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Abstract: Quality of service is one factor passengers consider when deciding to use the public transportation system.
Increasing the quality of service can be done in several ways, such as improving on-time arrival, reducing waiting time,
and providing seat availability information. We believe that if passengers have better information for making decisions,
that can increase the quality of service. This paper proposes estimating the number of passengers by analyzing signals
from their Wi-Fi devices, classifying them as originating from passenger or non-passenger devices using a real-time
filtering mechanism. Experimental validation was performed aboard busses of different types taking different routes.
Our experimental results show that filtered data can classify passenger device signals from environmental ones with an
accuracy of 75 percent, which is a promising basis for providing real-time information to passengers that improves the
quality of their service.
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1. Introduction

Travel by public transportation is a daily activity for many peo-
ple. One important factor for passengers when deciding whether
to use the bus system is the quality of service. Quality of ser-
vice for passengers can be improved in several ways related to
infrastructure, equipment, scheduling, and vehicle/network status
information. Improvements in scheduling and passenger infor-
mation rely in particular on real-time bus location and congestion
information. Bus location information is trivially and cheaply
available, thanks to GPS. Reliable, real-time congestion infor-
mation is more difficult to obtain using cheap, scalable methods.
Congestion information is nevertheless highly valuable and, com-
bined with short-term congestion predictions, gives operators the
possibility of dynamic scheduling to deal with a fluctuating load,
and gives passengers an increased awareness of the current and
impending state of the bus transportation system. The latter is
particularly important, since the actual and perceived quality of
travel can be significantly improved when passengers are guar-
anteed a seat. In some cases this is vital, as with physically-
challenged or pregnant people, in other cases merely facilitative,
as with people who work on laptop computers while commut-
ing. A passenger who is forewarned that an approaching vehicle
has no seating room, whereas the one following close behind will
have plenty, can make an informed decision to wait for the second
vehicle.
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Making a short-term estimation about the load on a vehicle de-
pends on two sources of information. First is the current load of
the vehicle, which can be measured aboard the vehicle in a num-
ber of ways. Second is the expected future load of the vehicle,
which depends on the number of passengers that could board or
alight at each stop. With these two sources of information we aim
to provide real-time information to passengers about the potential
availability of seats, to improve their quality of service.

Our previous work [1], [2] focused on estimating the number of
passengers waiting at bus stops in real-time, from which an upper
bound on the number of passengers able to board a bus can be
derived. The new contributions described in this paper relate to
a real-time method for estimating the number of passengers who
are travelling on board a bus.

Many people carry smartphones these days, and all smart-
phones are capable of Wi-Fi communication. The number of
smartphones on board a bus is therefore a potentially useful proxy
for the number of passengers aboard the bus. Our approach to
estimating the congestion on board a bus is to monitor Wi-Fi sig-
nals, classify them as originating from non-passenger or passen-
ger devices, and use the result as a proxy to estimate the number
of passengers on board the bus. The Wi-Fi activity we monitor
is transmission of probe requests by smartphones searching for
known networks, which they do regularly. This method is non-
participatory (passengers do not need to install an app or visit a
particular web site), non-invasive (passengers’ normal use of their
devices is not affected), and easy to implement.

The rest of this article is organized as follows. Section 2 de-
scribes related work. Section 3 describes our methodology for
classifying signals. Section 4 presents our experimental method
and results. Section 5 discusses our results, and Section 6 offers
conclusions and thoughts about future work.
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2. Related Work

Direct methods of counting passengers can be effective, but are
usually invasive and/or participatory. Lim et al. [3] try to exploit
availability and capability of passengers’ mobile phones to share
location information, requiring active consent and participation
(via an app) from the passengers when they travel with the bus.

Optical and thermal technologies have been used to count pas-
sengers without their participation. Chen et al. capture real-time
bus passenger flow statistics using light-sensitive wireless sensors
installed at doors [4] or video processing [5] to detect passengers
entering or leaving the bus, inferring an approximate running total
of passengers aboard. Bernini et al. [6] also investigated counting
the number of passengers aboard a bus using a camera (stereo
couple) and image processing. While the accuracy of these ap-
proaches can be high, in difficult conditions they suffer from cu-
mulative errors of as much as 33% that do not occur in our sys-
tem. Khoeblal et al. [7] tried to catch fare dodgers by counting
passengers using a DILAX (thermal) People Counting Unit and a
RFID distance scanner.

Radio signal analysis, of both Bluetooth and Wi-Fi, have also
been used. Nishide et al. [8] detected pedestrians from their de-
vices’ Bluetooth transmission in many places, but this technique
is far less reliable recently because many people do not use Blue-
tooth and deactivate it to save battery power.

Invasive Wi-Fi monitoring has also been used. Nakano et al. [9]
detects passengers on a train by installing a fake access point
and counting the number of devices connected to it. Yamakawa
et al. [10] also estimated passenger congestion by installing an ac-
cess point in a train and capturing device signals using a Riverbed
AirPcap-Nx, reporting an accuracy of 63.5%.

Mikkelsen et al. [11] use a mechanism very similar to ours but
using only two parameters, RSSI and duration of device visibil-
ity, to obtain 50% accuracy. Compared to their mechanism, ours
uses five filtering parameters in a two-tier approach that accounts
for devices likely located inside or outside the bus and performs
significantly better. Our mechanism also takes into account the
elapsed time since a signal was last received from a particular
device, allowing it to provide almost real-time data.

Our previously-reported work [1], [2] estimated the number of
passengers waiting at bus stops using similar techniques, but ei-
ther ignored RSSI or did not attempt to provide near real-time
information.

Raspberry Pi has become a popular platform for building in-
expensive Wi-Fi analyzers. Apetroaie-Cristea et al. [12], for ex-
ample, used a Raspberry Pi to physically locate Wi-Fi devices,
choosing channel 11 for collecting their data. Nalawade et al. [13]
uses a Raspberry Pi and a GSM/GPRS module to track a bus by
using telephone cell tower information.

3. Signal Classification Method

To estimate the number of passengers who are traveling on a
bus we monitor and analyze the Wi-Fi probe request signals cap-
tured inside the bus. However there are many Wi-Fi signals com-
ing from many directions around the bus, and we need to identify
the signals sent from passengers’ mobile devices. We therefore

Fig. 1 System structure.

need a filtering mechanism to separate passenger device Wi-Fi
signals from those coming from the environment outside the bus.

3.1 Collecting Wi-Fi Packets
Figure 1 illustrates the system we use to detect Wi-Fi activ-

ity. Wi-Fi signals consist of many types of packet. One type
is a probe request packet, which is sent from mobile devices to
search for known access points. Mobile devices send probe re-
quests even when already connected to an access point, so we can
easily eliminate packets sent from access points by discarding all
but probe request packets.

The Wi-Fi sniffer captures packets transmitted by mobile de-
vices. When seeking access points, mobile devices broadcast a
probe request packet whose header includes the sender’s Medium
Access Controller (MAC) hardware address, a sequence number,
and the packet type. Our sniffer adds further information about
the signal strength. Intercepting probe requests is non-invasive
and therefore preferable to advertising a fake open wireless net-
work to attract mobile device connections, which could disrupt
the passenger’s normal network connectivity.

3.2 Receiver Hardware and Software
To implement the packet sniffer we found Wi-Fi hardware that

supports ‘monitor mode’. Monitor mode allows the network in-
terface to be used for packet sniffing by making it receive all pack-
ets, even those not addressed to it.

An Arduino microcontroller [14] with a Wi-Fi interface was
one device considered for monitoring, but the radio cannot be
placed in monitor mode for packet sniffing. We eventually chose
to use a Raspberry Pi [15] and a Powerlink PL-U2N USB Wi-Fi
adapter, using the Ralink RT5370 chipset [16] which does sup-
port monitor mode (The Raspberry Pi is cheap and small, and has
low energy consumption making it suitable to be installed on a
bus with a USB Wi-Fi adapter).

We use dumpcap, part of the wireshark [17] suite for network
analysis, to record captured Wi-Fi packets. It can control the
channel used for capturing, using either all available channels (by
channel hopping) or only a single channel. We set the channel for
capturing packets to channel 6 in the 2.4 GHz Wi-Fi band (Cap-
turing on only one channel is more efficient for detecting pack-
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Fig. 2 Relationship of RSSI versus duration for three different bus trips.

ets, as it avoids channel hopping. From a short experiment we
discovered that most devices use channel 6). For real-time packet
filtering we set dumpcap to begin a new capture file every minute.

To separate mobile devices from base stations, link-layer head-
ers for each received frame were captured to a SD card by dump-
cap. We use tshark (also part of wireshark) to convert them to
plain text, and awk (a standard Unix utility) to extract just the
probe request packets for our filtering mechanism (Probe requests
are broadcast only by mobile devices searching for base stations).

3.3 Filtering Parameters
We do not know if the Wi-Fi signal from a mobile device came

from inside or outside the bus. To separate passenger signals from
environmental signals (people passing by, etc.) we have to re-
move the outside signals from the collected Wi-Fi activity data.

Figure 2 shows the received signal strength indication (RSSI)
against the total time duration for which each device was de-
tected. Each vertical line shows the minimum, maximum, and
average RSSI. We see varying RSSI values inside a bus, so we
consider using RSSI as one of the parameters for filtering.

Another parameter we consider is time duration, which we can
also use to identify a passenger device signal. If we detect a de-
vice only for a few seconds, that device is classified as a non-
passenger signal.

For filtering data in real-time we need some parameter for elim-
inating a device after its passenger gets off the bus. We call this
parameter idle time. This parameter is calculated as the current
time minus the time when the last packet was received from that
device. If a device is not detected for more than our idle time pa-
rameter, that device will be rejected because it probably belongs
to a passenger who got off the bus at the last bus stop.

3.4 Validation of RSSI as a Filtering Parameter
To verify the intuitive relationship between RSSI and distance,

a short experiment was conducted at a bus stop using three typi-
cal mobile devices (iOS and Android). The devices were placed
at distances between 1 and 15 meters from a packet sniffer, at 2-
meter intervals, and 100 packets were captured from each device
at each location.

Figure 3 shows the results of these signal strength experiments
at the bus stop. Signal strength falls steadily with increasing dis-
tance, from −31 dBm to −58 dBm. Beyond 13 meters the signal
remains relatively steady.

To verify the existence of some useful relationship between

Fig. 3 Relationship of RSSI versus distance at the bus stop.

Table 1 RSSI inside bus.

Front1 Rear1 Front2 Rear2
iOS −44.76 −33.54 −38 −37.1

Android 1 −49.18 −34.74 −42.86 −36.94
Android 2 −39.1 −31.6 −39.98 −30.74

AVG. −44.34 −33.29 −40.28 −34.92

Table 2 RSSI outside bus.

Outside
iOS −49.8

Android 1 −51.06
Android 2 −46.06

AVG. −48.97

RSSI and location inside a bus, another short experiment was
conducted on a bus using the same three typical mobile devices.
RSSI measurements were made at both ends of the bus, front and
rear, and we used the Raspberry Pi packet sniffer system running
dumpcap, placed always at the same location in the middle of
the bus. We performed the experiments twice, from both ends of
the bus, capturing 100 packets from each device to calculate the
average RSSI value.

Table 1 shows the results of the experiment inside the bus. The
RSSI inside the bus varied from −33 dBm to −44 dBm. The Sig-
nal strength from the rear end is consistently stronger than from
the front end. The rear end of the bus has more seats than the
front, so the signal may be affected by reflection or obstruction.

To verify a useful relationship between RSSI and location out-
side the bus, we used the same packet sniffer (inside the bus) and
the same three mobile devices placed 3 meters away from the
bus. We again calculated the average RSSI value from 100 pack-
ets captured during the experiment.

Table 2 shows the results of the experiment from outside the
bus. The average RSSI from outside the bus was −49 dBm. The
Signal strength from devices outside the bus is therefore generally

c© 2019 Information Processing Society of Japan 27



Journal of Information Processing Vol.27 25–32 (Jan. 2019)

Fig. 4 Duration of each device detected during a journey.

weaker than from those inside the bus.
These results demonstrate a useful relationship between RSSI

and distance from the packet sniffer, both outside and inside the
bus. We can verify that the signal strength of devices inside the
bus is generally stronger than that of devices outside the bus. This
result is in qualitative agreement with other similar experiments
investigating environmental effects on the signal strength, such as
Luciani and Davis [18].

3.5 Defining Filtering Conditions Using Real Data
Regarding the interior of the bus, the front end has more stand-

ing space than the rear end of the bus but the rear end has more
seats. The Signal strength can vary for many reasons such as the
reflection and the absorption by passengers. In the middle and
right graphs of Fig. 2 we see many devices that were detected
for a long duration but which had average signal strengths of
around −60 dBm, whereas in the left graph the long-duration de-
vices have an average RSSI of around −40 dBm. We therefore use
two different combinations of parameter values to detect proba-
ble passenger device signals: one is a strong signal strength even
when duration is not yet known, and the other is a (potentially)
weak signal strength but a longer observed duration.

Figure 4 shows the duration of each device’s signal, from the
time when the first packet was received until the time when the
last packet was received, during a typical bus trip. We see many
non-passenger signals (short lines) and we try to classify those as
non-passenger signals using our filtering mechanism. We use a
minimum detected duration of 90 seconds to classify a signal as
belonging to a passenger device, because 90 seconds is the short-
est time between two bus stops. Devices that are detected for
fewer than 90 seconds probably represent external signals, from
passers by, devices in other vehicles, passengers waiting at a bus
stop, etc.

We also consider the number of packets received when classi-
fying a device signal. If only a single packet is received then that
signal will be classified as non-passenger. This applies particu-
larly to situations where only a single packet with a very strong
signal strength is received from a device, which we classify as
non-passenger.

Real-time classification of signals can provide the most useful

if avgRssi > −40 and npkt ≥ 2 and idle ≤ 90 then
nEst+ = 1

else
if duration > 90 and avgRssi > −60 and idle ≤ 90 then

nEst+ = 1
end if

end if
Algorithm 1 Filtering method parameter.

information to passengers. We use an idle time of 90 seconds to
detect devices that are no longer on the bus. Since the shortest
time between two bus stops is 90 seconds, we use 90 seconds as
the idle time parameter in the classification algorithm.

Our classification mechanism therefore uses a novel two-tier
approach with five parameters. RSSI is used to roughly clas-
sify signals as probably inside (> −40 dBm), possibly inside, and
probably outside (< −60 dBm) the bus; signals probably originat-
ing outside are classified as being from non-passenger devices.
Minimum duration of 90 seconds is then used to qualify possible
passenger signals, whereas ‘probably inside’ signals need only be
received twice to qualify, regardless of the reception interval. In
either case, most-recently received signals that are more than 90
seconds old are classified as non-passenger.

Algorithm 1 shows the classification algorithm using a com-
bination of received signal strength indication, total duration for
which the device’s signal was detected (time of first packet to
time of last packet), the number of packets that have been re-
ceived from the device, and the idle time since the last packet
was received from the device.

4. Experiments and Evaluation

In this section we explain our experimental design and meth-
ods, and present our results.

4.1 Experimental Design
Our bus experiments were designed to test the accuracy of esti-

mating the number of passenger devices on the bus by monitoring
their Wi-Fi signal activity. Two types of bus and six different bus
routes were selected. Busses depart from the university to the
nearest train station and then return to the university. There are
several different routes between the university and the train sta-
tion, some passing a large industrial factory and others passing
schools or through villages.

Multiple experiments were performed on the following types
of bus routes. A local bus is a normal bus route stopping at every
stop for passengers to get on or off. The shuttle bus is a non-
stop bus between the university and train station terminals with
no stops in between, and therefore no passengers get on or off the
bus during the journey. The shuttle bus follows the same route as
one of the local busses.

4.2 Experimental Method
During the experiments we recorded the actual number of pas-

sengers on the bus at each minute. We also recorded the number
of passengers getting on or off at each bus stop, the departure
time, and the arrival time. Table 3 shows an example of obser-
vations made during an experiment travelling with the bus. Each
row represents one minute of the journey. The first column is the
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Table 3 Bus trip observations.

Min Number of Pax Remark
1 9
2 12 Departured
3 12
4 12
5 12
6 13 get on 1
7 13
8 13
9 13 get on 1, get off 1

10 13
11 13 Arrived

Fig. 5 Bus layout.

cumulative duration of the bus trip in minutes, the second column
is the number of passengers aboard during each of those minute-
long intervals, the third column lists significant events such as bus
departure/arrival or passengers getting on/off the bus. We use this
information to visualize passengers’ behaviour on the bus to help
validate a control data set for evaluation of our real-time classifi-
cation mechanism.

Experiments were conducted between 2017/07/04 and 2017/
08/17. Each experiment was performed inside a bus at various
times and along various routes. Figure 5 shows the layout of the
bus and the Raspberry Pi packet sniffer’s position which is indi-
cated by a red circle. Although bus companies use several bus
models, the length of a bus is always approximately 10 meters
and the total number of seats inside the bus varies between 32
and 40 [19].

During the experiment the packet sniffer was active and record-
ing Wi-Fi frame activity. It was placed at the same position every
time in the middle of the bus (because the middle of the bus can
better capture the Wi-Fi signals from all areas of the bus). We
saved the data files generated by dumpcap on a SD card. For
each packet received the system recorded the sender’s MAC ad-
dress, the time, the packet type, and the received signal strength
indication.

4.3 Evaluation Method
One of the tools for measuring a classifier’s accuracy is its F1

score. It considers both the precision and the recall. We use the
formula shown below to calculate the precision and recall.

precision =
Estimated Devices

⋂
Accurate Devices

Estimated Devices

recall =
Estimated Devices

⋂
Accurate Devices

Accurate Devices

F = 2 × precision × recall
precision + recall

In order to calculate the precision and recall of our real-time
algorithm, we first need to create a control data set of more accu-
rately classified devices.

Table 4 F-Measure.

Date Precision Recall F-Measure
July 4 0.79 0.62 0.67
July 6 0.7 0.73 0.7
July 7 0.82 0.58 0.67
July 10 0.76 0.8 0.77

July 31-1 0.74 0.68 0.67
July 31-2 0.56 0.75 0.62
July 31-3 0.81 0.75 0.62
July 31-4 0.8 0.72 0.73
July 31-5 0.49 0.53 0.5

August 17-1 0.83 0.63 0.71
August 17-2 0.77 0.75 0.74
August 17-3 0.86 0.72 0.76
August 17-4 0.87 0.64 0.72

AVG. 0.75 0.68 0.69

4.4 Obtaining a Control Data Set of Classification
We used complete knowledge of the future behavior of device

signals to extract a control data set from the recorded data. Since
the exact times of the first and last signals from a device are
known, the idle time becomes irrelevant. We used two simple
conditions to obtain a control data set containing signals with a
very high probability of being from passenger devices.
( 1 ) Max of RSSI > −40 dBm and duration > 60 seconds
( 2 ) Average of RSSI > −60 dBm and duration > 240 seconds

The −40 dBm threshold comes from the RSSI experiment per-
formed inside the bus. The weakest average signal strength is
−44 dBm, but we want to be fairly certain that a signal was cap-
tured inside the bus so we choose a stronger value. As for the
−60 dBm threshold, referring to Fig. 2, the signal strength has two
separate groups and it has many long-duration devices with sig-
nal strengths between −60 dBm and −70 dBm. So we choose the
strongest of these, −60 dBm. The 240 second threshold comes
from the longest time between two bus stops, as a further justifi-
cation that weak signals are from passenger devices.

4.5 Experimental Results
The binary data files recorded by dumpcap were converted to

text files using tshark and prepared for the real-time classifica-
tion mechanism. Our converter also selected only probe request
packets from among all of the packets captured.

We used our real-time filtering algorithm to find the esti-
mated number of passenger devices. The result was compared
to the control data set using the F-measure (precision and recall)
method. Table 4 shows the F-measure result from all of the ex-
periments. We performed the experiments on 13 bus trips rep-
resenting several different bus types and routes. The F-measure
score varies from 0.5 to 0.77. The average precision is 0.75, the
average recall is 0.68, and the average F-measure is 0.69.

We also ran a real-time classification simulation to separate
the passenger device signals from the environmental signals, and
compared the resulting estimate of the number of devices to the
observed number of passengers on the bus. The final column of
Table 5 shows the ratio of estimated devices to observed passen-
gers.

Figure 6 shows example results from the experiments includ-
ing the observed number of passengers, the control data set size,
and the real-time classification results. The left-hand result is one
of the best, with the estimated number of passenger device sig-
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Fig. 6 Observed data, control data set, and real-time estimations for three different bus trips.

Table 5 Estimated number of passenger devices in real-time.

Observed No. Estimated No.
Min of Passengers of Pax Devices ratio

1 7 3 2.33
2 7 3 2.33
3 7 5 1.40
4 7 2 3.50
5 7 2 3.50
6 8 2 4.00
7 7 4 1.75
8 6 5 1.20
9 6 3 2.00

10 9 4 2.25
11 28 10 2.80
12 29 14 2.07
13 29 14 2.07
14 36 20 1.80
15 36 20 1.80
16 36 29 1.24

nals closely matching the control data set. The middle result is
an average result, in which the control data set line is fairly sta-
ble for the first six minutes but the real-time estimate is stable at
five people from minute 5 to minute 9, after which the real-time
estimate begins to follow the control data set line. In the right-
hand graph the control data set and the real-time estimate start
at the same point and correlate well, but both show inconsistent
agreement with the observed number of passengers.

5. Discussion

Our real-time classification method tries to separate signals of
passenger devices travelling with the bus from non-passenger en-
vironmental device signals. For the real-time estimate we can
classify a passenger device within 60 seconds of first detection,
because dumpcap creates a new file every minute. When a pas-
senger gets off the bus with an active device there is a 90-second
delay before re-classifying that device corresponding to the idle
time parameter. Increasing the idle time increases the number
of device signals classified as passenger-related, but accuracy de-
creases and the additional delay is not good for real-time filtering.

The duration parameter of 90 seconds comes from the short-
est time between two bus stops. We feel this duration justifies a
signal as belonging to a passenger device since it appears to be
travelling with the bus.

From our short experiments we know RSSI inside a bus is gen-
erally stronger than that coming from outside the bus. However,
signal strengths from devices inside the bus can be lower than
outside devices for reasons that we assume include weak batter-
ies, signal absorption from passengers, etc. We used two different

RSSI threshold values for our real-time classification method and
considered strong signals with a short duration, or weak signals
with a long duration, to be from passenger devices. Table 5 shows
the number of estimated devices at each minute, and the ratio to
the number of observed passengers travelling with the bus. The
bus departed during minute 2. From the drop in the estimated
number of devices in the next minute, maybe three signals were
wrongly classified as passenger devices. Two people left the bus
in minute 7 and another got on. One minute later a new signal
was classified as being from a passenger device, but it was not
until minute 9 that two passenger signals were demoted to non-
passenger, possibly corresponding to the two passengers who left
in minute 7.

In Table 4, the average of the recall and F-measure is around
70 percent, and the precision is 75 percent. However on some
days, e.g., the July 31-5 trip, the accuracy is not so good. As
shown in the right graph of Fig. 6, the observed data is stable at
11 passengers from minute 2 to minute 6, but our estimate de-
creases from 10 to 6 passengers and then increases to 8 passen-
gers at minute 6. There can be many reasons for this such as
passengers starting to use their smartphone for checking e-mail,
weather, etc., after minute 4.

There are many reasons why we cannot detect all passenger
devices. Firstly, if a passenger disables the Wi-Fi function we
will not detect that device at all. Secondly, iOS devices have two
states, ‘active’ and ‘sleep’, and in a sleep state the device sends
a packet only every a few minutes [10]. Even if we can capture
all packets from these devices, they will not meet our criteria for
classification as signals from passenger devices.

Comparison with other methods is difficult because of differing
goals, assumptions or technical limitations. Mikkelsen et al. [11]
use a simpler filtering mechanism with only 2 parameters, RSSI
and device visibility duration. They report an accuracy of around
50%, using a minimum duration of 6 minutes which is too large
to provide real-time congestion information. Systems that count
passengers boarding/alighting, such as Chen et al. [4], [5], suffer
from cumulative errors that can be as high as 33%. Meaningful
comparisons of the accuracy for an entire bus trip are therefore
impossible to make.

6. Conclusion

We developed a method to estimate the number of signals orig-
inating from devices belonging to passengers travelling on a bus,
by monitoring their Wi-Fi probe request activity.
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We verified a useful relationship between the signal strength
and the proximity inside the bus, and that the signals are stronger
from devices inside busses than from those outside. A useful
range of signal strengths for filtering method parameters was de-
termined. We also observed and recorded the actual number of
passengers travelling with busses serving our university and sur-
rounding areas, including the number of passengers getting on or
getting off at each bus stop during the trip. The accuracy of our
classification mechanism was 75 percent.

Our method was simple, convenient, transparent (non-
participatory and non-invasive), and easily scales using very
cheap commodity components. We believe that the information
we are trying to obtain about seating availability is useful and
valuable to passengers, potentially increasing the quality of ser-
vice they will receive, and that 75% accuracy is sufficient to pro-
vide a meaningful indicator. This system could also be potentially
useful to operators, to help balance loads during busy periods.

Our ultimate goal is to inform passengers how many seats are
available on the next one or two arriving bus, so they can make
an informed decision whether to board, to wait, or to travel by
another means. Our accuracy for detecting passenger device sig-
nals is good, but could probably be improved and further work is
clearly needed to convert that data into useful information about
passenger loads. Since not all passengers carry a mobile device,
and some passengers may even carry several devices, the corre-
spondence with the number of passengers aboard is only approx-
imate. A simple coefficient of proportionality can be calculated,
but is likely to change significantly with at least location and time.
Also likely to change are the duration and idle parameters, which
were based on the time taken for our specific busses to travel be-
tween bus stops. A drawback of the method is therefore that addi-
tional calibration steps are required before the data can be used to
provide reliable information. This is a good candidate for further
work.

After further refinements of our techniques to improve the ac-
curacy and better estimate the actual number of passengers, we
plan to share the information obtained with passengers via an
application, an information board at the bus stop, or through a
website.
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