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Abstract: Game 2048 is a stochastic single-player game and development of strong computer players for Game 2048
has been based on N-tuple networks trained by reinforcement learning. Some computer players were developed with
(convolutional) neural networks, but their performance was poor. In this study, we develop computer players for Game
2048 based on deep convolutional neural networks (DCNNs). We increment the number of convolution layers from
two to nine, while keeping the number of weights almost the same. We train the DCNNs by applying supervised
learning with a large number of play records from existing strong computer players. The best average score achieved
is 93,830 with five convolution layers, and the best maximum score achieved is 401,912 with seven convolution layers.
These results are better than existing neural-network-based players, while our DCNNs have less weights.
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1. Introduction

Neural networks (NN) are now widely used in develop-
ment of computer game players. Among these, deep convo-
lutional neural networks (DCNN) have been studied actively
in recent years and played an important role in the develop-
ment of master-level computer players, for example, for Go
(AlphaGo [22] and AlphaGo Zero [24]), Chess (Giraffe [13] and
DeepChess [5]), Shogi (AlphaZero [23]), Poker (Poker-CNN [31]
and DeepStack [19]), and Atari games [18].

The target of this study is Game “2048” [4], a stochastic single-
player game. Game 2048 is a slide-and-merge game and its “easy
to learn but hard to master” characteristics have attracted quite a
few people. According to its author, during the first three weeks
after its release, people spent a total time of over 3000 years on
playing the game.

Several computer players have been developed for Game 2048.
Among them, the most successful approach is to use N-tuple net-
works (NTNs) as evaluation functions and apply a reinforcement
learning method to adjust the weights of NTNs. This approach
was first introduced to Game 2048 by Szubert and Jaśkowski [25],
and several studies were then based on it. The state-of-the-art
computer player developed by Jaśkowski [11] combined several
techniques to improve NTN-based players, and achieved an aver-
age score of 609,104 within a time limit of 1 second per move.

NN-based computer players, however, have not achieved a suc-
cess yet. The only published work by Guei et al. [9] proposed a
player with two convolution layers followed by two full-connect
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layers, but the average score was about 11,400. The player by
tjwei [26] used two convolution layers with a large number of
weights trained by supervised learning and achieved an average
score 85,351. There are other implementations of NN-based play-
ers [1], [6], [21], [27], [28], but the scores of these players were
not so good or were not reported.

In this paper, we try to improve the performance of DCNN-
based players by increasing the number of convolution layers. We
designed DCNNs with 2–9 convolution layers and applied super-
vised learning with play records from existing strong players [15].
As the result, we achieved better results than existing NN-based
players. The best player with five convolution layers achieved
an average score of 93,830. The player with seven convolution
layers achieved maximum score 401,912. These results suggest
that DCNNs with 5–7 convolution layers have great potential to
develop strong Game 2048 players.

Contributions in this paper are summarized as follows.
• We designed DCNNs with two to nine convolution layers

while keeping the total number of weights almost the same
(Section 4).

• From the experiment results, we found that we can improve
the performance of DCNN-based players by increasing the
number of convolution layers from two (Section 5.2).

• The best results by the DCNN with five convolution layers
were comparable to NTN-based players with a similar num-
ber of weights (Section 5.2). We analyzed the DCNN-player
by changing the number of weights and by feeding more
training data (Section 5.3).

• We discussed our findings in terms of advantages and disad-
vantages of DCNN-based players. We also tested supervised
learning of value networks (both an NTN and a smaller vari-
ant of tjwei’s network) with the same set of training data, but
we failed to obtain good players (Section 6).
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Table 1 Summary of players in terms of number of weights and average score of greedy (1-ply search)
play.

authors description number of weights ave. score
Szubert and Jaśkowski [25] 17×4-tuples, TD learning 860,625 51,320
Szubert and Jaśkowski [25] 2×4-tuples & 2×6-tuples, TD learning 22,882,500 99,916
Wu et al. [29], [32] 4×6-tuples, TD learning, 3 stages 136,687,500 143,958

N-tuple Oka and Matsuzaki [20] 40×6-tuples, TD learning 671,088,640 210,476
network Oka and Matsuzaki [20] 10×7-tuples, TD learning 2,684,354,560 234,136

Matsuzaki [14] 8×6-tuples, TD learning 134,217,728 226,958
Matsuzaki [14] 8×7-tuples, TD learning 2,147,483,648 255,198
Matsuzaki [15] 4×6-tuples, backward TC learning, 8 stages 536,870,912 232,262
Jaśkowski [11] 5×6-tuples, TC learning, 16 stages, redundant encoding, etc. 1,347,551,232 324,710
This work (comparison) 5×4-tuples, TC learning, 3 stages 983,040 50,120
Guei et al. [9] 2 convolution (2 × 2), 2 full-connect, TD learning N/A ≈11,400
Guei et al. [9] 3 convolution (3 × 3), 2 full-connect, TD learning N/A ≈ 5,300
tjwei [26] 2 convolution (2 × 1 & 1 × 2), 1 full-connect, supervised learning 16,949,248 85,351

Neural tjwei [26] 2 convolution (2 × 1 & 1 × 2), 1 full-connect, reinforcement learning 16,949,248 ≈33,000
network Allik et al. [1] 1 convolution (3 × 3), 20 residual, 2 full-connect, supervised learning ≈2,727,000 ≈31,000

Virdee [27] 2 convolution (2 × 1 & 1 × 2), 2 full-connect, reinforcement learning 1,975,296 ≈16,000
This work 2 convolution (2 × 2), 1 full-connect, supervised learning 817,068 25,669
This work 5 convolution (2 × 2), 1 full-connect, supervised learning 818,074 93,830

Fig. 1 Process of Game 2048.

The rest of the paper is organized as follows. Section 2 briefly
introduces the rule of Game 2048. Section 3 reviews existing
computer players for Game 2048, categorized in terms of N-tuple
networks and neural networks. Section 4 shows the design of our
DCNN players and explains how we applied supervised learning.
Section 5 reports the experiment results. We discuss the findings
in this study in Section 6, and conclude the paper in Section 7.

2. Game 2048

Game 2048 is played on a 4×4 grid. The objective of the origi-
nal Game 2048 is to reach a 2048 tile by moving and merging the
tiles on the board according to the rules below. In an initial state
(Fig. 1), two tiles are placed randomly with numbers 2 (p2 = 0.9)
or 4 (p4 = 0.1). The player selects a direction (either up, right,
down, or left), and then all the tiles will move in the selected di-
rection. When two tiles of the same number collide, they create a
tile with the sum value and the player gets the sum as the score.
Here, the merges occur from the far side and newly created tiles
do not merge again on the same move: move to the right from
222�, �422 and 2222 results in ��24, ��44, and ��44, respec-
tively. Note that the player cannot select a direction in which no
tiles move nor merge. After each move, a new tile appears ran-
domly at an empty cell with number 2 (p2 = 0.9) or 4 (p4 = 0.1).
If the player cannot move the tiles, the game ends.

When we reach the first 1024-tile, the score is about 10,000.
Similarly, the score is about 21,000 for a 2048-tile, about 46,000
for a 4096-tile, about 100,000 for an 8192-tile, about 220,000 for
a 16384-tile, and about 480,000 for a 32768-tile.

3. Current Game 2048 Players

Several computer players have been developed for Game 2048.
The most widely used and successful approach is based on N-
tuple networks (NTNs) trained by reinforcement learning meth-
ods [11], [15], [25], [29]. Neural networks (NN) are also pop-
ularly used in the development of Game 2048 computer play-
ers [1], [6], [9], [21], [26], [27], [28]. In this section, we review
current Game 2048 players for NTN-based and for NN-based
players. Other approaches include those based on evolutionary
algorithm [2], [3], [7] and combining tree search techniques with
human-designed evaluation functions [30].

Table 1 summarizes existing computer players in terms of
their features, the number of weights, and the average score with
greedy (1-ply search) plays.

3.1 Players based on N-Tuple Networks
The most successful approach to Game 2048 computer play-

ers is based on N-tuple networks trained by reinforcement
learning methods which was first introduced by Szubert and
Jaśkowski [25]. NTNs consist of a set of N-tuples and associated
tables of (feature) weights. Given NTNs, we compute the evalua-
tion value of a state simply by looking up weights corresponding
to the tiles where the N-tuples cover and computing their sum.

Thanks to the simple design and implementation of the NTNs,
we can improve the performance of players by increasing the
number of weights. The following are three existing ways in this
direction.
( 1 ) Enlarge the size of tuples. Szubert and Jaśkowski [25] re-

ported that the computer player performed significantly bet-
ter by introducing 6-tuples instead of 4-tuples. Some stud-
ies used larger 7-tuples [11], [14], [20]. Note that a 4-
tuple requires 164 = 65,536 weights, a 6-tuple does 166 =

16,777,216 weights, and a 7-tuple does 167 = 268,435,456
weights.

( 2 ) Increase the number of N-tuples. Though several stud-
ies have used four 6-tuples designed by Wu et al. [29],
we can use more N-tuples if memory size permits. Oka
and Matsuzaki [20] and Matsuzaki [14] analyzed the perfor-
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mance of players that utilizes many 6-tuples or 7-tuples.
Jaśkowski’s redundant encoding [11] is also a technique to
increase the number of N-tuples (and we can save the num-
ber of weights by using smaller additional tuples).

( 3 ) Multi-staging. Multi-staging is a technique to divide a game
into multiple stages and to use different tables of weights for
each stage. This idea was first introduced for Game 2048 by
Wu et al. [29].

The feature weights are adjusted by reinforcement learning
methods. For Game 2048 players, the temporal difference learn-
ing (TD learning) was commonly used [25], [29], [32], and then
a learning-rate-free variant (temporal coherence learning; TC
learning) was introduced [11], [15]. Due to the characteristics
of the game, biasing the training actions to learn sometimes im-
proves the performance such as carousel shaping [11] and restart
strategy [15].

The state-of-the-art player by Jaśkowski [11] was based on a
network with five 6-tuples, five 4-tuples and two 3-tuples which
was adjusted by the temporal coherence learning with some other
improvements. It achieved an average score 324,710 with the
greedy (1-ply search) play and 609,104 with the expectimax
search within a time limit of 1 second. Though NTNs have
worked fine, a weakness remains or namely missing generaliza-
tion. Since the weights are basically independent from each other,
NTNs do not obtain some important property of the game (for
example, the similarity among 1024–2048–4096 tiles and 2048–
4096–8192 tiles). Weight promotion [11], [15], which initializes
a first-accessed weight with a certain existing one, can be con-
sidered as a human-aided solution to this issue. A more affir-
mative reuse of feature weights achieved even a 65536-tile [10].
Another heuristic approach is to use numbers relative to the max-
imum number on the board [7], but as far as the authors know
there were no NTNs that utilized this approach.

3.2 Players based on Neural Networks
Behind the success of NTNs, (deep) neural networks have not

been greatly studied or utilized for the development of Game
2048 players. As far as the authors know, the work by Guei
et al. [9] was the only study published on the subject. Some
open-source programs have been developed, for instance, with
a multilayer perceptron [7], [28], with a convolutional neural net-
work [26], [27], with a residual network [1] and with a recurrent
neural network [21], but the performance of these players was not
very good or not analyzed well (at least from the documents pro-
vided). In the following of this section, we review the networks
and their training methods by Guei et al. [9] and tjwei [26].

Guei et al. [9] first tried to develop Game 2048 players based
on convolutional neural networks. They developed two networks,
one with 2 × 2 filters and the other with 3 × 3 filters. The first
network consists of two convolution layers and two full-connect
layers. The input board was encoded to a 4×4 16-channel image,
where each channel corresponds to either empty cells, 2-tiles, 4-
tiles, . . . , or 32768-tiles. Then, 2 × 2 filters are convoluted twice
followed by ReLU, which result in a set of 2×2 images (the num-
ber of filters for these convolution layers was not described in the
paper). The pixel values are flattened and then processed with

two full-connect layers. The output consists of a single value (for
TD learning) or four values (for Q learning). The second network
is different from the first one in terms of the size of filters and the
number of convolution layers or namely 3 × 3 filters are convo-
luted (with zero padding) three times. The weights in these net-
works are adjusted by TD-learning and Q-learning methods with
the results of selfplays. The best average score achieved with
the first network was about 11,400 and with the second network
about 5,300.

The neural network developed by tjwei [26] consists of two
convolution layers followed by a full-connect layer. The input
is a 4 × 4 16-channel image. In the first convolution layer, 2 × 1
filters and 1 × 2 filters are applied concurrently and then ReLU,
yielding a 3 × 4 512-channel image and a 4 × 3 512-channel im-
age. In the second convolution layer, 2 × 1 filters and 1 × 2 fil-
ters are applied concurrently to both intermediate images, yield-
ing four 4096-channel images. The pixel values are finally pro-
cessed in a full-connect layer to a single output value. The out-
put values are a so-called afterstate value, and they are adjusted
to expected rewards until the game end. Two training methods
are used: reinforcement learning with selfplays and supervised
learning from simulation of an existing strong player. In the case
of reinforcement learning, the average score achieved was about
33,000. In the case of supervised learning, a player with tree
search and heuristic evaluation function (Ref. [30], the median
score 387,222) was used for simulation, and the average score
achieved was 85,351.

4. Design

In this study, we designed deep convolutional neural net-
works (DCNNs) that had more convolution layers than prior
work [9], [26]. Our DCNNs took an input board and computed
four values, each of which represented the probability for select-
ing a direction (i.e., policy networks). We adjusted the weights
of DCNNs by supervised learning with play records of existing
strong players.

Though it was shown by Szubert and Jaśkowski [25] that we
could develop good Game 2048 players based on value networks
(of afterstate) trained with reinforcement learning methods, we
used policy networks with supervised learning for the following
reasons. First, we obtained much better results with a supervised
learning method than a reinforcement learning method in a pre-
vious work by tjwei [26]. Secondly, the training time would be
too long if we did reinforcement learning for DCNNs. Thirdly,
we had some experience showing that the play records from an
expectimax search player were not well suited to value network
training [8], [16]. Due to these reasons, in this study we investi-
gated use of a policy network and supervised learning combina-
tion and left other combinations as a topic for future study.

In this section, we show the structure of designed DCNNs,
the method of supervised learning, and the play method with the
trained DCNNs.

4.1 Structure of Our DCNN
As stated in the previous section, most of existing NN-based

players consisted of two (or three) convolution layers. Since the
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Fig. 2 Overview of our deep convolutional neural network.

Table 2 Numbers of convolution layers, channels and weights.

layers k channels ch(k) weights
2 436 817,068
3 312 819,628
4 256 820,228
5 222 818,074
6 200 826,804
7 182 819,550
8 168 813,124
9 158 820,498

game is played on a small 4 × 4 board, two convolution layers
might suffice to cover the board. We, however, considered that
those networks were too shallow to obtain good (and versatile)
knowledge in the games, and designed DCNNs with more con-
volution layers. Figure 2 depicts the structure of our DCNN for
the case of four convolution layers. In general, our DCNNs have
k convolution layers, a full-connect layer, and a softmax.

The input board is encoded to a 4 × 4 16-channel image as the
work by Guei et al. [9]. Each channel represents the positions
of empty cells, 2-tiles, 4-tiles, . . . , and 32768-tiles, respectively.
Then, 2× 2 filters are convoluted k times. The stride width is one
and zero padding is applied to keep the size of result images be-
ing 4 × 4 (padding="SAME" in TensorFlow). We used the same
number Ch(k) of filters (equal to the number of channels of in-
termediate images) for all the convolution layers. Note that the
convolution is asymmetric in our case because the zero padding
is applied only on the right and the bottom sides *1. After each
convolution, bias is added and ReLU is applied. After the convo-
lution layers, all the pixel values are processed in the full-connect
layer that outputs four values. After the softmax, the four values
represent probabilities for selecting the four directions.

The number of weights in our DCNNs is

(2 · 2 · 16 + 1) · Ch(k)
+ (2 · 2 · Ch(k) + 1) · Ch(k) · (k − 1)
+ (4 · 4 · Ch(k) + 1) · 4 .

We selected the number Ch(k) so that designed DCNNs have al-
most the same number of weights in order to determine the im-
portance of depth of DCNNs. Table 2 shows the number of layers
k, the number of channels Ch(k) and the number of weights in the
DCNNs. Note that the number of weights is between 810,000–

*1 We can make the convolution symmetric if we permit changes in board
size, for example 4 × 4⇒ 3 × 3⇒ 4 × 4⇒ · · ·.

830,000, which is much smaller than that of current players (com-
parable to that of Ref. [25]).

4.2 Supervised Learning
Since the authors developed strong computer players for Game

2048 [15], we used play records of existing players as the training
data of supervised learning.

Since our DCNNs output probability P(i) for each move i, the
supervised learning adjusts the weights to maximize the probabil-
ity of the desired move. To this end, we defined the error E (loss
function) based on the cross entropy as follows.

E = −
3∑

i=0

t(i) ln P(i)

where t(i) =

⎧⎪⎪⎨⎪⎪⎩
1 if the existing player selected move i

0 otherwise

We selected three computer players from the artifacts of our
previous work [15] to generate the training data. These players
utilized N-tuple networks as the evaluation functions: the net-
works consisted of four 6-tuples and the game was split into eight
stages based on the maximum number of tiles. The weights of the
networks were adjusted by backward temporal coherent learning
with restart strategy. These players selected moves by the 3-ply
expectimax search. The difference in computer players was only
the weights. The average scores of the players were 459,455,
463,660 and 460,069.

For the training data, we selected 6 × 108 actions from play
records of these players (these actions were extracted from 54,000
games). Each action consists of the board status to play and the
direction the player selected *2. Note that the training data were
shuffled before fed to supervised learning.

We would like to add short remarks about symmetry. The
board and the rule of Game 2048 is rotation and reflection-
symmetric but the moves of a player are not usually symmetric.
The NTN-based players used in this study were trained in a com-
pletely symmetric manner, and play records were not biased in
terms of symmetry. To save training time, we did not feed sym-
metric boards in the training of DCNNs.

*2 We extended the action data with the position of randomly appearing
tiles and the score to the end of the game in supervised training of the
N-tuple network and tjwei’s network.

c© 2019 Information Processing Society of Japan 343



Journal of Information Processing Vol.27 340–347 (Apr. 2019)

Table 3 Example of state and its symmetries.

4.3 Playing Method
As we discussed above, the structure of DCNNs was asymmet-

ric due to the asymmetric zero padding and we did not fed sym-
metric boards in the training. Instead, we take the symmetry into
account in play with our DCNNs, that is, we generate eight sym-
metric boards and feed each of the eight boards to our DCNNs.
Table 3 gives an example. For each board, our DCNN returns the
probabilities of the moves. We pick up the move with the largest
probability and compute the corresponding move in the original
board (written in the parentheses). We finally select the move
to play with a majority vote. If two or more moves become the
majority, we select the move based on the sum of probabilities.

Since the training data were not biased, we had considered this
use of symmetric boards worked insignificantly, but in fact it im-
proved the score to a degree. Another design choice of selecting a
move from symmetric ones was simply based on the sum of prob-
abilities. In our preliminary test, majority vote performed better
than sum of probabilities.

5. Experiments

5.1 Implementation and Experiment Settings
We implemented DCNN players using the TensorFlow frame-

work *3. The supervised learning was executed with a batch of
1,000 actions. We used tf.train.AdamOptimizer *4 for the
optimization algorithm with the learning parameter 0.001. The
initial values of weights were set randomly between −0.1 and 0.1.

During the training phase, we observed the progress of learning
through the error E and the accuracy. Error (loss) was averaged
over a batch. The accuracy was calculated during the training
using the training data itself.

After each training with 2× 107 actions, we took a snapshot of
the weights and performed test plays of 1000 games. After the
test plays, we calculate the average score, the maximum score,
and the ratio for reaching a 2048 tile.

*3 The program code and training data used in this study are avail-
able at authors’ webpage: http://ipl.info.kochi-tech.ac.jp/matsuzaki-lab/
repos/JIP2018Supplements/.

*4 This optimizer implements Adam algorithm [12]. We followed tjwei’s
implementation [26] for the selection of the optimization algorithm.

Fig. 3 Transition of error over learning.

Table 4 The average error and accuracy during 5.9× 108–6.0× 108 actions.

layers error accuracy
2 0.698 0.692
3 0.543 0.749
4 0.537 0.750
5 0.528 0.758
6 0.532 0.755
7 0.544 0.748
8 0.551 0.751
9 0.552 0.744

Fig. 4 Transition of average score over learning.

5.2 Comparing Networks with Different Number of Convo-
lution Layers

The progress of training was plotted in Fig. 3. We plotted
the cases with two convolution layers and five convolution lay-
ers only, because the graphs for three to nine convolution layers
were quite similar. From Fig. 3, the training proceeded quickly
up to 1×108 actions, and did not stop even at 6×108 actions. We
observed rather large statistical variance of the error (and also the
accuracy). We considered that the large variance was caused by
wide variety of states (games often have more than 20,000 moves)
compared with the batch size (1,000). Table 4 summarized the
average error and the accuracy of selecting moves during training
with 5.9–6.0 × 108 actions. Generally speaking, the smaller the
error the larger the accuracy. The smallest error and highest ac-
curacy were achieved with five convolution layers, and the results
of three to seven convolution layers would be within the variance.

We then plotted the average scores of test plays in Fig. 4. We
selected those cases with two, three, and five convolution lay-
ers: the graphs for five and six convolution layers were close and
the graphs for four, six, seven, eight, and nine convolution layers
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Table 5 Average score, maximum score, and ratio for reaching a 2048 tile.

average score maximum 2048
layers 2 × 108 4 × 108 6 × 108 score ratio

2 22,189 25,530 25,669 175,628 45.6
3 61,037 64,212 69,840 332,868 79.4
4 65,022 73,054 80,284 343,496 83.3
5 74,996 80,030 86,203 386,972 86.5
6 69,482 74,441 83,791 387,376 83.5
7 67,874 77,448 79,812 401,912 83.1
8 64,465 74,737 74,787 363,916 81.1
9 66,732 73,484 68,129 358,736 75.9

Table 6 Maximum tiles out of 1000 test plays.

layers ≤256 512 1024 2048 4096 8192 16384
2 109 134 301 307 148 1 0
3 39 39 128 188 412 186 8
4 46 36 85 172 387 263 11
5 29 30 76 154 412 288 11
6 55 33 77 152 378 284 21
7 27 39 103 166 382 275 8
8 35 51 103 190 363 245 13
9 50 54 137 187 348 216 8

were between those of three and five convolution layers at most
of the points. Table 5 summarized the average scores of the test
plays after the training of 2 × 108, 4 × 108 and 6 × 108 actions,
the maximum score over all test plays (up to training 6 × 108

actions), and the ratio for reaching a 2048 tile after the training
with 6 × 108 actions. From Fig. 4 and Table 5, we claim that the
player with two convolution layers performed apparently worse
than those with more convolution layers. The best average score
was 86,203 with five convolution layers, which was a bit higher
than the average score of tjwei’s player [26]. Note that the differ-
ence was within the standard deviation, which was 1441 for ten
trials. The best maximum score was 401,912 with seven convo-
lution layers. Note that the average score were still increasing in
training with 6 × 108 actions as we can see in Fig. 4.

Table 6 summarized the number of test plays categorized by
the maximum number of tiles at the game end. Unfortunately,
the players could not reach a 32768-tile. The best player with six
convolution layers reached a 16384-tile in 2% of the games. This
ratio was higher than that achieved by tjwei’s player [26], while
the ratios for reaching 8192, 4096 and 2048 tiles were lower.

5.3 Analysis of DCNN with Five Convolution Layers
We conducted two additional sets of experiments to investigate

our DCNN with five convolution layers.
One was to study the relationship between the number of

weights and the strength of the player. We let the number of
channels Ch(5) be 110, 156, or 192, so that the number of weights
became about 25%, 50%, and 75% of the original case, respec-
tively. Table 7 shows the average score and maximum score of
test plays of 1000 games after training with 6×108 actions. From
these results, we confirm that we can improve the performance of
DCNN-based players by increasing the number of weights.

The other was to continue the training with more actions. To
this end, we performed the training with the same set of training
data again (i.e., second epoch), instead of preparing more train-
ing data. Table 8 shows the average score and maximum score of
test plays of 1000 games, until the training with 12× 108 actions.
The performance of the DCNN player improved after the training

Table 7 Experiment results by changing the number of channels (of DCNN
with five convolution layers, after learning 6 × 108 actions).

channels number of weights average maximum
110 208,234 44,056 255,620
156 410,128 66,133 284,916
192 615,364 77,426 289,968
222 818,074 86,203 332,496

Table 8 Experiment results of DCNN with five convolution layers up to
12 × 108 actions.

number of actions average maximum

1 × 108 57,564 294,016
2 × 108 74,996 333,228

1st 3 × 108 74,965 330,600
epoch 4 × 108 80,030 354,172

5 × 108 83,939 384,648
6 × 108 86,203 332,496

7 × 108 82,845 378,476
8 × 108 86,660 333,912

2nd 9 × 108 90,725 342,900
epoch 10 × 108 93,413 346,540

11 × 108 87,060 343,112
12 × 108 93,830 332,984

with 6 × 108 actions, and the best average score was 93,830 after
the training with 12 × 108 actions *5.

6. Discussion

The most interesting result in this study is that the performance
of the player improved significantly from two convolution lay-
ers to three convolution layers. Since the size of board is just
4 × 4, applying 2 × 2 filters twice would cover the whole board.
One possible reason is related to generalization of knowledge ob-
tained through the training phase. Let us consider combinations
of tiles on an edge: [128, 64, 32, 16], [256, 128, 64, 32], and [512,
256, 128, 64]. We can easily notice that these combinations have
a same pattern. However obtaining generalized knowledge with
just two convolution layers is not practical (we need to encode
combinations independently in the weights). If we have three (or
more) convolution layers, we could encode the knowledge in the
additional layer(s). In our following study [17], we tried to unveil
the internal behavior of our DCNN-players for networks with two
and three convolution layers. We found two important facts in our
DCNNs. First, we obtained a kind of generalized knowledge even
with the two-convolution layers, but it was based on mixing (in-
dependent) features. Secondly, the knowledge obtained with the
three convolution layers was clearer. This could be a reason why
the players with three or more convolution layers performed al-
most at the same level as the existing NN-based player [26], while
the number of weights is much smaller.

It is also interesting that the results in this study are much bet-
ter than those in the work by Guei et al. [9], even in the case that
the network consists of two convolution layers. There could be
several reasons for the improvement: the difference of learning
method (we used supervised learning instead of reinforcement
learning); the number of weights available in the networks might
be too small, etc.

Under the condition of a similar number of weights, the pro-

*5 We did not obtain much improvements in the maximum score, because
we ran into a brick wall when creating a 32768-tile after creating a
16384-tile and a 8192-tile (about 320,000).
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posed DCNN players performed better than existing players in-
cluding NTN-based ones. The first NTN-based player developed
by Szubert and Jaśkowski [25] achieved an average score 51,320.
We also generated an NTN-based player with the techniques in
Ref. [15], and the average score was 50,120. We also trained an
NTN by supervised learning with the same set of training data.
Since the designed NTN was for the value of afterstates, we ad-
justed the weights to be close to the score from the state to the
game end. However, the average score of the NTN trained by su-
pervised learning was 999. We also implemented a smaller vari-
ant of tjwei’s network [26] by halving the number of filters (256
filters for the first layer and 2048 filters for the second layer. To-
tal number of weights was 2,189,312.) and trained by supervised
learning with the same set of training data. The average score of
the smaller tjwei’s network was 917 *6.

There is still a large gap in the performance of the state-of-
the-art computer players based on NTNs [11]. We consider the
following two causes for the performance gap. Firstly, as we
discussed in Section 3.1, we can easily increase the number
of weights due to the simple design and implementation of the
NTNs. The Jaśkowski’s player [11] had 1,600 times as many
weights as our DCNNs. Secondly, it is easy to integrate search
methods with the value network. It is reported that with the ex-
pectimax search within a time limit of 1 second, the average score
increased from 324,710 to 609,104.

One drawback of the NN-based method is the long training
time and long playing time. It took about 4.8 hours for train-
ing our DCNN-based players with 6 × 108 actions on a com-
puter equipped with an NVIDIA GeForce GTX 1080 Ti GPU.
This training time is about 11 times longer than that of an NTN-
based player *7. For the playing time, our DCNN-based players
select a move in 1.8 ms on a computer equipped with an NVIDIA
GeForce GTX 1080 Ti GPU. This playing time is 1,400 times
longer than that of an NTN-based player *8.

7. Conclusion

In this paper, we developed computer players for Game 2048
based on deep convolutional neural networks trained by super-
vised learning. We changed the number of convolution layers
from two to nine while keeping the total number of weights.
These networks were trained with play records from existing
strong computer players.

The experiment results showed some interesting findings. The
computer player with two convolution layers did not perform
well, and computer players with three or more convolution lay-
ers did much better, even with similar number of weights. The
best player with five convolution layers achieved an average score
93,830 without combining any search techniques, which was
higher than existing NN-based players. The average score was

*6 The poor results of supervised learning for these value networks are con-
sistent to our past results on NTN-based players [8]. We expect from
our previous results [16] that the play results of expectimax search with
NTNs are not suitable for learning.

*7 In the case of our NTN-based player, the training time was 0.44 hours on
an Intel Xeon E5-2620 v3 CPU.

*8 In the case of our NTN-based player, the playing time was 1.3 µs per
move.

also higher than that of NTN-based players under a similar num-
ber of weights. The computer player with seven convolution lay-
ers achieved the maximum score 401,912, and this suggested that
a deeper network would perform better if we could use more
weights and training data.

One topic for future work is to identify the knowledge that our
DCNN players have obtained by investigating the weights in the
networks. A part of this work will be reported in Ref. [17]. We
assume that the DCNNs successfully encoded some generalized
knowledge, which is hard to obtain in N-tuple networks. We also
want to increase the number of weights and training data and im-
prove the performance of DCNN players for Game 2048.
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