tions

The SC-NF language, an extended SC language with nested
functions, can be translated into the C language with GCC exten-
sions (including nested functions), the XC-cube language with
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Table 4 SC-NF’s translation target languages by the SC language system.

Source
language

Target language Intermediate language Remarks

SC-NF C w/ GCC extensions (incl. nested functions) SC-0-gcc
SC-NF XC-cube (L-closures) SXC-0 (L-closures)
SC-NF XC-cube (closures) SXC-0 (closures)
SC-NF Standard C (w/o nested functions) SC-0 (w/o nested functions) CL-SC2: closures based on environment-to-

structure conversion (2018)
SC-NF Standard C (w/o nested functions) SC-0 (w/o nested functions) LW-SC: L-closures based on the execution

stack reconstruction technique [9]
SC-NF Standard C (w/o nested functions) SC-0 (w/o nested functions) LW-SC2: L-closures based on the frame-by-

frame restoration technique [14]

L-closures, the XC-cube language with closures, or the standard
C language (without nested functions), using the SC language
system. Table 4 summarizes the translation targets of the SC
language system. Here, translation into standard C is used to im-
plement L-closures or closures.

The following code should be written at the beginning of an
SC-NF program.

1 (%ifndef* NF-TYPE
2 ;; one of (GCC XCC XCCCL CL-SC2 LW-SC)
3 (%defconstant NF-TYPE GCC))
4 (%include "rule/nestfunc -setrule.sh")

Here, one of GCC, XCC, XCCCL, CL-SC2 and LW-SC is chosen
as the NF-TYPE. The program is translated into the C language
with GCC extensions (including nested functions), the XC-cube
language with L-closures, the XC-cube language with closures,
standard C that implements closures, or standard C that imple-
ments L-closures based on the execution stack reconstruction
technique [9], respectively. All of these translations are imple-
mented with the nestfunc ruleset, a transformation ruleset of
the SC language system.

In our current implementation, programmers need to use an-
other version of the ruleset to use the translation into standard C
that implements L-closures based on the frame-by-frame restora-
tion technique [14]. We will enhance the nestfunc ruleset to en-
able programmers to choose this implementation only by specify-
ing LW-SC2 as the NF-TYPE. Thus, we denote the translation into
the standard C that implements L-closures based on the frame-
by-frame restoration technique [14] as LW-SC2 in this paper (es-
pecially in the figures and tables).

In SC languages, the type of a function is written separately
from its parameter list as (fn ret-type parameter-type· · ·). For
example, see lines 1–2 and 34 in Fig. 4 in Section 5. In the SC-NF
language, the type of a nested function is written as (NESTFN ret-

type parameter-type· · ·). For example, see line 6 in Fig. 4.

4.3 Translation Techniques for Implementing L-Closures
The translator from the SC-NF language into the standard C

language (via the SC-0 language) that implements L-closures
based on execution stack reconstruction or frame-by-frame
restoration has been implemented as a transformation ruleset.
Note that we uniformly call the extended SC language with
nested functions as the SC-NF language in this paper. In some
literature such as Refs. [9], [14], the extended language with
nested functions whose types are written as (lightweight ret-

type parameter-type· · ·) is refered to as the LW-SC language.

The execution stack reconstruction technique [9]
reduces the creation and maintenance costs of L-closures
by delaying data evacuation to an explicit stack until an L-
closure is called to promote the use of the execution stack. A
drawback of this technique is that the overall performance is
degraded when nested functions are called frequently. This
degradation is brought by overhead for each nested function
call. The overhead comprises the costs of evacuating neces-
sary data in the C execution stack into the explicit stack to
enable the data to be accessible by the nested function and
reconstructing the C execution stack after the execution of
the nested function to resume the execution from its caller.
The latter cost is especially considerable.

The frame-by-frame restoration technique [14]
is implemented based on the execution stack reconstruction
technique with the improvement of reducing the invocation
cost of nested functions. In the execution stack reconstruc-
tion technique, when the execution of a nested function com-
pletes, the C execution stack is reconstructed using all the
data evacuated to the explicit stack. In the frame-by-frame
restoration technique, the C execution stack is restored frame
by frame when necessary. Thus, we can reduce the in-
vocation costs of nested functions because the amount of
data transferred between the C and explicit stacks is reduced
when a nested function is called again.

The performance evaluation section (Section 7) reveals
that the delay judgment costs are also considerable in these
transformation-based implementations of L-closures. The delay
judgment costs are necessary in addition to the creation, mainte-
nance, and invocation costs of L-closures described above. More
detailed discussion is presented in Section 7 referring to Fig. 7
and Fig. 8 in Section 6. This kind of cost has been overlooked
maybe because L-closures and closures based on C compiler en-
hancements (XC-cube compilers) are carefully implemented to
avoid such cost.

4.4 Translation Techniques for Implementing Closures
In this study, we implemented a new translator, as a new trans-

formation ruleset, from the SC-NF language into the standard C
language (via SC-0) that implements closures. This implemen-
tation does not incur the delay judgment costs mentioned in the
previous section.

This translator into standard C follows the same basic idea as
the closure implementation proposed in Ref. [14], which is imple-
mented as an enhanced GCC 4 compiler. Concretely, it translates
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local variables accessed by nested functions into fields of a struc-
ture representing a closure’s environment. Unlike the translators
for L-closures, which translate programs to evacuate/restore the
data of all the local variables to/from the explicit stack, this trans-
lator for closures leaves local variables that are not accessed by
nested functions untreated. In addition, declarations of local vari-
ables that are translated into fields (except for function parame-
ters) are removed. A translation example is shown in Section 6.

The new implementations based on translation into standard C
are more portable than the existing implementations as enhanced
C compilers. In addition, the new implementations may achieve
better performance due to optimizations made by back-end C
compilers.

An SC language system user can use this implementation by
choosing CL-SC2 as NF-TYPE. This name comes from CL-SC,
the name of the previous version of the transformation-based im-
plementation of closures. CL-SC was implemented by modifying
LW-SC, the transformation-based implementation of L-closures,
to use an explicit stack without delay.

5. JAKLD/SC: A Scheme Interpreter written
in SC-NF

Figure 4 shows an example of reimplementation in SC-NF cor-
responding to Fig. 3 written in XC-cube. (Some details are omit-
ted.) As you can see, this reimplementation is basically to change
only syntax. Indeed, we found no problem in most C code in
rewriting it into the SC language. However, we found a few very
concrete problems arising from the syntax difference. This pa-
per presents them to show their impacts and how to address them
below.

For example, macros REF and UPDATE_P_INI in Fig. 5 had
problems. REF(obj, field) is used for accessing an ob-
ject obj’s field field. UPDATE_P_INI is used for initial-
izing an object obj’s field field with pointer val. In
JAKLD/C, we can implement GC algorithms with read barri-
ers and/or write barriers by redefining these macros, if nec-
essary, according to the GC algorithms. In C, we can
write UPDATE_P_INI(v, value[i], fill) since we can write
REF(v, value[i]) in place of REF(v, value)[i]. However,
this relies on the fact that, after expanding REF(v, value[i]),
v->value[i] is parsed as (v->value)[i]. Since, after expand-
ing REF(v, (value[i])), v->(value[i]) causes a syntax er-
ror even in C, the same trick does not work in SC. In SC, we
need to define two separated macros for REF(v, value) and
REF(v, value[i]), and to define UPDATE-ELM-P-INI in ad-
dition to REF-based UPDATE_P_INI, as shown in Fig. 6.

Usage of character literals were also discovered as having
a problem. In SC, character literals are those in Lisp; thus,
we need to translate character literals in C such as ’\036’
into the character literals in Lisp whose character codes are
the octal numbers. Sometimes Lisp does not provide such
literals. To solve this problem, we define a new macro as
(%defmacro c-char (x) (code-char x)), then we write
(c-char #o36). In a macro definition, we usually employ back-
quote macros (pseudo quotations) as in Fig. 6. Instead of them,
we directly use an expression in Common Lisp. This implies an

Fig. 4 Implementing copying GC and first-class (captured) continuations
with L-closures on implementing “if” for JAKLD/SC. (Some de-
tails are omitted.)

Fig. 5 Macro definitions in C for the existing implementation.

Fig. 6 Macro definitions in SC.

evaluation of an expression in Common Lisp; thus, we should
limit expressions for macros in future work.

6. Problems in Transformation-Based Imple-
mentations of LESA Mechanisms and Their
Solutions

In this study, we developed the Scheme implementation
JAKLD/SC, which is written in an extended SC language SC-NF,
so that JAKLD can use implementations of LESA mechanisms
based on translation into the standard C language. Through this
development, we found out some interesting problems and solved
them.

Figure 7 and Fig. 8 show the translation results of the function
l_if_c in lines 34–39 of Fig. 4 based on execution stack recon-
struction [9] and frame-by-frame restoration [14] techniques, re-
spectively. See Refs. [9] and [14] for details of these techniques,
respectively.

Note that the code in these figures shows the results after the
problems are solved. Before solving the problems, the return val-
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Fig. 7 The translation result of the l_if_c function in Fig. 4 on implement-
ing L-closures based on the execution stack reconstruction technique
(LW-SC).

ues of the l_if function called in line 46 of Fig. 7 and line 36 of
Fig. 8 are directly assigned to last_val. In LW-SC, the integer
-1 is used as a special function return value to indicate that this
return is not a normal function return but a temporary return to
prepare for a nested function call by unwinding the C execution
stack. Therefore, the function return value should not be assigned
to last_val until this function return turns out to be a normal
one. In the JAKLD/SC case, the garbage collector did not work
correctly because last_val is accessed by nested functions dur-
ing root scanning.

Another less significant problem in the execution stack recon-
struction technique is that the complex expressions appear in the
argument list of the l_if function call. In this technique, this
function is called for every reconstruction of the C stack and thus
these expressions are evaluated every time. In example Fig. 7, the
complex expressions such as ((*params).value)[0] appear in
the argument list. This seems not to be a problem since these ex-
pressions do not have any side effects, but, in environments where
copying GC is used as in this study’s Scheme language system, it
is possible that the object pointed to by params has been garbage
collected and params points to invalid data when these expres-

Fig. 8 The translation result of the l_if_c function in Fig. 4 on implement-
ing L-closures based on the frame-by-frame restoration technique
(LW-SC2).

sions are reevaluated. However, this problem does not surface
because such invalid data are overwritten by evacuated values.
For example, the parameter scan0 in line 10 of Fig. 7 is over-
written by an evacuated value in line 63. In the same way, the
invalid parameter values of l_if in lines 46–50 are also overwrit-
ten in the callee when this function is called for reconstruction of
the execution stack. (Note that the LSB of new_esp is used for
indicating whether the function is called normally or called for
reconstruction of the execution stack.) Nonetheless, to be strict,
the translated code should store the result values of the argument
expressions in temporary variables. In addition, the increase in
the number of such temporary variables should be prevented as
much as possible using techniques such as reusing a temporary
variable in other function call expressions.

Code resulting from translation using the frame-by-frame
restoration technique [14] includes the additional auxiliary func-
tion l_if_c_comp. Note that such auxiliary functions are de-
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fined at the C language level for implementing SC-NF’s nested
functions, while, in the JAKLD/SC implementation, we define
auxiliary functions such as l_if_c in SC-NF for executing con-
tinuations captured by using SC-NF’s nested functions.

In this study, we developed a new transformation-based imple-
mentation of closures to avoid the delay judgment costs, which
were found to be a problem in the performance evaluations pre-
sented in Section 7. Figure 9 shows the translation result of
the function l_if_c in lines 34–49 of Fig. 4. We can see that

Fig. 9 The translation result of the l_if_c function in Fig. 4 on imple-
menting closures based on environment-to-structure conversion (CL-
SC2).

Fig. 10 The translation result of the l_if function in Fig. 4 on implement-
ing closures based on environment-to-structure conversion. (CL-
SC2) (Some details are omitted.)

the translation result of a function that does not have nested
functions is almost identical to the original one. In fact, the
statement efp = &my_frame;, and the variables my_frame and
efp, whose types include struct l_if_c_frame, are opti-
mized away with compilation into machine code. In addition,
Fig. 10 shows the translation result from the function l_if in
Fig. 4. As in this example, a local variable accessed by nested
functions is translated into a field of a structure, and a nested
function is translated into a top-level function that takes a pointer
to such a structure object as an additional parameter. When call-
ing a closure, a pointer to the structure object should be passed as
the additional argument, as done in lines 19–20 of Fig. 10.

7. Performance Evaluation

In this section, we evaluate performance, mainly execution per-
formance. Table 5 shows our evaluation environment. We mea-
sure the performance using the Gabriel benchmark [7].
• boyer: a benchmark based on Boyer’s theorem prover, it in-

cludes many cons operations
• fft: fast Fourier transform, it includes many floating point

operations and array references
• tak: a variant of the Takeuchi function, it includes many re-

cursive calls
• traverse: a benchmark that creates and traverses a tree struc-

ture
• cpstak: a CPS (continuation passing style) version of tak
• puzzle: a program that searches for all solutions of a puzzle.

First-class continuations by call/cc are used for non-local
exits from the main search loop.

We also use the following programs:
• fib: a program that calculates the 30th Fibonacci number re-

cursively
• fib-cps: fib in CPS
For each JAKLD/SC implementation, we employ two 50 MB

spaces as the heap for Cheney-style copying GC. We limit the
number of nested SC-NF calls for interpreting Scheme proce-
dures/constructs to 1,500. If the interpreter exceeds the limit, it
creates and invokes a first-class continuation for preventing stack
overflow. As shown in Fig. 4, LESA mechanisms are called when
roots are scanned or first-class continuations are created (captur-
ing continuations). Roots are scanned infrequently because this
occurs only when the current 50 MB space is full. Note that a
50 MB space is consumed, for example, by cons in Scheme pro-
grams and creation of environments for the Scheme interpreter.
First-class continuations are created only for preventing stack
overflow except explicit call/cc’s. Thus, the creation is fre-
quent if Scheme programs are written in CPS and active (pre-
return) tail calls are nested deeply. Otherwise it is infrequent.

Table 5 Evaluation environment.
UltraSPARC T2 Plus Server

CPU UltraSPARC T2 Plus 1.4GHz 8-Core×2
8 threads/core (128 threads total)

Memory 24GB
OS SunOS 5.10
Compiler L-closure XC-cube (SPARC 32 bit GCC 3.4.6-based [15]) -g -O2

closure XC-cube (SPARC 32 bit GCC 4.6.3-based [14]) -g -O2
CL-SC2 (closure) (with SPARC 32 bit GCC 4.6.3 -g -O2)
LW-SC (L-closure) [9] (with SPARC 32 bit GCC 4.6.3 -g -O2)
LW-SC2 (L-closure) [14] (with SPARC 32 bit GCC 4.6.3 -g -O2)
GCC extension (trampoline [3]) (SPARC 32 bit GCC 4.6.3) -g -O2
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Fig. 11 The measurement results on SPARC. The vertical axis shows relative times to trampoline (GCC
extension) (lower is better). The numbers above the graph denote the absolute execution times of
the baseline.

Figure 11 shows the measurement results. The vertical axis
shows the execution times relative to trampoline (GCC exten-
sion), which is mentioned later. The numbers above the graph de-
note the absolute execution times of trampoline (GCC extension).
We compare the following implementations of nested functions,
and details of them are shown also in Table 5.
• L-closure XC-cube: L-closures in XC-cube (extended C)

implemented by the enhanced C compiler. At the expense
of higher invocation costs, other kinds of costs are reduced.

• closure XC-cube: Closures in XC-cube (extended C) imple-
mented by the enhanced C compiler. Invocation costs and
creation/maintenance costs are moderate.

• CL-SC2 (closure): Closures implemented based on transla-
tion into standard C. Invocation costs and creation/mainte-
nance costs are moderate.

• LW-SC (L-closure): L-closures implemented based on trans-
lation into standard C using the execution stack reconstruc-
tion technique.

• LW-SC2 (L-closure): L-closures implemented based on
translation into standard C using the frame-by-frame restora-
tion technique.

• trampoline (GCC extension): Nested functions in GCC ex-
tensions implemented by the GCC compiler. Instruction se-
quences generated in the C stack (trampolines) are used.
This implementation is used as the baseline of relative ex-
ecution times in Fig. 11 because this can be used easily on
many systems only by installing the GCC package. This im-
plementation achieves lower invocation costs, but creation
costs are high on SPARC processors due to flushing of the
instruction cache.

Among these, what this study enable to be evaluated are imple-
mentations based on translation into standard C, namely CL-SC2
(closure), LW-SC (L-closure), and LW-SC2 (L-closure).

With Scheme programs, such as Boyer, fib, fft, tak, and tra-
verse, where the nest of active (pre-return) calls is not so deep and
only a limited part of the execution stack is used, transformation-
based implementations of L-closures (each based on either the
execution stack reconstruction technique or the frame-by-frame
restoration technique) achieve 7%∼15% lower performance than
enhanced C compilers; this performance would be acceptable
when considering transformation-based implementations that do
not require enhanced C compilers.

On the other hand, as in the case of programs written in CPS,

such as cpstak and fib-cps, with Scheme programs which fre-
quently need to create a space-efficient first-class continuation
to support proper tail recursion every time execution stack is
about to overflow, transformation-based implementations of L-
closures achieve better performance than enhanced C compilers;
the frame-by-frame restoration technique is especially effective
for reducing the invocation costs as intended. Note that, when
a nested function invokes another nested function, most data in
the execution stack have already been moved to the explicit stack
in LW-SC, whereas, to invoke another nested function as an L-
closure in XC-cube, the caller needs to find the nested function
to be invoked in the execution stack each time from the top of the
stack. This difference appears in the cost of every invocation.

Since puzzle uses first-class continuations by call/cc, L-
closures in XC-cube showed a substantially long execution time.
In our previous evaluation [18], by making the C stack empty just
after capturing continuations with call/cc and leaving only a
list of “Frame” objects that represents the continuation, we can
promote sharing of continuations and we achieved good perfor-
mance. Although the implementations based on JAKLD/XC [18]
support (non-escape only) first-class continuations, we will dis-
cuss first-class continuations in future work.

We also compared transformation-based implementations of L-
closures against enhanced-C-compiler based implementations of
closures, which is a mechanism more moderate than L-closures.
(The comparison to CL-SC2 will be shown later.) Closures in-
cur usual creation/maintenance costs, but they incur only as usual
invocation costs as ordinary top-level functions. Although L-
closures are implemented by enhancing GCC 3.4.6 and closures
are implemented by enhancing GCC 4.6.3, closures show re-
markably good performance. Neither transformation-based im-
plementations of L-closures (neither the execution stack recon-
struction technique nor the frame-by-frame restoration technique)
can achieve better performance than closures. This would be
because transformation-based implementations need some delay

judgment costs and the costs are relatively high in the case of
our Scheme interpreter where normal top-level function calls in
the implementation language are frequent. Delay judgment costs
are required even in (transformed) normal top-level functions
for enabling delayed (lazy) save and restore of data on regis-
ters (as private locations) into/from the explicit stack (memory)
(as shared locations). Note that delay judgment costs were zero
in the enhanced-C-compiler based implementation. Concretely
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speaking, in Fig. 7 in Section 6, lines 14–40 (code for resuming
after forcing delayed save into the explicit stack) are required for
using a single function also for stack reconstruction, and, as the
delay judgment costs, lines 14, 17, 34–40 are needed to be (al-
ways) executed even when the function does not reconstruct the
C execution stack. Likewise, in Fig. 8, lines 14, 16, 28–32, 72 are
needed to be always executed. When the frame-by-frame restora-
tion technique was proposed in [14], the frame-by-frame restora-
tion technique mostly achieved better performance than closures
in the same evaluation environment as Table 5. The application
of L-closures used in this study (the Scheme interpreter) showed
a different result.

Since transformation-based implementations of L-closures
have the problem of delay judgment costs, this study devel-
oped a transformation-based implementation of closures (CL-
SC2) which does not incur these costs. We expected that CL-SC2
achieved a compatible performance to the enhanced-C-compiler
based implementation of closures. In practice, CL-SC2 achieved
1.0%∼2.9% better performance than the enhanced-C-compiler
based implementation. This may be because the compiler op-
timizations on compiling from the standard C language are ef-
fective. The transformation into standard C achieved not only
portability but also better performance than expected.

Let us discuss the code sizes on the implementations of Scheme
interpreter JAKLD/SC. To evaluate code size, we use the size of
the “.text” section that contains instruction sequences in an ex-
ecutable. Unlike lines of (extended) C code, this size excludes
comments, unnecessary newlines, structure definitions, and other
stuff to be optimized away, and includes instruction sequences
added by C compilers. As the standard Scheme implementation,
the one with trampoline (GCC extension) has a 69,880-byte code
size out of an 89,492-byte stripped executable. We use this for
normalizing code size below. The standard implementation con-
tains code to generate trampolines at runtime. The implementa-
tion with XC-cube L-closures has approximately 1.35 times code
as standard since it contains code for implementing special con-
trol flows in case of L-closure calls. LW-SC has approximately
3.99 times code and LW-SC2 has approximately 3.91 times code,
since transformation-based implementations of L-closures con-
tain code for using explicit stacks (lazily). The implementation
with XC-cube closures has approximately 0.93 times code size
since it does not contain code to generate trampolines. The one
with the transformation-based implementation of closures (CL-
SC2) has approximately 0.95 times code.

8. Related work

The transformation-based implementation of closures in this
paper, which translates an SC-NF language into standard C, re-
alizes the same basic idea for implementing closures [14] as a
translator instead of modifying GCC 4. This translator can be
considered as standard closure conversion except that structures
expressing the environment are placed on the stack. LESA mech-
anisms are designed without requiring garbage collection because
implementing garbage collection is one of the important applica-
tions of those mechanisms, as in JAKLD/SC in this study. In
terms of implementation of garbage collection, Henderson’s ac-

curate GC [8], which scans roots in the execution stack as struc-
ture fields by using “structure and pointer”, employs a similar
translation technique. In “structure and pointer” technique, com-
piler optimizations such as register allocation are inhibited since
roots are fields of address-taken structures. One of the goals of L-
closures including translators [9], [14], [15], [16] was to mitigate
this problem.

The implementations of JAKLD in this paper use nested func-
tions to implement capturing continuations and scanning roots.
Each of these nested functions have code for both of these pro-
cesses and an argument to decide which process should be per-
formed. However, when GC occurs during the process of cap-
turing a continuation, it may fail to scan some roots because GC
occurs in the middle of “stack-walking” and then starts root scan-
ning with the nested function at that time (i.e., scanning process
interferes with capturing process). To solve this problem, the cur-
rent implementations remember L-closure (or closure) at the start
of capturing a continuation as a global variable, and use it as the
starting point of root scanning. Although temporary variables in
nested functions may be roots, we took care not to use such vari-
ables for the current implementations.

Since capturing continuations and scanning roots are originally
different processes, it may be natural to perform these processes
by separate nested functions. In this fashion, the problem of inter-
ference can be solved by receiving a nested function for scanning
roots as an argument to a nested function for capturing contin-
uations. (At the start of capturing, the L-closure or closure for
root scanning at that time is passed.) If temporary variables that
should be treated as roots are used in nested functions for cap-
turing, an additional nested function that scans these variables
should be defined within a nested function for capturing.

As for translating hierarchically defined nested functions, there
is an approach to reducing the hierarchy by repeating transfor-
mation. To make this work, a translator must be able to re-
transform transformed programs for the next level of nested func-
tions. A similar approach includes the translation of hierarchi-
cal shift/reset into the CPS hierarchy [5]. Each hierarchical
occurrence of shift/reset has a natural number denoting the
level of the hierarchy, and this number is used to avoid interfer-
ence with the different level of shift/reset. By repeating CPS
transformation for each level of the hierarchy, programs can be
translated into ones that contain no shift/reset. There is also
the CPS hierarchy based on operational semantics, which can im-
plement the CPS hierarchy more directly and efficiently [6].

The translations from SC-NF can be considered as closure con-

version since environments hidden in execution stacks are con-
verted into environments on explicit stacks (or explicit struc-
tures). Therefore, if we adopt the repeating transformation ap-
proach mentioned above for implementing hierarchical nested
functions, the closure conversion is repeated to reduce the hierar-
chy of nested functions. Another approach using the closure con-
version is to hoist hierarchical nested functions to the top-level
as a whole after all environments of these nested functions are
translated into explicit ones.

In any case, the verification of translation methods for hierar-
chical nested functions is a future work.
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9. Conclusions

In this study, we reimplemented a Scheme implementation
JAKLD/XC in an extended S-expression based C language SC-
NF featuring nested functions. Based on the new Scheme im-
plementation, we evaluated not only enhanced-C-compiler based
implementations of LESA mechanisms but also transformation-
based portable implementations.

The Scheme implementation JAKLD/XC was written in an ex-
tended C language XC-cube that features language mechanisms
for implementing high-level programming languages, such as
LESA mechanisms “L-closures” and “closures”, with which the
running program/process can legitimately access data deeply in
execution stacks (C stacks).

L-closures are lightweight lexical closures created from nested
function definitions. In addition to enhanced C compilers, we
have portable implementations of L-closures, which are transla-
tors from an extended S-expression based C language into the
standard C language. Closures are standard lexical closures cre-
ated from nested function definitions. In this study, we newly
implemented closures using translators into the standard C lan-
guage. In this study, by developing a new Scheme imple-
mentation JAKLD/SC in an extended SC language SC-NF that
features nested functions, we evaluated not only enhanced-C-
compiler based implementations of LESA mechanisms but also
transformation-based portable implementations, which are trans-
lators from an extended SC language SC-NF into the standard C
language.

With Scheme programs where the nest of active (pre-return)
calls is not so deep and only a limited part of the execu-
tion stack is used, transformation-based implementations of L-
closures (each based on either the execution stack reconstruction
technique [9] or the frame-by-frame restoration technique [14])
achieve 7%∼15% lower performance than enhanced C compil-
ers; this performance would be acceptable when considering
transformation-based implementations that do not require en-
hanced C compilers. On the other hand, as in the case of programs
written in CPS, with Scheme programs which frequently need to
create a space-efficient first-class continuation to support proper
tail recursion every time execution stack is about to overflow,
transformation-based implementations of L-closures achieve bet-
ter performance than enhanced C compilers; the frame-by-frame
restoration technique is especially effective for reducing the invo-
cation costs as intended.

We also compared transformation-based implementations of
L-closures against the enhanced-C-compiler based implementa-
tion of closures, which are a mechanism more moderate than
L-closures. Closures show remarkably good performance. Nei-
ther transformation-based implementations of L-closures (execu-
tion stack reconstruction and frame-by-frame restoration) with
substantial delay judgment costs can achieve better performance
than closures. This result motivated us to develop a new
transformation-based implementation of closures. Indeed, the
newly developed transformation-based implementation of clo-
sures achieved not only portability but also better performance
than expected, which was better than enhanced-C-compiler based

implementations of closures.
As future work, we would like to study how to reduce the de-

lay judgment costs of transformation-based implementations of
L-closures (how to reduce the memory accesses and branch in-
structions).
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