
Journal of Information Processing Vol.27 257–267 (Mar. 2019)

[DOI: 10.2197/ipsjjip.27.257]

Regular Paper

Easy-going Development of Event-Driven Applications by
Iterating a Search-Select-Superpose Loop

Masashi Nishimoto1,a) Keiji Nishiyama1,b) Hideyuki Kawabata1,c) Tetsuo Hironaka1,d)

Received: June 1, 2018, Accepted: December 4, 2018

Abstract: Today’s application development process depends heavily on the usage of application programming inter-
faces (APIs) for many kinds of frameworks. Time spent searching for appropriate API members and understanding
their usages tends to occupy much of the time required for the whole development process. This paper proposes a new
approach for developing application programs based on APIs in a simple way: through code development by iterating
a Search-Select-Superpose (SSS) loop. The approach comprises three phases. In the Search phase, the user searches
for a way to implement a desired functionality by combining API calls. The search results are shown to the user as a list
of outlines (sets of words) attached to code skeletons. A code skeleton, chosen in the Select phase, is then merged with
the program at hand in the Superpose phase. The entire process is implemented through the construction of an indexed
dataset composed of code skeletons extracted from open-source repositories, and through the use of a tool to control
the SSS loop. We have developed a prototype of the proposed system. In this paper, the design and implementation
of the proposed system are described. The effectiveness of the system was confirmed through empirical results from
experiments with event-driven Android application development.

Keywords: code search, API usage, application development, event-driven programming, Android

1. Introduction

Today’s application development process depends heavily on
the use of application programming interfaces (APIs). Acquir-
ing understanding of API usages, however, is not an easy task for
an ordinary programmer, because there are too many frameworks
(and thus, APIs) to choose from, API documentation might not
be up to date, and API specifications can change rapidly [8], [18].
One study found that 34.2% of all queries containing the word
“java” and given to existing search engines were questions on
API usages [4]. Indeed, the process of searching for appropriate
API members, understanding their usages, and building code us-
ing them tends to occupy much of the time required for the whole
development process.

Is knowledge of the usage of each individual API member
enough to build an application? The answer is “no” if mutual
relations or restrictions among them are considered. In addition,
many code patterns consist of cooperating APIs — many func-
tionalities implemented in application programs, such as file ac-
cess, user account authentication, network connection, and au-
dio data playback, involve combinations of multiple API calls.
To build an application, a user must know a number of id-
ioms based on various APIs. There are many research activi-
ties for the purpose of supporting program development based on
APIs [2], [3], [5], [10], [17], [19], [23], [24], [29], [30].

1 Graduate School of Information Sciences, Hiroshima City University,
Hiroshima 731–3194, Japan

a) nishimoto.masashi@ca.info.hiroshima-cu.ac.jp
b) nishiyama@ca.info.hiroshima-cu.ac.jp
c) kawabata@hiroshima-cu.ac.jp
d) hironaka@hiroshima-cu.ac.jp

It would be ideal for the user to search for an API-based idiom
by using a description of the desired functionality, and for the ob-
tained pattern including multiple API calls to be easily patched
into the user’s code at hand. In this paper, we present an automa-
tion of these processes. Specifically, we propose a new approach
for developing application programs based on APIs in a simple
way: through the development of code by iterating a Search-

Select-Superpose (SSS) loop. By iterating the SSS loop, the user
can introduce one new functionality into the code in each cycle.

Here, we describe briefly the idea of application development
by iterating the SSS loop. The loop body consists of three phases.
In the first phase, called the Search phase, the user searches for
a way to implement a desired functionality by combining API
calls. The user is not required to know the exact names of the
API members. The search results are shown to the user as a list
of outlines. Each outline is associated with a set of API members
accompanied by information on their usages as a code skeleton.
An appropriate dataset consisting of sets of API members with
corresponding outlines should be prepared in advance, possibly
by gathering source files from open-source repositories. The API
members in each set are mutually related and meant to cooperate
to implement a particular functionality. In fact, the outline shown
to the user is a set of weighted words arranged to properly de-
scribe the functionality implemented by the corresponding API
member set.

In the second phase, called the Select phase, the user selects
one of the outlines listed in the previous phase. The outcome of
the Search phase could result in a lengthy list of outlines. Because
the list is sorted in an order corresponding to what many program-
mers would expect, however, the selection should not impose a

c© 2019 Information Processing Society of Japan 257



Journal of Information Processing Vol.27 257–267 (Mar. 2019)

heavy burden on the user.
The purpose of the third phase of the SSS loop body is to incor-

porate the selected set of API members with some information to
build the intended functionality into the code at hand. We call this
the Superpose phase, because we have developed a tool to merge
a selected code skeleton into the user’s code, like superposing
one layer onto a base. In superposition, our tool accounts for the
structure of the code at hand to insert external code. That is, it
attempts to reuse existing identifiers consistently while merging
each segment of a skeleton, and it creates new identifiers to point
to certain objects or name additional methods, if needed.

In general, we cannot expect that any kind of functionality is
necessarily describable in a query language. Thus, it would be
difficult to obtain exactly the intended API member sets by using
a tool in the Search phase that is based on repository mining. It
is also obviously unattainable to build a fully automatic tool for
the Superpose phase that always works correctly, in the sense that
the behavior of the resultant code is always exactly the same as
the user’s intention. Some types of applications based on APIs,
however, like the event-driven programs typical of mobile appli-
cations for Android and iOS, have a great degree of formality.
Thus, we assume that a semi-automatic superposition process at
an acceptable level for such development can be achieved.

Accordingly, we have developed a prototype system to help
the user perform a SSS loop iteration. The system consists of two
tools: the SSS-DSGen dataset generator, and the SSS-Editor tool.
The SSS-DSGen constructs an indexed dataset of code skeletons
that can be used for program development by iterating the SSS
loop. The dataset, which is called a SSS-DS, contains information
on idiomatic usages of API member sets gathered automatically
from input source programs. The SSS-Editor, on the other hand,
works as a user interface for our system and controls the itera-
tion of the SSS loop to enable rapid development of applications
combining API member sets.

In this paper, we describe the design and implementation of
the prototype system for iterating the SSS loop, and we show the
effectiveness of this approach through experimental results with
event-driven Android application development.

The rest of this paper is organized as follows. In Section 2,
we give an overview of the system to iterate the SSS loop. Sec-
tion 3 gives the details of how the SSS-DSGen constructs an in-
dexed dataset from source programs. In Section 4, the design and
implementation of the SSS-Editor are described. The prototype
implementation of the system for iterating the SSS loop is de-
scribed in Section 5. We evaluate our approach of iterating the
SSS loop for application development through experimental re-
sults described in Section 6. Finally, in Section 7, related work
is summarized, before we conclude in Section 8 by summarizing
key points and mentioning our future work.

2. Iteration of a SSS Loop

2.1 Motivating Example: Application Development with
Android Framework

A code fragment shown in Fig. 1 (a) is a typical program in
Java for Android at the beginning of application development. It
defines a class MainActivity that extends a class of the Android

Fig. 1 Adding a functionality to a code fragment in Java for Android.

framework, AppCompatActivity, and contains callback meth-
ods onCreate and onResume, which are expected to be overrid-
den by the user’s code.

Suppose that we want to add a functionality to obtain values
from an accelerometer and use them for some computation. Note
that we cannot accomplish this task by adding just one method
from an API — we need to add a set of methods. In addition,
those methods must often be inserted at separate positions in the
source. For example, in the accelerometer case, as shown in
Fig. 1 (b), we might have to scatter additional lines throughout
the file.

Our motivation for developing the SSS loop iteration system is
to make it possible to manage such kinds of modifications semi-
automatically. With the proposed system, the user can obtain a
set of API methods, e.g.,
{ getSystemService, getDefaultSensor,
registerListener, unregisterListener },

by inputting the keywords “get, sensor, accelerometer.” After se-
lecting the set from among various candidates, the user can then
superpose it into the program at hand — each API call is inserted
into the body of a suitable method in the user class. The sys-
tem automatically inserts overriding methods if an appropriate
one does not exist in the user’s program.

2.2 System Structure
In this paper, we propose an approach to application devel-

c© 2019 Information Processing Society of Japan 258



Journal of Information Processing Vol.27 257–267 (Mar. 2019)

Fig. 2 Structure of the system for iterating the SSS loop.

opment based on iterating the SSS loop. The entire process is
implemented with two components: the SSS-DSGen dataset gen-
erator and the SSS-Editor tool. Figure 2 shows the structure of
our prototype. The SSS-DSGen constructs an indexed set of code
skeletons, called a SSS-DS, which the SSS-Editor then uses. Sec-
tion 3 describes the design of the SSS-DSGen and each of its com-
ponents, shown in Fig. 2 (a). Section 4 then explains the details
of the SSS-Editor, shown in Fig. 2 (b).

3. SSS-DSGen: Construction of SSS-DS

The SSS-DSGen is a tool for constructing an indexed dataset
from a set of source files, as shown in Fig. 2 (a). The indexed
dataset, called a SSS-DS, is a set of code skeletons. Each code
skeleton implements a particular functionality by combining API
members, *1 accompanied by a set of words as an annotation (or
outline). The annotation for a code skeleton is made of words ex-
tracted from the names of API members used in the skeleton. To
develop applications through interactive sessions with the SSS-

Editor, the SSS-DS is used while iterating the SSS loop, as shown
in Fig. 2 (b).

3.1 Extracting Code Skeletons Through Data Dependence
To extract a code skeleton from source files obtained from, e.g.,

open-source repositories, the SSS-DSGen analyzes each source
file to find out how API methods cooperate.

We consider how the source file shown in Fig. 3, taken from
Google Samples *2, is processed by the SSS-DSGen. First, several
graphs are constructed by analyzing data dependencies between
API members. In the graph example shown in Fig. 4, nodes with
underlined labels are API member names, while elliptical nodes
are variables. The labels in boxes indicate the method names from
which those API calls were obtained. In the figure, identifiers are
connected by arrows labeled as arg, gen, or points to, meaning
that the value is passed to the method as an argument, the method
(or a class constructor) generates the value or the identifier point-
ing to the object has the method, respectively. We extract one
code skeleton (a set of syntax trees and additional information)
from each graph.

Unlike other tools that extract sets of API calls, the extraction
of sets of API members by the SSS-DSGen is unaffected by the

*1 In this paper, we use the word “API member” not only for methods of
libraries or frameworks but also named constants defined in them.

*2 https://github.com/googlesamples

Fig. 3 A code fragment in Java for Android, taken from
DeviceScanActivity.java in Google Samples.

Fig. 4 A graph illustrating closely related API members obtained from the
code fragment in Fig. 3.

borders of methods, because the analysis is based on data depen-
dence. In addition, to obtain globally reusable information, we
use inline expansion to account for locally defined private meth-
ods.

A graph constructed according to data dependencies could be
quite large, and an entire source file could be represented by just
one graph. For event-driven programs interacting with the out-
side environment, however, which are typical for Android and
iOS applications, the obtained graphs would be small, because
such programs usually handle many separate events that are mu-
tually independent.

3.2 Annotating and Weighting Each API Member Set
In general, multiple graphs are obtained from a source file. We

c© 2019 Information Processing Society of Japan 259



Journal of Information Processing Vol.27 257–267 (Mar. 2019)

consider each graph such as that shown in Fig. 4, to represent a
concrete example of the implementation of a particular function-
ality that can be treated as an idiom. Looking at the names of API
members appearing in Fig. 4, we can guess that the functionality
implemented by this set of API members is to “manage a Blue-
tooth adapter to start and stop scanning.” From this intuition, we
generate a set of words from the names of the API members in
each set to make an annotation for the set.

After splitting API member names into smaller words by pars-
ing common conventions such as camel case and snake case,
we normalize them by using morphological analysis to remove
variations in word forms. Then, to index the names for search-
ing, we use the term frequency–inverse document frequency (TF-
IDF) [12] to weight each word in each annotation. The SSS-

Editor then uses the cosine distance measure in a vector space
model to rank and reorder the results of an API member set
search.

4. SSS-Editor: Iterating a Search-Select-
Superpose Loop

Here, we describe the behavior of the prototype SSS-Editor

shown in Fig. 2 (b), which controls the iteration of the SSS loop.
The SSS-Editor uses the indexed dataset SSS-DS described in
Section 3.

4.1 Search Phase
The user inputs a set of words that might represent a functional-

ity to implement. As described in the previous section, the search
results are ranked in order of similarity with respect to the query
by using the cosine distance in a vector space model based on TF-
IDF values. Currently, the query language is simply a sequence
of words. Each word is morphologically normalized before eval-
uating cosine distances.

4.2 Select Phase
The result of a search is a list of sets of words. Each set of

words, or outline, is associated with a set of API members with
some information on their usages via a code skeleton. To simplify
the selection process, we display the results as a list view of tag
clouds. In each tag cloud, words that have large TF-IDF values
are printed in large characters. Additional information such as
the fully qualified names of API members is also supplied to the
user, in case it is difficult to distinguish sets by only looking at
the tag-cloud representations.

4.3 Superpose Phase
The SSS-Editor first inspects the user’s code and gathers infor-

mation such as definitions of variables and methods, and existing
API calls. Then, it attempts to merge the selected code skeleton
with the user’s code. Roughly, the SSS-Editor attempts to
• insert each method call in the skeleton into the body of the

same method from which the method call was obtained;
• use existing API members and variables as much as possible

to embed the structure of the data dependence graphs into
the code; and

• create variables to maintain intermediate objects and define

Fig. 5 A graph obtained from a Java for Android file,
AccelerometerPlayActivity.java in Google Samples.

methods to insert API calls, if needed.
The modification of the code is confirmed by the user at each step.

Suppose we merge the code skeleton shown in Fig. 5. The
SSS-Editor detects constraints such as calls to the methods
registerListener and getDefaultSensor having to be in-
serted in the method onResume, a call to unregisterListener
in onPause, and so on. If some methods in which API calls
are going to be inserted are not defined in the code at hand, the
SSS-Editor introduces new definitions of them (possibly with an
@Override annotation). In some applications, overridden meth-
ods such as onCreatemight not be the same as the ones in a code
skeleton. For example, some applications might be constructed
by extending AppCompatActivity or ListActivity instead of
Activity. The SSS-Editor thus checks for type compatibilities
and notifies the user if manual modification of the source is re-
quired.

Arguments and return values for inserted calls are considered
so as to maintain the relations represented in the graph. For ex-
ample, in the case of the graph shown in Fig. 5, the SSS-Editor

searches for an identifier of type Sensor in the code at hand to ar-
range the call to registerListener. If it is found in onResume,
then the SSS-Editor tries to use it. If it is not, or if the user does
not let the SSS-Editor use it, the tool defines a fresh identifier in
the appropriate scope and uses it.

In general, it is impossible to build a fully automatic tool for
the Superpose phase that will always work correctly, at least in
the sense that the behavior of the resultant code will be exactly
the same as the user intends. Thus, we offer two strategies for su-
perposition: one is to reuse API calls in the code at hand as much
as possible, and the other is to insert all API calls in the selected
code skeleton.

5. Implementation

We have developed a prototype of the system shown in Fig. 2.
The Java parser in the Eclipse Java development tools (JDT) and
Apache Lucene were used to construct the SSS-DSGen and SSS-

Editor. The SSS-Editor was then implemented as a plugin for
Android Studio.

Figure 6 shows the appearance of the SSS-Editor. The user
can edit the source code in the left pane. The right pane is used
to control searching, selecting, and superposing.

Figure 6 shows a situation in which the user searched
for a functionality by inputting the words “get accelerom-
eter sensor value” with a SSS-DS constructed by analyz-

c© 2019 Information Processing Society of Japan 260



Journal of Information Processing Vol.27 257–267 (Mar. 2019)

Fig. 6 Iteration of the SSS loop by using the prototype SSS-Editor.

Fig. 7 Superposition: two kinds of strategies.

ing files from Google Samples (upper right). The user
then selected the first candidate, which has four methods
(lower left): getSystemService, getDefaultSensor,
registerListener, and unregisterListener. Once an
API member set is selected, the SSS-Editor offers two kinds of
strategies to modify the user’s code in the Superpose phase. In
each case, the user can see beforehand how the code would be
modified, as shown in Fig. 7.

6. Evaluation

In this section, we evaluate the effectiveness of the SSS loop

approach for developing Android application programs. The ap-
proach was implemented with a system consisting of two compo-
nents, i.e., the SSS-DSGen and SSS-Editor, as shown in Fig. 2. To
evaluate the effectiveness of the whole system, we conducted the
following two experiments:
( 1 ) an experiment on the automatic reproduction of API usage

patterns in existing applications, and
( 2 ) a user study involving Java programmers.

The purpose of the first experiment was to evaluate the quality
of search results obtained by the proposed system. In the exper-
iment, we attempted to reproduce API usage patterns in existing
applications using the SSS-Editor in an automated manner. We
evaluated the quality of search results by two specially defined
index: recall and precision on API usage patterns.

The second experiment was intended to evaluate the overall
performance of our system. Each participant in the user study
was given the task of building four tiny Android programs with or
without the SSS-Editor. We compared the results obtained from
both environments and evaluated the usability of the proposed
system.

Both experiments were based on SSS-DSs constructed from
Java source files in Google Samples. The experimental environ-
ment is detailed in Section 6.1. The results of the experiments are

c© 2019 Information Processing Society of Japan 261



Journal of Information Processing Vol.27 257–267 (Mar. 2019)

described in Sections 6.2 and 6.3.

6.1 Environment
For the experiments described in the following sections, we

used Java files obtained from Google Samples in January 2017.
We collected 158 projects containing 1,797 Java files. For the ex-
periments, we selected all files that define a class extending the
Android framework and use at least one Android API call, for a
total of 853 files. Here, we refer to the set of selected files as
Samples.

6.2 Experiment 1: Reproduction of API Usage Patterns
In Experiment 1, we evaluated the quality of search results ob-

tained by the proposed system. In this experiment, we attempted
to reproduce each file (called a target) in the Samples by iterating
the SSS loop with a SSS-DS constructed from the files in the Sam-

ples excluding the target file. To measure the quality of the search
results, we compared the differences between the reproduced and
the original (target) file in terms of what API members are used
in what methods, which we call API usage patterns (API-UPs).

In the rest of this section, we use the phrase “reproduced API-
UPs” to refer to the API-UPs extracted from the reproduced file.
6.2.1 Description of Experiment

Experiment 1 was conducted as follows. First, we selected a
file from the Samples as a target file. Second, we extracted a set
of API-UPs (called target API-UPs) from the target file, and a
set of words (called keywords) from the API member names in
each target API-UP. Then, after constructing a SSS-DS from the
Samples excluding the target file, we attempted to reproduce the
API-UPs in the target by inputting the corresponding sets of key-
words repeatedly to the SSS-Editor. For each target file, we com-
pared the reproduced API-UPs with the target API-UPs. In this
experiment, these steps were repeated for all files in the Samples.

Note that one search result consists of a candidate list of out-
lined API member sets with code skeletons. In ordinary use of
the proposed system, the user is responsible for choosing an API
member set from the list of candidates. In Experiment 1, however,
we chose the set at the top of the candidate list, so that iterated
experiments for all files in the Samples could be carried out me-
chanically without user intervention. Thus, if many of the target
API-UPs were reproduced in Experiment 1, we could conclude
that the quality of search results obtained by the proposed system
was high.

The following is a more detailed description of the iteration for
each target file in the Samples:
( 1 ) Denote the target file as f . Construct a SSS-DS from the re-

maining 852 files in the Samples. If f uses an Android API
member that does not appear in the other 852 files, we skip
f , because some API-UPs obtained from it could never be
reproduced.

( 2 ) Extract sets of keywords that describe functionalities imple-
mented in f . This is done by first extracting API-UPs and
then extracting sets of keywords from them. Each keyword
is normalized through a morphological analysis. Each key-
word list is sorted in order of frequency. We denote the
number of functionalities in f and the list of keywords cor-

responding to the i-th functionality as N( f ) and K( f )
i , respec-

tively. In this step, we obtain a list L( f ) = [K( f )
1 , . . . ,K

( f )
N( f ) ],

where L( f ) is sorted such that i ≤ j implies |K( f )
i | ≥ |K( f )

j |.
( 3 ) Iterate the SSS loop mechanically with the SSS-Editor. From

each element K( f )
i in L( f ), a fixed number of words (e.g., 3,

4, or all |K( f )
i | words) is used to invoke the SSS-Editor. In the

Select phase, the code skeleton at the top of the search re-
sults is always chosen, and API members in that skeleton are
inserted in the Superpose phase. Iteration of the SSS loop
continues until all elements in L( f ) have been processed.

Let f̃ denote the file reproduced from the sets of keywords ob-
tained from f at each iteration of the above steps. At each it-
eration, we record the following two values, the recall( f ) and
precision( f ):

recall( f ) =
| api pos pairs( f̃ ) ∩ api pos pairs( f ) |

| api pos pairs( f ) | ,

precision( f ) =
| api pos pairs( f̃ ) ∩ api pos pairs( f ) |

| api pos pairs( f̃ ) | ,

where api pos pairs( f ) denotes a set of pairs in which each pair
(a, m) indicates that an API member a is used in a method m de-
fined in f . The value of recall( f ) is thus the ratio of the number
of pairs in the reproduced set of API-UPs to the number of pairs
in API-UPs obtained from the target file f . On the other hand,
the value of precision( f ) is the ratio of the number of pairs in the
reproduced set of API-UPs to the number of pairs in API-UPs
obtained from the reproduced file f̃ . In the ideal case, recall( f )
and precision( f ) are both 1, where api pos pairs( f ) is equal to
api pos pairs( f̃ ).
6.2.2 Results of Experiment 1

Figure 8 summarizes the experimental results. In total, re-
production was tried on 553 files. Each stacked bar in Fig. 8 (a)
shows the distribution of the values of recall for a given num-
ber of keywords used in step ( 3 ). In the figure, the black part
forming the lowest layer in each stacked bar indicates the pro-
portion of target files whose recall (or precision) was 1 when the
given number of keywords was used. The other layers indicate
the proportion of target files whose values were in the ranges of
[0.9, 1.0), [0.8, 0.9), . . ., [0, 0.1), from the bottom to the top. For
example, Fig. 8 (a) shows that the proportion of target files whose
recall values were in the range of [0.5, 1] was about 31% (174
files out of 553) when three keywords were used in the Search

phase. In other words, more than half the API members in 32%
of the files were correctly (in terms of API-method pairs) inserted
by the SSS-Editor. When a larger number of keywords were
used, the recall became significantly greater. If we could input
all words related to API members in the Search phase, more than
half of them in 65% of the files (360 out of 553) would be cor-
rectly inserted automatically.

Figure 8 (b) similarly shows the distribution of precision val-
ues. The graph indicates that if we could input enough keywords
in the Search phase, the results from the SSS-Editor would be ex-
pected to contain only a small number of irrelevant API members
or incorrect insertions.
6.2.3 Properties of API-UPs as Plain API Member Sets

Each API-UP obtained in Experiment 1 contained valuable in-

c© 2019 Information Processing Society of Japan 262



Journal of Information Processing Vol.27 257–267 (Mar. 2019)

Fig. 8 Distribution of the values of recall and precision for files in Google Samples.

Fig. 9 Distribution of the values of recall′ and precision′ for files in Google Samples.

formation on what API members were used in what methods for
implementing a functionality. However, even limited information
on those API members as plain API member sets could be still
considered useful [21]. In this section, we discuss the properties
of API-UPs as plain API member sets from the results obtained
by iterating the process described in Section 6.2.1.

Figure 9 shows the experimental results with the following
slightly modified versions of precision and recall:

recall′( f ) =
| apis( f̃ ) ∩ apis( f ) |

| apis( f ) | ,

precision′( f ) =
| apis( f̃ ) ∩ apis( f ) |

| apis( f̃ ) | ,

where apis( f ) denotes just the set of Android API members used
in f , without information on their inserted positions. Obviously,
values of precision′ and recall′ will be greater than precision and
recall, respectively. Figure 9 (a) shows the distribution of the val-
ues of recall’. It indicates, for example, that when three words
were used in the Search phase, more than half the API members
in 65% of the files (361 out of 553) were gathered by the SSS-

Editor. If we could input all words related to API members in
the Search phase, more than half of them in 89% of the files (491
out of 553) would be automatically obtained. Likewise, Fig. 9 (b)
shows the distribution of the values of precision′. The graph indi-
cates that if we could input enough keywords in the Search phase,
the results from the SSS-Editor would not contain many irrelevant
API members.
6.2.4 Comparison with API Member Sets Obtained by An-

other Method
An API member set search tool, which we refer to as CAPIS in

this paper, was studied in a previous work [21]. The CAPIS tool
enables the user to search for API member sets that are expected
to be necessary to implement a desired functionality. The sets ob-
tained by CAPIS are supposed to be full of information that is not
easy to gather by just reading through framework documentation
or searching open-source repositories [21]. In this section, we
compare the properties of API member sets obtained using the
CAPIS tool [21] and those of API-UPs obtained using the pro-
posed method.

The method in Ref. [21] for extracting API member sets does
not use data dependence. Rather, API members are clustered de-
pending on whether they are members of similarly named classes.
Thus, the Superpose phase using the SSS-Editor is not applicable
to API member sets obtained by CAPIS. We thus partially ap-
plied the three-step procedure described in Section 6.2.1 to the
API member sets, i.e., we retrieved API member sets without re-
producing each target file in the Superpose phase.

The CAPIS results for recall′ and precision′ are shown in
Fig. 10 (a) and Fig. 10 (b), respectively. Compared to the re-
sults shown in Fig. 9, this figure shows peculiar properties for
the dataset obtained by the method of Ref. [21]. For example,
recall′ was high and precision′ was low, (almost) independently
of the number of words used for the search. This implies that
API member set information obtained from data dependence is
preferable for implementing functionalities to that obtained from
similarities of class names.
6.2.5 Summary of Experiment 1 Results

The results of Experiment 1 can be summarized as follows.
• By using the proposed system, information could be effec-

tively obtained on necessary API members and usage pat-

c© 2019 Information Processing Society of Japan 263



Journal of Information Processing Vol.27 257–267 (Mar. 2019)

Fig. 10 Distribution of the values of recall′ and precision′ for API member sets generated by the method
of Ref. [21].

terns for constructing typical Android application programs
using files such as those in Google Samples.

• Compared to a method for obtaining sets of API members
from the class names to which each member belongs [21],
the proposed method for extracting API usage patterns from
data dependence gave API member set search results that
were more precise in terms of precision′ and recall′.

Note that the results shown in Fig. 8 and Fig. 9 were obtained
with fully automatic iteration of the SSS loop, which is not the
intended usage of the SSS-Editor. In fact, automatic superposi-
tion often causes it to generate semantically incorrect code. The
results suggest, however, that the SSS-Editor has the potential to
help the user construct outlines of application programs that are
often full of API calls.

6.3 Experiment 2: User Study
6.3.1 Description of Experiment

Next, we conducted a user study involving Java programmers.
All participants were university students *3 who had experience in
writing Java programs but were beginners in Android program-
ming.

The participants were given tasks of developing tiny Android
applications in the following two environments:
E1 The participants could use the Android API reference, An-

droid programs in Google Samples with a simple search fa-
cility, and Android Studio.

E2 In addition to the content of E1, the participants could use
the SSS-Editor.

By comparing the scores obtained in environments E1 and E2,
we examined the effectiveness of the SSS-Editor.

Each task given to the participants consisted of implementing
particular functionalities in an empty Android project. Layout
designs of appropriate widgets on the screen, such as Button and
EditText widgets, were given in advance via XML files. Required
permissions for connecting to the Internet and Wi-Fi were given
via AndroidManifest.xml. Detailed descriptions of the tasks
are as follows.
P1 Make the app open Google’s homepage (https://www.

google.com/) when a button on the screen is pushed.
P2 Assign two buttons separate functionalities: one is used for

*3 The participants were seven graduates and one undergraduate at
Hiroshima City University.

Table 1 Task and environment assignments to the participants.

Participants 1st solve 2nd solve 3rd solve 4th solve
A and B P1 P2 P3 P4

E2 E2 E1 E1
C and D P3 P4 P1 P2

E1 E1 E2 E2
E and F P1 P2 P3 P4

E1 E1 E2 E2
G and H P3 P4 P1 P2

E2 E2 E1 E1

connecting to Wi-Fi, and the other, for disconnecting.
P3 Make the app pop up a text string in an EditText widget by

using a Toast widget.
P4 Make the app rotate a picture (shown in advance) by 360 de-

grees via rotating animation when a button on the screen is
pushed.

Each task had to be finished within a 20-minute period. All
necessary API members to solve the problems were included in
the SSS-DS given for E2. The participants’ operations and behav-
iors were recorded.

Table 1 lists the task and environment assignments for the par-
ticipants. The experiments were conducted with the procedure
below.
( 1 ) We gave the participants a simple lecture on Android appli-

cation development.
( 2 ) We gave a simple lecture on the usage of the SSS-Editor.
( 3 ) The participants were given some Android programming

practice.
( 4 ) The participants performed tasks according to the assign-

ments listed in Table 1.
6.3.2 Results of Experiment 2

Table 2 lists the results of Experiment 2. Each line in Table 2
corresponds to a record for one participant. Boxes denote that
the trial was done with the SSS-Editor. The participants rated the
usefulness of the system on a scale from 1 to 5. From the results
listed in Table 2, we calculated the ratio of correct answers with
the SSS-Editor as 14 : 16 (87.5%). On the other hand, the ratio of
correct answers without the SSS-Editor was 7 : 16 (43.8%).

There were a few cases in which participants could not build
correct programs because of a lack of experience with Java or
Android programming (†1).

In environment E1 (without the SSS-Editor), some participants
could not build correct programs because of failures in the search

c© 2019 Information Processing Society of Japan 264



Journal of Information Processing Vol.27 257–267 (Mar. 2019)

Table 2 User study results, indicating the time in minutes required to solve
each problem.

Participants P1 P2 P3 P4 PCA Rating (1-5)

A 16 8 —†3 —†2 50.0% 4

B 10 7 —†3 —†2 50.0% 4

C 13 †6 8 —†1 17 75.0% 4

D — †5 6 —†3 —†2 25.0% 4

E 8 18 9 9 100.0% 3

F 9 —†4 6 14 †6 75.0% 4

G 11 6 8 13 †6 100.0% 3

H 10 —†4 — †1 4 50.0% 4
PCA 87.5% 75.0% 37.5% 62.5% 65.6%

PCA: Percentage of Correct Answers

for suitable API members (†2, †3, †4). Some had trouble search-
ing APIs because the available search facilities in E1 were too
sensitive to parts of speech, e.g., they should have used “ani-
mate” instead of “anime” or “animation” (†2). Some failed to
judge suitable API members as correct even though they noticed
them while searching (†3). Some could not compose a set of
API members by gathering pieces of information obtained from
search results to implement a functionality in the code (†4).

On the other hand, in E2 (with the SSS-Editor), participants
did not make the kinds of mistakes described above, i.e., impor-
tant API calls were easily obtained using the SSS-Editor. Because
an automatically inserted set of sentences sometimes contained
needless API calls, however, the participants had to pay attention
to remove unnecessary ones. In one case the removal was not
performed correctly (†5).

Also, in some cases in E2, participants initially misjudged cor-
rect API members but changed the decision while taking a second
look at them (†6). In E1, however, no one paid attention to API
members that had been misjudged.
6.3.3 Summary of Experiment 2 Results

From the results listed in Table 2, we can conclude that the
proposed system for developing applications was effective. The
results are summarized as follows.
• The use of morphological analysis in constructing a SSS-DS

and searching was effective (to avoid cases like †2).
• The facility to present sets of mutually related API members

was useful (to avoid cases like †4).
• The facility to automatically insert API member sets into the

code at hand could appropriately help the user develop ap-
plications rapidly (to avoid cases like †3 and †4).

• The technique of listing search results in the Search phase,
i.e., the organized style of showing information to the user,
might also be effective for helping the user build applications
smoothly (to make cases like †6 possible).

In addition, note the following:
• the participants rated the tool fairly well, with six of eight

rating it at 4 (in the range from 1 to 5), but
• two participants who got perfect scores rated the tool at 3.

This result implies that the current prototype of the system is es-
pecially useful for beginners in Android programming. In fact,
the problems in Experiment 2 were small, and many of them
could be easily solved by experienced programmers. A detailed
analysis based on experiments using more difficult or large-scale

programming projects will be a future work.

7. Related Work

Code search techniques for retrieving information from open-
source repositories to support application development have been
studied for more than a decade. To the best of our knowledge,
however, there have been virtually no systems with functionalities
similar to ours, i.e., systems that can search for API usage patterns
involving multiple API calls in separate methods and also merge
the set of API members into the user’s code. In this section, we
summarize related studies on information retrieval for API usage.

There are many kinds of approaches to define queries for re-
trieving API-related information. SNIFF [1] accepts words and
searches for code segments related to the input words. For search-
ing, it uses API documentation in addition to comments in source
files. Portfolio [15] uses natural language processing (NLP) to
retrieve information on chains of API calls. Raychev et al. used
statistical language models to accomplish code completion [24].
CodeBroker [30] uses the source code at hand to give contex-
tual information to retrieve code segments, as does Strathcona [5].
Prompter [22] also uses the user’s source code at hand and auto-
matically retrieves relevant discussions with code segments from
Stack Overflow, a Q&A website. CodeHint [2] even uses dy-
namic context to offer appropriate code. Lemos et al. proposed an
approach of test-driven code search [9], [10], which accepts de-
scriptions for unit testing and obtains suitable method definitions.
The system presented in this paper currently just uses morpho-
logical analysis for words. Sophisticated query processing would
also be effective for our system.

In addition to searching for information related to API usage,
some tools synthesize appropriate code segments. Some use sim-
ple approaches: Prospector [11] composes unary functions to ob-
tain a “jungloid” by accepting various types of input and output,
while XSnippet [26] limits the type of generated code segments
to those performing object instantiation tasks. PARSEWeb [28]
also accepts a signature for searching and is claimed to outper-
form Prospector and XSnippet. S 6 [25] accepts additional in-
formation beyond signatures for searching API usages. Recent
approaches are more advanced: Hunter [29] generates wrappers
when it cannot find API members that exactly match the given
signatures. AnyCode [3] accepts a description in natural lan-
guage and synthesizes code that can be inserted at a designated
point in the user’s code. DroidAssist [17] uses a hidden Markov
model (HMM) to recommend API usages for Android applica-
tions. SWIM [23] also uses NLP with log data obtained from
Bing, a general-purpose search engine. T2API [19] uses a statis-
tical machine translation technique to accept descriptions in En-
glish and synthesize code.

Many of these studies utilize data and control dependence anal-
ysis for retrieving information on API usage patterns. For ex-
ample, the above-mentioned DroidAssist [17] uses a graph-based
representation of patterns, which is obtained based on data and
control dependence analysis described in Ref. [20], in order to
extract a statistical model of API usages. LibSync [16], which is
a tool for supporting API usage adaptation, is also based on the
approach of Ref. [20] with extensions to deal with subtyping rela-

c© 2019 Information Processing Society of Japan 265



Journal of Information Processing Vol.27 257–267 (Mar. 2019)

tions between objects. Prospector [11] performs data and control
dependence analysis similar to that of Ref. [16]. Different from
these tools, our method performs data dependence analysis that
is more global in the sense that API members invoked in user-
defined methods are related based on data dependence analysis
beyond the borders of method definitions.

Keivanloo et al. [7] offered a way to obtain descriptions that
might be small code segments without API calls. Gilligan [6] is
useful in integrating complicated descriptions of a functionality
in an application into the code at hand. An approach called mul-
tistaging to understand (MTU) [27] is helpful for understanding
an existing source code to obtain information for reusing part of
it. Our future work will include incorporating these kinds of ad-
vanced functionalities into our system.

In addition to the above works, there was one approach [13]
that appeared quite similar to ours, but their project went in a
different direction [14].

8. Conclusion

We have proposed a simple way to develop applications by it-
erating a three-step procedure called the Search-Select-Superpose

(SSS) loop. A prototype tool to support the development process
was designed and implemented. Experimental results showed
that the proposed approach is effective, partly because of the sim-
ple nature of event-driven applications. Our future work will in-
clude a detailed evaluation of the approach and a tool for devel-
oping large-scale applications. We plan to test the approach with
other frameworks based on event-driven programming, such as
iOS and GUI applications.

References

[1] Chatterjee, S., Juvekar, S. and Sen, K.: SNIFF: A Search Engine
for Java Using Free-Form Queries, Proc. International Conference
on Funcamental Approaches to Software Engineering (FASE 2009),
pp.385–400 (2009).

[2] Galenson, J., Reames, P., Bodik, R., Hartmann, B. and Sen, K.: Code-
Hint: Dynamic and Interactive Synthesis of Code Snippets, Proc.
36th International Conference on Software Engineering, ICSE 2014,
pp.653–663, ACM (online), DOI: 10.1145/2568225.2568250 (2014).

[3] Gvero, T. and Kuncak, V.: Synthesizing Java Expressions from Free-
Form Queries, Proc. 2015 ACM SIGPLAN International Conference
on Object-Oriented Programming, Systems, Languages, and Applica-
tions, pp.416–432 (2015).

[4] Hoffmann, R., Fogarty, J. and Weld, D.S.: Assieme: Finding and
Leveraging Implicit References in a Web Search Interface for Pro-
grammers, UIST’07, pp.13–22 (2007).

[5] Holmes, R. and Murphy, G.C.: Using Structural Context to Recom-
mend Source Code Examples, Proc. 27th International Conference on
Software Engineering, ICSE ’05, pp.117–125, ACM (online), DOI:
10.1145/1062455.1062491 (2005).

[6] Holmes, R. and Walker, R.J.: Systematizing pragmatic software
reuse, ACM Trans. Software Engineering and Methodology (TOSEM),
Vol.21, No.4 (2012).

[7] Keivanloo, I., Rilling, J. and Zou, Y.: Spotting Working Code
Examples, Proc. 36th International Conference on Software Engi-
neering, ICSE 2014, pp.664–675, ACM (online), DOI: 10.1145/
2568225.2568292 (2014).

[8] Lamba, Y., Khattar, M. and Sureka, A.: Pravaaha: Mining Android
Applications for Discovering API Call Usage Patterns and Trends,
Proc. 8th India Software Engineering Conference (ISEC’15), pp.10–
19 (2015).

[9] Lazzarini Lemos, O.A., Bajracharya, S., Ossher, J., Masiero,
P.C. and Lopes, C.: A Test-driven Approach to Code Search
and Its Application to the Reuse of Auxiliary Functionality, Inf.
Softw. Technol., Vol.53, No.4, pp.294–306 (online), DOI: 10.1016/
j.infsof.2010.11.009 (2011).

[10] Lemos, O.A.L., Bajracharya, S., Ossher, J., Masiero, P.C. and Lopes,

C.: Applying Test-Driven Code Search to the Reuse of Auxiliary
Functionality, Proc. 2009 ACM Symposium on Applied Computing
(SAC’09), pp.476–482 (2009).

[11] Mandelin, D., Xu, L., Bodı́k, R. and Kimelman, D.: Jungloid Min-
ing: Helping to Navigate the API Jungle, Proc. 2005 ACM SIGPLAN
Conference on Programming Language Design and Implementation,
PLDI ’05, pp.48–61, ACM (online), DOI: 10.1145/1065010.1065018
(2005).

[12] Manning, C.D., Raghavan, P. and Schutze, H.: Introduction to Infor-
mation Retrieval, Cambridge University Press (2008).

[13] McMillan, C.: Searching, Selecting, and Synthesizing Source Code,
Proc. 33rd International Conference on Software Engineering, ICSE
’11, pp.1124–1125, ACM (online), DOI: 10.1145/1985793.1986013
(2011).

[14] McMillan, C.: Searching, Selecting, and Synthesizing Source Code
Components, PhD Thesis, The College of William and Mary (2012).

[15] McMillan, C., Poshyvanyk, D., Grechanik, M., Xie, Q. and Fu, C.:
Portfolio: Searching for Relevant Functions and Their Usages in
Millions of Lines of Code, ACM Trans. Software Engineering and
Methodology, Vol.22, No.4, Article 37 (2013).

[16] Nguyen, H.A., Nguyen, T.T., Wilson, Jr., G., Nguyen, A.T., Kim,
M. and Nguyen, T.N.: A Graph-based Approach to API Usage
Adaptation, Proc. ACM International Conference on Object Oriented
Programming Systems Languages and Applications, OOPSLA ’10,
pp.302–321, ACM (online), DOI: 10.1145/1869459.1869486 (2010).

[17] Nguyen, T.T., Pham, H.V., Vu, P.M. and Nguyen, T.T.: Recommend-
ing API Usages for Mobile Apps with Hidden Markov Model, Proc.
30th IEEE/ACM International Conference on Automated Software En-
gineering (ASE 2015), pp.795–800 (2015).

[18] Nguyen, T.T., Pham, H.V., Vu, P.M. and Nguyen, T.T.: Learning API
usages from bytecode: A statistical approach, Proc. 38th International
Conference on Software Engineering (ICSE ’16), pp.416–427 (2016).

[19] Nguyen, T., Rigby, P.C., Nguyen, A.T., Karanfil, M. and Nguyen,
T.N.: T2API: Synthesizing API Code Usage Templates from English
Texts with Statistical Translation, Proc. 2016 24th ACM SIGSOFT In-
ternational Symposium on Foundations of Software Engineering, FSE
2016, pp.1013–1017, ACM (online), DOI: 10.1145/2950290.2983931
(2016).

[20] Nguyen, T.T., Nguyen, H.A., Pham, N.H., Al-Kofahi, J.M. and
Nguyen, T.N.: Graph-based Mining of Multiple Object Usage Pat-
terns, ESEC-FSE’09 (2009).

[21] Nishimoto, M., Kawabata, H. and Hironaka, T.: A System for API
Set Search for Supporting Application Program Development (in
Japanese), IEICE Trans. Inf. Syst., Vol.J101-D, No.8, pp.1176–1189
(2018).

[22] Ponzanelli, L., Bavota, G., Di Penta, M., Oliveto, R. and Lanza, M.:
Prompter, Empirical Softw. Engg., Vol.21, No.5, pp.2190–2231 (on-
line), DOI: 10.1007/s10664-015-9397-1 (2016).

[23] Raghothaman, M., Wei, Y. and Hamadi, Y.: SWIM: Synthesizing
What I Mean: Code Search and Idiomatic Snippet Synthesis, Proc.
38th International Conference on Software Engineering, ICSE ’16,
pp.357–367, ACM (online), DOI: 10.1145/2884781.2884808 (2016).

[24] Raychev, V., Vechev, M. and Yahav, E.: Code Completion with Sta-
tistical Language Models, Proc. 35th ACM SIGPLAN Conference
on Programming Language Design and Implementation (PLDI’14),
pp.419–428 (2014).

[25] Reiss, S.P.: Semantics-Based Code Search, Proc. 31st International
Conference on Software Engineering (ICSE’09), pp.243–253 (2009).

[26] Sahavechaphan, N. and Claypool, K.: XSnippet: Mining For
Sample Code, Proc. 21st Annual ACM SIGPLAN Conference on
Object-oriented Programming Systems, Languages, and Applica-
tions, OOPSLA ’06, pp.413–430, ACM (online), DOI: 10.1145/
1167473.1167508 (2006).

[27] Sanchez, H., Whitehead, J. and Schäf, M.: Multistaging to Under-
stand: Distilling the Essence of Java Code Examples, Proc. IEEE 24th
International Conference on Program Comprehension (2016).

[28] Thummalapenta, S. and Xie, T.: Parseweb: A Programmer Assistant
for Reusing Open Source Code on the Web, Proc. 22nd IEEE/ACM In-
ternational Conference on Automated Software Engineering, ASE ’07,
pp.204–213, ACM (online), DOI: 10.1145/1321631.1321663 (2007).

[29] Wang, Y., Feng, Y., Martins, R., Kaushik, A., Dillig, I. and Reiss,
S.P.: Hunter: Next-Generation Code Reuse for Java, Proc. 2016 24th
ACM SIGSOFT International Symposium on Foundations of Software
Engineering (FSE 2016), pp.1028–1032 (2016).

[30] Ye, Y. and Fisher, G.: Supporting Reuse by Delivering Task-Relevant
and Personalized Information, Proc. 24th International Conference on
Software Engineering (ICSE’02), pp.513–523 (2002).

c© 2019 Information Processing Society of Japan 266



Journal of Information Processing Vol.27 257–267 (Mar. 2019)

Masashi Nishimoto received B.E. de-
gree from Hiroshima City University in
2009. He is currently a doctor course
student at Graduate School of Informa-
tion Sciences in Hiroshima City Univer-
sity since 2016. His research interests in-
clude software engineering. He is a mem-
ber of IPSJ, and JSSST.

Keiji Nishiyama received B.E. degree
from Hiroshima City University in 2018.
He is currently a master course student at
Graduate School of Information Sciences
in Hiroshima City University since 2018.
His research interests include software en-
gineering.

Hideyuki Kawabata received B.E. and
Ph.D. degrees from Kyoto University in
1992 and 2004, respectively. Since 2007,
he has been a lecturer at Hiroshima City
University. His research interests in-
clude numerical programming and pro-
gramming languages. He is a member of
ACM, IEEE Computer Society, IPSJ, IE-

ICE, JSIAM, and JSSST.

Tetsuo Hironaka received a Ph.D. de-
gree from Kyushu University in 1993.
From 1993 to 1994, he served as a re-
search associate at Kyushu University.
From 1994 to 2006, he was an associate
professor at Hiroshima City University.
Since 2006, he has been a professor at
Hiroshima City University. His research

interests include computer architectures, reconfigurable architec-
tures, and software engineering. He is a member of IPSJ, IEICE,
IEEE, and ACM.

c© 2019 Information Processing Society of Japan 267


