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Abstract: Algebraic block multi-color ordering is known as a parallelization method for a sparse triangular solver. In
the previous work, we confirmed the effectiveness of the method in a multi-threaded ICCG solver for a linear system
with a symmetric coefficient matrix. In this study, we enhance the method so as to deal with an unsymmetric coefficient
matrix. We develop a multi-threaded ILU-GMRES solver based on the enhanced method and evaluate its performance
in terms of both the runtime and the number of iterations.
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1. Introduction

A preconditioned Krylov subspace solver is widely used for a
linear system of equations arising in various numerical simula-
tions such as finite element analyses [1]. When the coefficient
matrix of the linear system is unsymmetric, a preconditioned
GMRES (Generalized Minimal RESidual) solver [2] is one of the
most popular methods to solve it. In each iteration of the method,
the residual norm is monotonically reduced, but memory space
used is enlarged. Therefore, in practical simulations, “restart” is
commonly applied to the GMRES solver. Generally, GMRES(m)
means the GMRES method with restarting every m iterations.

In this paper, we focus on ILU (more precisely ILU(0)) precon-
ditioned GMRES(m) method. The ILU (factorization) precondi-
tioning is one of the well known preconditioning techniques ap-
plied to an unsymmetric linear system of equations and making
it more computationally feasible [3]. Moreover, the same proce-
dure as its preconditioning step is used in the context of multigrid
method as an ILU smoother.

While there are many parallelization techniques for ILU pre-
conditioning, they can be roughly classified into two kinds; do-
main decomposition type methods and parallel orderings [4], [5].
In this paper, we discuss the latter one. A parallel ordering tech-
nique reorders the unknowns to change the nonzero element pat-
tern of the coefficient matrix to an appropriate form for paral-
lel processing. Initially, parallel orderings were investigated in
the context of a structured grid analysis [6], [7]. In the analy-
sis, grid-points are reordered based on their geometrical infor-
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mation. Red-black, multi-color, block multi-color, dissection,
and domain decomposition orderings are typical parallel order-
ing techniques. Among various parallel orderings, multi-color
ordering is the most popular one, and block multi-color ordering
is the enhanced version of it. In multi-color ordering, an increase
in the number of colors generally improves the convergence of
ILU preconditioned iterative solver, but it also increases the num-
ber of synchronization points in the parallelized preconditioning
step (forward and backward substitutions) [8]. In block multi-
color ordering, the grid-points are divided into multiple blocks
to which multi-color ordering is applied. The blocking of grid-
points improves the convergence rate without increasing the num-
ber of synchronizations, and also improves the cache hit ratio.
Consequently, the block multi-color ordering shows better paral-
lel performance than the multi-color ordering [9], [10].

Considering the advantages of the block multi-color ordering
method, Iwashita et al. developed its algebraic version that can be
applied to a general linear system arising in unstructured prob-
lems [11]. The algebraic block multi-color ordering (ABMC)
method has discovered its effectiveness in a multi-threaded ICCG
(Incomplete Cholesky Conjugate Gradient) solver [12] and has
also been used for high performance implementation of HPCG
benchmark programs [13]. In these research activities, this
method has been mainly discussed in symmetric coefficient ma-
trix cases. In this paper, we introduce the enhancement of the
ABMC method for ILU preconditioning that is used for a linear
system with an unsymmetric coefficient matrix. We examine the
enhanced version on recent multi-core and many-core processors
and confirm its effectiveness in comparison with multi-color or-
dering, which is the most standard parallel ordering technique.

This paper is outlined as follows. Section 2 gives a brief ex-
planation for the basics of ILU(0) preconditioning and GMRES
method. Section 3 introduces the algebraic block multi-color or-
dering method for a linear system with an unsymmetric coeffi-
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cient matrix. Section 4 gives the results of numerical tests. Sec-
tion 5 describes the related work of parallel ILU preconditioning.
Section 6 gives a summary of the paper.

2. ILU Preconditioned GMRES Method

2.1 Basic GMRES Algorithm
The generalized minimal residual method (GMRES) is a pro-

jection method based on Krylov subspace to solve a linear system
of equations. In this paper, we focus on a linear system with an n

by n unsymmetric coefficient matrix as follows:

Ax = b. (1)

The GMRES method finds the approximate solution vector x̃s ∈
x0 +Ks which minimizes the 2-norm of the residual rs = b− Ax̃s

in the s-th iteration, where x0 denotes an arbitrary initial guess
and Ks is the s-dimensional Krylov subspace. The space Ks is
given by

Ks := Span(r0, Ar0, A2r0, A3r0, . . . , As−1r0), (2)

where r0 = b − Ax0. In the original GMRES algorithm, mem-
ory space proportional to the iteration count is required. Namely,
in every iteration, the algorithm requires additional memory
space. Accordingly, it is practically difficult to use the original
GMRES algorithm when such a linear system should be solved
within a number of iterations. Consequently, a restarting tech-
nique is often used for practical problems. Here, we denote
the GMRES method with restarting within every m iterations by
GMRES(m). In GMRES(m), after m-times iterations, we start
again the GMRES iteration with the initial guess x0 = xm. Al-
though GMRES(m) cannot minimize the norm of rs when s > m,
it monotonically reduces the residual norm.

2.2 ILU(0) Preconditioning
Lack of robustness is a widely recognized weakness of itera-

tive solvers, when they are compared with a direct solver. Both
efficiency and robustness of iterative methods can be improved by
using preconditioning. The first step in preconditioning is to find
a preconditioning matrix M, which is also called a preconditioner.
The preconditioner can be defined in many ways. Practically, M
should be an approximation of A, and the linear system with the
coefficient matrix M for the preconditioning step must be easily
solved compared to the original linear system (1).

In our research, we use a general left preconditioning which is
written in a form of

M−1 Ax = M−1b.

We here focus on ILU(0) preconditioning. In ILU precondition-
ing, the coefficient matrix is incompletely factorized as follows:

A � LU,

where L and U are lower and upper triangular matrices, respec-
tively. In ILU(0) preconditioning, no fill-ins are permitted during
the factorization process. In other words, L/U has the same non-
zero pattern as that of the lower or upper triangular part of A.

When applying the GMRES method to ILU(0) preconditioned

linear system, an operation of w = M−1 z or some similar opera-
tions are computed at each step, where z is a given vector. The
operation is done through the following forward and backward
substitutions:

t = L−1 z (3)

and

w = U−1 t. (4)

Algorithm 1 shows the procedure of ILU(0)-GMRES(m)
method.

Algorithm 1 ILU(0)-GMRES(m) method
1: Compute (LU)r0 = b − Ax0, u1 = r0/||r0 ||.
2: for i = 1 to m do

3: Solve (LU)w = Aui
4: Genearte Hessenberg matrix Hi and vector ui with size i using Arnoldi

algorithm starting with u1.

5: Compute yi = argmin|| ||r0 ||e1 − Hiyi ||
6: Update xi = x0 + [u1 u2 · · · ui]yi and if the relative residual norm of xi

is small enough, quit.

7: end for

8: If converges then stop, otherwise set x0 = xm and go to 1.

3. Algebraic Block Multi-Color Ordering
Method for Unsymmetric Matrices

In the paper, we investigate multi-threaded parallelization of
ILU(0)-GMRES method. Most of the calculations involved in
the method can be directly parallelized, including inner product,
matrix-vector multiplication and vector updating. However, the
forward and backward substitutions (preconditioning steps) can-
not be straightforwardly parallelized due to its data dependency
and inherent sequentiality. In the present research, we use re-
ordering techniques for parallelization of the ILU(0) precondi-
tioning step.

3.1 Multi-Color Ordering
Multi-Color ordering is the most popular parallel ordering

technique. We here consider the non-directed graph G(V, E) cor-
responding to the coefficient matrix A. The graph involves n

nodes and each edge corresponds to a nonzero entry of A. That
is, E(i, j) exists if and only if ai j or a ji is not zero, where i, j are
two unknowns and ai j is the i-row j-column element in A. In C-
color ordering, the set of nodes V is divided into C subsets G1,G2,

. . . ,GC with C colors, where the nodes in each color should be
mutually independent. While there are a couple of strategies for
multi-coloring, we here focus on the greedy algorithm that is the
simplest but practically an effective one.

The greedy algorithm follows the greedy choice property. At
each step of coloring nodes with color c, one node is selected
as the seed. Once the seed is determined, all the other uncol-
ored nodes should be scanned following the original order of the
nodes. Each node is added into Gc if it has no data relationship
with all existing nodes in Gc. This process should be repeated
until all uncolored nodes are checked and all satisfactory nodes
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Fig. 1 multi-coloring of a directed graph with 15 nodes.

should be added into Gc before painting with color c + 1.
Figure 1 shows an example of the coloring procedure. Follow-

ing the original order of the nodes, the order from 1, 2, . . . to 15,
the node with the lowest number, node 1 is selected as the seed
for G1. All the other unpainted nodes are checked following the
original order. Considering the relationship with node 1, node 5
is the next one assigned to G1. We continue the procedure to find
the node that does not have relationship with the nodes already
assigned to G1. When such a node is found, it is added to G1. In
the graph, nodes 5, 8, 9 and 12 are added to G1. Finally, the nodes
in the graph are divided into 4 subsets (colors).

In the multi-color ordering technique, the unknowns of the lin-
ear system to be solved are reordered following the order of color.
Because the unknowns with an identical color have no relation-
ship, they can be processed in parallel. That is, the reordered ma-
trix has diagonal matrix forms in its block diagonal part. Accord-
ingly, the forward and backward substitutions can be parallelized
within each color. However, thread synchronization is required
between different colors.

In the application of the multi-color ordering to an ILU/IC pre-
conditioned iterative solver, an increase in the number of colors
usually results in the reduction of the iteration count for conver-
gence. However, it also entails a reduction of degree of paral-
lelism. Moreover, because the nodes with the same color tend
to be far away from each other, efficient use of data cache is of-
ten prevented due to lower data access locality. Therefore, block
multi-color ordering method has been proposed to mitigate the
above problems in the multi-color ordering. In the method, block-
ing of unknowns (nodes) leads to an improvement in convergence
without increasing the number of synchronization points and im-
proves the data access locality in multi-threaded substitutions.

3.2 Algebraic Block Multi-Color Ordering for Unsymmet-
ric Matrices

Algebraic block multi-coloring strategy is an extension of
multi-coloring method. Nodes of the matrix are first divided into
blocks, then we color the blocks instead of coloring nodes. Since
blocks with the same color are independent of each other, the
forward and backward substitutions can be parallelized among
blocks and nodes inside the block should be computed sequen-
tially.

3.2.1 Blocking method
One of the main issues in the method is how to generate the

blocks. Block generation is based on the information from the
coefficient matrix. Suppose the block size is set to be b, we gen-
erate nb = �n/b� number of blocks. Consider the directed graph
Ḡ(V, Ē) derived from A. In Ḡ, unlike G, ai j and a ji are differ-
ently treated. When ai j is non-zero, there is an arrow from i to
j. If both ai j and a ji are non-zero, two (directed) edges exist be-
tween the nodes i and j. In the technique, we aim to divide V into
nb subsets V1,V2, · · · ,Vnb , where |Vi| = b, (i = 1, 2, . . . , nb) and
Vi
⋂

Vj = ∅ if i � j. Algorithm 2 is our proposed method for
block generating.

Algorithm 2 Blocking method
1: i=1; j=1;

2: while i < nb do

3: Select a seed s for Vi according to the seed selection policy.

4: Vi ← Vi ∪ s; V ← V \ s

5: while j < b do

6: if No node is found to satisfy the node selection policy then

7: Select a node v in V according to the seed selection policy.

8: else

9: Pick one node v in V according to the node selection policy.

10: end if

11: Vi ← Vi ∪ {v}; V ← V \ v
12: j← j + 1

13: end while

14: i← i + 1; j = 1;

15: end while

In the present research, we use a simple seed selection policy
in the algorithm. That is, we choose the node with the smallest
number in the original order in V . For the node selection policy
in line 6, we provide the following five methods:

•Method 1: Pick the node with the minimal number in V .

•Method 2: Pick the node connected to the seed in V .

•Method 3: Pick the node with the most tightly connected to the
seed in V . That is, pick the node v with the largest
value of |asv| + |avs|, where s denotes the seed.

•Method 4: Pick the node from V with the maximum number
of edges connected to existing nodes in the current
subset Vi.

•Method 5: Basically use Method 4. If multiple candidates
are found, pick the node with the largest value of∑

i∈Vi
|aiv| + |avi| among them.

We, here, review the above five blocking methods. Method 1
is the easiest and lightest method for implementation and execu-
tion. However, it is expected to work when the original order of
nodes (unknowns) is sufficiently good. For example, when the
nodes have been already reordered by using RCM ordering, the
blocking method can be satisfactory.

In Method 2 and 3, a data structure of tree graph with the seed
is considered. When the nodes in a block are more strongly con-
nected to each other, the data access locality in substitutions and
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Fig. 2 ABMC with block size = 3, Method 1.

Fig. 3 ABMC with block size = 3, Method 5.

sparse matrix vector multiplication is increased. Moreover, it
is also expected that the convergence rate is improved. Conse-
quently, we expect the increased cache hit ratio and convergence
rate by using Method 2 and 3. When we compare both methods,
we expect a better convergence rate of Method 3 because of the
consideration of the impact of each edge.

Method 4 and 5 are enhanced versions of Method 2 and 3. In
these methods, the strategy for improving the data access locality
and the convergence is more precisely implemented. That is, the
effect of the nodes which have been already assigned to the block
is considered. However, the implementation of the methods is
relatively complicated.
3.2.2 Coloring of blocks

After successfully blocking the unknowns, similar to the multi
coloring approach, blocks need to be colored and reordered in or-
der to obtain parallelism. The process of coloring blocks is log-
ically equivalent to the method for nodes (unknowns). We, here,
consider the adjacency matrix of the blocks, denoted by T, with
dimension of nb. The matrix T shows the connecting relationship
between blocks, where the k-th row and l-th column, tkl, of T is
given by

tkl =

{ 1 if ∃i ∈ Vk, ∃ j ∈ Vl s.t. ai j � 0 ∨ a ji � 0
0 otherwise

. (5)

By applying a coloring technique to the nodes of the non-directed
graph corresponding to T, we can complete the coloring process
for the blocks. Notice that the use of T is not always necessary
in the implementation of the block coloring process. In this re-
search, we also use the greedy algorithm shown in Section 3.1.
Figures 2 and 3 show examples of blocking and coloring un-
knowns. It can be easily discovered that by different blocking
methods the generated blocks falls into distinct shapes, resulting

in various coloring patterns and hence various reordered coeffi-
cient matrices.

After the blocking and coloring processes, the unknowns are
reordered following of the order of color. It is noted that the nodes
in an identical block should be contiguously ordered. In the tech-
nique, the order of blocks with the same color and the order of
the nodes inside a block can be arbitrary. In our implementation,
we use the order that is naturally obtained in the blocking method
for these orders.

3.3 Parallelization of Triangualr Solver
We, here, denote the reordered linear system by Ãx̃ = b̃. When

the (algebraic) block multi-color ordering is applied to the origi-
nal coefficient matrix, the resulting matrix has the following form:

Ã =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Ã1,1 Ã1,2 . . . Ã1,C

Ã2,1 Ã2,2 . . . Ã2,C

...
...

. . .
...

ÃC,1 ÃC,2 . . . ÃC,C

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (6)

and

Ãc,c =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

B̃
1
c 0

B̃
2
c

. . .

0 B̃
n(c)
c

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (7)

where n(c) is the number of blocks assigned to color c and B̃
k
c is

the b by b matrix corresponding to the unknowns in the k-th block
with color c, which we denote by bk

c.
In ILU(0) preconditioning, the matrices for preconditioning, L̃

and Ũ that are obtained from the incomplete LU factorization of
Ã have the same non-zero element pattern as the lower or upper
triangular part of Ã, respectively. Therefore, L̃ and Ũ are written
as

L̃ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

L̃1,1

L̃2,1 L̃2,2 0
...

...
. . .

L̃C,1 L̃C,2 . . . L̃C,C

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (8)

Ũ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Ũ1,1 . . . Ũ1,C−1 Ũ1,C

. . .
...

...

0 ŨC−1,C−1 ŨC−1,C

ŨC,C

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (9)

L̃c,c =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

L̃
1
c 0

L̃
2
c

. . .

0 L̃
n(c)
c

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (10)

Ũc,c =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Ũ
1
c 0

Ũ
2
c

. . .

0 Ũ
n(c)
c

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (11)

where L̃
k
c and Ũ

k
c is the b by b lower or upper triangular matrix

corresponding to block bk
c, respectively. From Eqs. (8) and (10),
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Fig. 4 Pseudo code for parallelized forward substitution.

the forward substitution for color c is given by

t̃c = L̃
−1
c,c

⎛⎜⎜⎜⎜⎜⎜⎝ z̃c −
c−1∑
d=1

L̃c,d t̃d

⎞⎟⎟⎟⎟⎟⎟⎠ , (12)

which has n(c) degree of parallelism, where t̃c and t̃d are the seg-
ments of t̃ corresponding to the color c and d, respectively. Con-
sequently, the forward substitution can be multi-threaded in the
block-wise manner in each color. Figure 4 shows the pseudo
code of the multi-threaded forward substitution, where q̃k

c is the
segment of the vector z̃c −∑c−1

d=1 L̃c,d t̃d corresponding to the block
k. From Eq. (11), it is shown that the backward substitution can
also be performed in parallel among blocks in each color.

4. Numerical Tests

4.1 Environment Setup
The program code was written in Fortran90 and parallelized

with OpenMP instructions. Standard CRS format is used for the
storage of the sparse test coefficient matrices. Four test prob-
lems were picked up from The SuiteSparse Matrix Collection
(formally known as the University of Florida Sparse Matrix Col-
lection). We selected relatively large coefficient matrices from
the problem domains in which the linear system is often solved.
The information of all four test matrices are shown in Table 1.
The first two matrices arise in computational fluid dynamics prob-
lems, and the other two are from a circuit simulation problem and
an electromagnetics problem, respectively. The right-hand side
vector is given by a vector having all elements of 1 and the con-
vergence criterion is set as the relative residual norm (2-norm)
being less than 10−7. The restart period of GMRES method is set
to be 50.

Numerical tests were executed on two different types of nodes
operated at the Academic Center for Computing and Media Stud-
ies, Kyoto University. One node is a computational node of Cray
CS400 system, which is equipped with two Intel Xeon Broad-
well multi-core processors and 128 GB memory. The processor
has 18 computing cores and its operation frequency is 2.1 GHz.
For this system, the program was compiled by Intel Fortran com-
piler version 17.0.2.174 with the options of -mcmodel=medium
-shared-intel -qopenmp -xHost -O3 -ipo. In the numerical test,
we use all 36 cores in the computational node.

The other node is a computational node of Cray XC40 sys-
tem. The node has a Xeon Phi (KNL) many-core processor which
is equipped with 68 cores. The computational node has 96 GB
memory, while the many-core processor is equipped with 16 GB
fast device memory. For this system, the program was compiled
by Cray Fortran compiler version 8.5.8 with the options of -h
omp. In the numerical test, we use all 68 cores of the computa-
tional node.

Table 1 Matrix Information Of Test Linear Systems From UF Matrix Col-
lection.

Data set Problem type Dimension # nonzero
Atmosmodl Computational fluid dynamics 1,489,752 10,319,760
Atmosmodj Computational fluid dynamics 1,270,432 8,814,880
Memchip Circuit simulation 2,707,524 13,343,948

T2em Electromagnetics 921,632 4,590,832

Table 2 Atmosmodl test results on Intel Xeon (Broadwell) processors.

(i) Multi-color GMRES on 36 threads
# iteration Comp. time (s) time/iteration (ms)

135 1.47 10.9

(ii) ABMC GMRES on 36 threads
Blocking Block # ite. Comp. time/ite.
method size time (s) (ms)

16 76 0.795 10.4
1 64 73 0.763 10.4

256 63 0.735 11.6
16 75 0.855 11.4

2 64 69 0.806 11.6
256 63 0.739 11.7
16 75 0.906 12.0

3 64 69 0.828 12.0
256 63 0.736 11.6
16 71 0.904 12.7

4 64 63 0.773 12.2
256 57 0.735 12.9
16 71 0.782 11.0

5 64 62 0.647 10.4
256 57 0.748 13.1

Table 3 Atmosmodj test results on Intel Xeon (Broadwell) processors.

(i) Multi-color GMRES on 36 threads
# iteration Comp. time (s) time/iteration (ms)

379 4.56 12.0

(ii) ABMC GMRES on 36 threads
Blocking Block # ite. Comp. time/ite.
method size time (s) (ms)

16 192 1.76 9.19
1 64 141 1.29 9.18

256 134 1.34 10.1
16 218 2.23 10.2

2 64 142 1.39 9.81
256 134 1.35 10.1
16 218 2.23 10.8

3 64 142 1.41 9.91
256 134 1.36 10.1
16 206 2.12 10.2

4 64 138 1.32 9.57
256 134 1.48 11.0
16 186 1.66 8.93

5 64 137 1.24 9.12
256 132 1.32 10.0

4.2 Numerical Results
In this subsection, we present test results of all given linear

systems. All results are arranged in the following tables and sev-
eral convergence behaviour figures of comparison between multi-
color (MC) and algebraic block multi-color (ABMC) orderings
are also given below.
4.2.1 Comparison Between MC and ABMC

Firstly, we discuss the main issue of this paper, that is, the
comparison of the ABMC method with the conventional multi-
color ordering technique. Tables 2–5 list the number of iterations,
the computational time, and the computational time per iteration
measured in the numerical tests on Intel Xeon multi-core proces-
sors. Tables 6–9 show the results of the numerical tests on an
Intel Xeon Phi processor. Figures 5 and 6 show the comparison
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Table 4 Memchip test results on Intel Xeon (Broadwell) processors.

(i) Multi-color GMRES on 36 threads
# iteration Comp. time (s) time/iteration (ms)

85 1.72 20.3

(ii) ABMC GMRES on 36 threads
Blocking Block # ite. Comp. time/ite.
method size time (s) (ms)

16 76 1.46 19.3
1 64 70 1.42 20.3

256 65 1.37 21.0
16 79 1.75 22.2

2 64 67 1.48 22.1
256 67 1.41 21.1
16 79 1.80 22.8

3 64 67 1.47 22.0
256 67 1.42 21.3
16 89 1.96 22.0

4 64 88 1.79 20.4
256 88 1.84 21.0
16 89 1.92 21.5

5 64 84 1.74 20.7
256 88 1.83 20.8

Table 5 T2em test results on Intel Xeon (Broadwell) processors.

(i) Multi-color GMRES on 36 threads
# iteration Comp. time (s) time/iteration (ms)

4,081 25.9 6.35

(ii) ABMC GMRES on 36 threads
Blocking Block # ite. Comp. time/ite.
method size time (s) (ms)

16 2, 299 14.5 6.31
1 64 3,206 19.6 6.13

256 4,233 26.8 6.34
16 2,819 19.3 6.86

2 64 3,659 25.3 6.93
256 3,731 22.8 6.12
16 2,819 19.5 6.91

3 64 3,659 24.2 6.63
256 3,731 23.3 6.24
16 2,587 18.2 7.06

4 64 3,717 25.4 6.84
256 3,414 22.5 6.60
16 2,587 18.3 7.08

5 64 3,717 25.0 6.74
256 3,414 21.3 6.23

Table 6 Atmosmodl test results on Intel Xeon Phi processor.

(i) Multi-color GMRES on 68 threads
# iteration Comp. time (s) time/iteration (ms)

135 1.03 7.60

(ii) ABMC GMRES on 68 threads
Blocking Block # ite. Comp. time/ite.
method size time (s) (ms)

16 76 0.594 7.82
1 64 73 0.519 7.11

256 63 0.437 6.94
16 75 0.771 10.2

2 64 69 0.568 8.24
256 63 0.477 7.57
16 75 0.793 10.5

3 64 69 0.642 9.31
256 63 0.452 7.17
16 71 0.817 11.5

4 64 63 0.642 10.1
256 57 0.534 9.28
16 71 0.518 7.30

5 64 62 0.455 7.34
256 57 0.594 10.4

Table 7 Atmosmodj test results on Intel Xeon Phi processor.

(i) Multi-color GMRES on 68 threads
# iteration Comp. time (s) time/iteration (ms)

379 2.41 6.36

(ii) ABMC GMRES on 68 threads
Blocking Block # ite. Comp. time/ite.
method size time (s) (ms)

16 192 1.24 6.45
1 64 141 0.953 6.76

256 134 0.862 6.43
16 218 1.86 8.55

2 64 142 1.03 7.32
256 134 0.912 6.80
16 218 1.87 8.58

3 64 142 1.04 7.37
256 134 0.889 6.63
16 206 2.08 10.1

4 64 138 0.958 6.94
256 134 1.07 8.02
16 186 1.21 6.55

5 64 137 0.970 7.08
256 132 0.916 6.94

Table 8 Memchip test results on Intel Xeon Phi processor.

(i) Multi-color GMRES on 68 threads
# iteration Comp. time (s) time/iteration (ms)

85 1.40 16.4

(ii) ABMC GMRES on 68 threads
Blocking Block # ite. Comp. time/ite.
method size time (s) (ms)

16 77 1.46 19.0
1 64 71 1.30 18.3

256 65 1.16 17.9
16 81 1.67 20.7

2 64 67 1.28 19.1
256 67 1.23 18.4
16 81 1.67 20.7

3 64 67 1.25 18.7
256 67 1.34 20.0
16 89 1.85 20.8

4 64 89 1.71 19.2
256 89 1.68 18.9
16 89 2.43 27.3

5 64 85 1.57 18.5
256 88 1.57 17.8

Table 9 T2em test results on Intel Xeon Phi processor.

(i) Multi-color GMRES on 68 threads
# iteration Comp. time (s) time/iteration (ms)

4,104 19.5 4.76

(ii) ABMC GMRES on 68 threads
Blocking Block # ite. Comp. time/ite.
method size time (s) (ms)

16 2, 299 11.6 5.06
1 64 3,205 16.2 5.05

256 4,236 22.1 5.23
16 2,818 15.4 5.48

2 64 3,655 19.5 5.35
256 3,725 19.6 5.27
16 2,818 15.6 5.56

3 64 3,655 19.2 5.25
256 3,725 19.8 5.33
16 2,587 15.5 6.00

4 64 3,725 20.9 5.61
256 3,416 18.9 5.54
16 2,587 15.7 6.09

5 64 3,725 20.9 5.62
256 3,416 19.0 5.58
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Fig. 5 Computational time compared with MC with optimal blocking
method and block size on Intel Xeon Broadwell.

Fig. 6 Computational time compared with MC with optimal blocking
method and block size on Intel Xeon Phi.

Fig. 7 Convergence behavior in Atomosmodl dataset test (MC and ABMC
with block size = 256, Method 5).

of total computational time between ABMC and MC with optimal
blocking method and block size on both systems. The numerical
result indicates that the developed multi-threaded solver outper-
forms the solver based on multi-color (MC) ordering in all 8 cases
(4 datasets × 2 systems) when the blocking method and the block
size are properly set.

One of the main advantages of ABMC over MC is better con-
vergence. Figures 7–10 show the convergence behaviors of MC
and ABMC solvers, which confirm the advantage of ABMC in
the convergence rate. In the Atmosmodl and Atmosmodj dataset
tests, the ABMC solver attains more than twice as fast conver-
gence as the MC solver. The numerical test indicates that the
blocking method can improve the convergence rate of the ILU(0)-
GMRES solver.

Next, we examine the computational time in an iteration. On

Fig. 8 Convergence behavior in Atomosmodj dataset test (MC and ABMC
with block size = 256, Method 5).

Fig. 9 Convergence behavior in Memchip dataset test (MC and ABMC with
block size = 256, Method 1).

Fig. 10 Convergence behavior in T2em dataset test (MC and ABMC with
block size = 16, Method 1).

multi-core Xeon processors, the blocking method contributes to
the reduction of the computational time for an iteration in all test
cases. This can be ascribed to the structure of ABMC. Closer
nodes tend to be assigned in the same block, which can lead to a
potential high cache hit rate. In order to verify our assumption,
we use Intel VTune Amplifier as the performance profiler to ana-
lyze the solver performance on Intel Xeon Broadwell processors
with the chosen dataset Atmosmodj. Typically, we focus on the
L3 cache miss rate. We use the following command and option to
run the program: amplxe-cl -collect memory-access. The results
show that MC gives a 0.06% L3 cache miss ratio, and ABMC
leads to that of 0.03%. The results indicate that cache hit ratio
is improved by ABMC. However, on a many-core Xeon Phi pro-
cessor, the computational time per iteration is not reduced in three
test cases. Although we selected relatively large datasets from the
database, the test matrices are smaller than the size of the MC-
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DRAM (fast memory) in the processor. Accordingly, the com-
putation of ILU-GMRES can be performed on the fast memory.
Because the difference of the bandwidth between the cache mem-
ory and the fast memory is less significant than that between the
cache and the main memory, the effect of the blocking to increase
the cache hit ratio becomes relatively weak. Moreover, in the
multi-threaded preconditioning step based on ABMC, the com-
putation related to the diagonal block is not vectorized, though
the computation with respect to off-diagonal blocks can be vec-
torized. Because the Xeon Phi processor is equipped with the
wide (512 bit) SIMD instruction, it may affect the performance of
ABMC. However, from the viewpoint of the total computational
time, ABMC attains better performance than MC owing to the
improved convergence even on a Xeon Phi processor.
4.2.2 Effect with Various Block Sizes and Different Blocking

Methods
One of the tricky parts while applying ABMC is the choice of

the block size. In general, it is expected that a larger block size
results in better convergence. But, use of excessively large blocks
compared with the dimension of the coefficient matrix causes an
insufficient degree of parallelism and a decline in the convergence
rate. In Atmosmodl, Atmosmodj, and Memchip dataset tests, it
is confirmed that the larger block size results in the better con-
vergence. In the relatively small size problem, T2em, the number
of iterations significantly varies and the increase in the block size
does not lead to the improvement of convergence.

Another worthwhile comparison is among the blocking meth-
ods. It is recognized that with different blocking methods, ABMC
gains different effects in both iteration count and computational
time. In Atmosmodj and Atmosmodl dataset tests, the best case
is obtained with Method 5. While with the other two problems,
Method 1 works better. As described in the previous section,
Method 1 is efficiently workable if the original matrix is ordered
well though it is the simplest method for implementation. Since
matrices from the database are usually well ordered in advance,
the test results show that Method 1 provides satisfactory perfor-
mance for all matrices. Thus, for fair comparison, we randomize
the order of nodes for one of the test matrices, T2em and focus on
how these 5 blocking methods work with fixed block size of 16
on multicore Xeon processors. The result shows that the solver
with Method 2 and 3 converges in around 2,400 iterations. When
Method 4 and 5 are used, the solver converges in about 2,600 iter-
ations. However, it converges in 2,680 iteration counts and 15.9 s
in running time with Method 1 (without randomization converg-
ing in 2,299 counts and 14.5 s shown in Table 5). The result in-
dicates that more sophisticated blocking method is expected to
work for the coefficient matrix ill-ordered.

From all test results one can say that it is hard to determine the
best blocking method and block size for varieties of problems.
Development of auto tuning of the blocking method should be an
important issue and remains our future work. However, in prac-
tical situations, we can suggest starting with a relatively small
block size around 16 and blocking Method 1, since from our
numerical results most cases with block size 16 and Method 1
gain better performance than MC (although one exception hap-
pens with Memchip on a Xeon Phi processor). If the speedup is

not sufficient enough, one can try with larger block size. Usually
better performance can be obtained with various block sizes if one
sticks to Method 1, otherwise try with Method 5 and continue the
block size adjustment until getting sufficient speedup.

5. Related works

This subsection gives a brief review of parallelization tech-
niques for ILU, more precisely ILU(0) preconditioning. Since
ILU preconditioning is a standard preconditioning technique, its
parallelization method has been investigated for more than 20
years. We can see some early activities in Ref. [4]. In Ref. [4],
the parallelization methods are classified into “Reordering” and
“Preconditioning by domains”. One of the simplest methods in
the latter class is “localized” block Jacobi ILU preconditioning.
In the technique, the block diagonal parts of the coefficient matrix
are factorized and used for preconditioning. In this method, the
preconditioning step (forward and backward substitutions) can be
parallelized without process communication or thread synchro-
nization. However, when the number of threads (or processes) is
increased, the number of nonzero elements ignored in the factor-
ization is also increased, which results in a decline in the precon-
ditioning effect. One of remedies for this preconditioning effect
is the overlapping technique. Although the overlapping entails an
increase in operations, it often reduces the iteration counts for
convergence. It strongly depends on the characteristics of the
problem whether the (overlapped) block Jacobi ILU precondi-
tioning attains a good parallel speedup. Chen et al. reports their
recent implementation of the method on GPU in Ref. [14]. But, in
general, the method is not suitable for the execution on a number
of cores due to the convergence deterioration.

The reordering (parallel ordering) technique is a major paral-
lelization method for ILU/IC preconditioning. One of the most
important issues of the technique is in the trade-off problem be-
tween the parallelism and the convergence. The trade-off in
the parallel ordering was discussed in many literatures includ-
ing [6], [7], [8], [10], [15], [16], [17], [18]. A popular parallel
ordering technique which has been often used in practical sim-
ulations gives a good compromise for the problem. Domain
decomposition (dissection) ordering is one of well-known tech-
niques. It gives a good convergence rate when the number of
threads/processes is relatively small. Multi-color ordering is the
most standard parallel ordering technique. When the relatively
large number of colors, for example, more than 8, is used, it at-
tains sufficiently good convergence. The block multi-color or-
dering is the enhanced version of the multi-color ordering. The
blocking of the nodes (or unknowns) can improve the conver-
gence without increasing the number of synchronization points
in parallel execution.

When the unstructured problem is solved, the reordering pro-
cess should be algebraically performed only using the informa-
tion obtained from the coefficient matrix. A couple of heuristics
are proposed for the parallel ordering. HID is one of algebraic
versions of domain decomposition ordering [23]. The method
has advantage in the communication in multi-process execution.
Graph partitioning tools such as METIS [19] and SCOTCH [20]
can be also used for a basis of domain decomposition ordering.
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For the application of multi-color ordering to unstructured analy-
ses, the greedy algorithm is the most popular method. Moreover,
Jones and Plassman’s work [21] is also well-known. In the appli-
cation of the multi-color ordering to certain types of problems, a
relatively large number of colors are preferable. For this purpose,
the algebraic multi-color ordering proposed in Ref. [22] can be
used. As a recent work, Kawai et al. proposed a new heuristics for
implementation of the multi-color ordering on a distributed par-
allel computer [24]. The enhancement of the block multi-color
ordering for unstructured problems is reported in Ref. [11] and
this paper for IC and ILU preconditioning, respectively.

Finally, we describe latest research activities on related tech-
niques to ILU(0) preconditioning. Nakajima evaluated two types
of domain decomposition procedures, LBJ (Localized Block
Jacobi) and HID (Hierarchical Interface Decomposition) for ill-
conditioned problems and proved that HID provides better effi-
ciency and robustness than LBJ in Ref. [25]. Gupta introduced a
blocking framework to improve the reliability and performance
of ILU factorization-based preconditioners. The proposed block-
ing framework has been proved to lead to faster and more ro-
bust preconditioning in Ref. [27]. Bahi et al. proposed an effi-
cient parallel implementation of GMRES for GPU clusters and
verified the high data-parallel nature of GPUs in Ref. [26]. Chen
et al. developed a group of ILU-family preconditioners on GPUs
in Ref. [14], including ILU(0), ILU(K), ILUT and block-wise
ILU(K).

The difference between our method and other related tech-
niques is simply in the difference of algorithm. In the area of
preconditioned iterative solvers, it is hard to determine the best
method for a wide variety of problems. The comparison of the
methods is greatly affected by the characteristics of the problem
and the used computer. However, our algebraic version of block
multi-color ordering shows a better performance than the stan-
dard multi-color ordering technique in numerical tests using ma-
trices obtained from an well-known matrix database. Therefore,
it can be expected to be one of candidates for parallelization of
ILU preconditioning.

6. Conclusion

In this paper, we proposed an enhanced method of block multi-
color ordering for multi-threading of ILU(0)-GMRES solver.
Five blocking methods are introduced in consideration of the un-
symmetric property of the coefficient matrix to aim for the im-
provement of convergence. Numerical tests using four matri-
ces obtained from a matrix collection database were conducted
on two types of computational nodes. One computational node
is equipped with two multi-core Intel Xeon processors, and the
other one is based on an Intel Xeon Phi processor. The devel-
oped multi-threaded solver based on algebraic block multi-color
ordering outperforms the solver based on multi-color ordering in
all test cases. Since the multi-color ordering is the most standard
parallel ordering technique, it is shown that the developed block
based method can be one of strong candidates for the paralleliza-
tion method of ILU(0) preconditioning.

For future work, we would try to develop the auto tuning tech-
nique to select an appropriate blocking method and set an optimal

block size. Moreover, we will study a parallel ordering method in
which both thread parallelization and vectorization are efficiently
utilized.
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