
Journal of Information Processing Vol.27 42–50 (Jan. 2019)

[DOI: 10.2197/ipsjjip.27.42]

Regular Paper

Hierarchical Clustering of OSS License Statements
toward Automatic Generation of License Rules

Yunosuke Higashi1,a) Masao Ohira1,b) Yutaro Kashiwa1,c) YukiManabe2,d)

Received: April 16, 2018, Accepted: October 2, 2018

Abstract: Reusing open source software (OSS) components for one’s own software products has become common
in the modern software development. Automated license identification tools have been proposed to help developers
identify OSS licenses, since a large number of licenses sometimes must be checked before attempting to reuse. Of
the existing tools, Ninka [1] can most correctly identify licenses of each source file by using regular expressions. In
case Ninka does not have license identification rules for unknown licenses, Ninka reports these as “unknown licenses”
which must be checked by developers manually. Since completely-new or derived OSS licenses appear nearly every
year, a license identification tool should be appropriately maintained by adding regular expressions corresponding to
the new licenses. The final goal of our study is to construct a method to automatically create candidate license rules to
be added to a license identification tool such as Ninka. Toward achieving the goal, files identified as unknown licenses
must be classified by license firstly. In this paper, we propose a hierarchical clustering which divides unknown licenses
into clusters of files with a single license. We conduct a case study to confirm the usefulness of our clustering method
when it is applied for classifying 2,801, 1,230 and 2,446 unknown license statement files for Linux Kernel v4.4.6,
FreeBSD v10.3.0 and Debian v7.8.0 respectively. As a result, it is confirmed that our method can create clusters which
are suitable as candidates for generating license rules automatically.

Keywords: OSS license, license identification, license generation rules, clustering

1. Introduction

Utilizing Open Source Software (OSS) is one means of reduc-
ing production costs in modern software development. OSS is
reusable as part of a proprietary software product if it strictly
complies with OSS licenses described in source files [1]. In gen-
eral, an OSS license is declared in a header part of each source
file as license statements.

OSS is traditionally developed through collaboration among
volunteer developers around the world. Developers declare one or
more *1 OSS licenses in each source file. They sometimes mod-
ify license statements intentionally and unintentionally (mistak-
enly) and also incorporate different kinds of OSS licenses which
are not regularly used in their own project. Therefore, before
reusing OSS for developing software products, all license state-
ments must be confirmed to avoid inappropriate, illegal reuse.

Identifying OSS licenses manually is a time-consuming task if
there are a large number of source files to be reused. In order
to help identify OSS licenses, license identification tools [1], [2],
[3], [4], [5] have been proposed.

Among existing tools, Ninka [1] and FOSSology [2] which are
rule-based license identification tools correctly identifiy OSS li-

1 Graduate School of System Engineering, Wakayama University,
Wakayama 640–8510, Japan

2 Graduate School of Science and Technology, Kumamoto University,
Kumamoto 860–8555, Japan

a) higashi.yunosuke@g.wakayama-u.jp
b) masao@sys.wakayama-uc.ac.jp
c) kashiwa.yutaro@g.wakayama-u.jp
d) y-manabe@cs.kumamoto-u.ac.jp

censes. Rule-based license identification tools can discriminate
between known and unknown licenses by using regular expres-
sions to identify OSS licenses, while the other existing tools do
not have such a mechanism and often make misjudgments that
lead to lower accuracy for the license identification.

The biggest weakness of rule-based license identification tools
such as Ninka is the need to constantly and manually add new reg-
ular expressions to the tools, every time the tools encounter new
OSS licenses (i.e., the licenses is really unknown to the tools)
or the tools unexpectedly judges some licenses as unknown due
to notation variants in license statements. In case where there are
“unknown” licenses for rule-based license identification tools, the
manual identification of OSS licenses is required eventually.

The goal of this study is to construct a method to automatically
generate candidate license rules to be incorporated into rule-based
license identification tools in order to address the issue above. To
achieve this goal, we are developing a method which consists of
the following three steps for creating license rules.
(1) Grouping source files with unknown licenses: Source files

which are not identified by the license identification tools
are reviewed and grouped by license.

(2) Checking notation variants for a single license: Each group
of source files with a single license is checked to extract ex-
pressions patterns for a single license.

(3) Creating license rules: License statements are tokenized as

*1 A source file can be licensed under multiple OSS licenses. For instance,
Mozilla offers GNU GPL (General Public License) and MPL (Mozilla
Public License) dual-licensing.

c© 2019 Information Processing Society of Japan 42

Journal of Information Processing Vol.27 42–50 (Jan. 2019)

regular expressions and license rules are created to be able
to match new licenses.

In this paper, we focus on the automation of Step 1. To au-
tomate Step 1, we introduce a method using grep and hierar-
chical clustering. Grep is used to extract GPL/BSD-related li-
censes which are known by a rule-based license identification
tool but are not completely identified due to notation variants.
After filtering out source files with GPL/BSD-related licenses us-
ing grep, a hierarchical clustering is used to group the rest of
“really-unknown” license statement files by license. Modifying
the common hierarchical clustering, our clustering method tries
to divide a set of files with unknown licenses into clusters of files
with a single license.

A case study is conducted to confirm the usefulness of our
clustering method when applied to classifying 2,801, 1,230 and
2,446 unknown license statement files for Linux Kernel v4.4.6,
FreeBSD v10.3.0 and Debian v7.8.0 respectively. As a result, it
is confirmed that our hierarchical clustering method can reduce
up to 88% of the costs of manual reviews for unknown license
statement files and is suitable as candidates for generating license
rules automatically.

The rest of the paper is organized as follows. Section 2 dis-
cusses the problems in manually creating license rules for rule-
based license identification tools and technical challenges in this
paper. Section 3 describes the usage of grep and our clustering
method. Section 4 describes a case study where unknown license
statement files extracted from Linux Kernel v4.4.6, FreeBSD
v10.3.0 and Debian v7.8.0 are used to evaluate our method. Sec-
tion 5 discusses results of the case study. Section 6 introduces
related work and Section 7 concludes the paper and describes our
future work.

2. Toward Automatic Generation of License
Rules

This section describes current problems in using a license iden-
tification tool and technical challenges for our study.

2.1 Current Problems in Using a License Identification Tool
Rule-based, automatic license identification tools such as

Ninka [1] and FOSSology [2] have license rules (i.e., matching
rules) to check and determine if license statements declared in
the header part of each source file are known or unknown. In or-
der to do so, each statement in OSS licenses is manually analyzed
and tokenized as regular expressions in advance.

However, completely new or derived OSS licenses appear
nearly every year. If the existing tools do not have license rules
for newly emerging licenses, the new licenses will not be de-
tected (i.e., the tools identify them as “unknown” licenses.) nat-
urally. Therefore, rule-based license identification tools must be
maintained periodically by adding new license rules to the tools
through creating matching rules manually.

The process for manual creation for license rules follows the
steps 1 to 3 below.
(Step 1) Grouping source files with unknown licenses: Source

files which are not identified by the license identification
tools must be reviewed and grouped by license manually.

(Step 2) Checking notation variants for a single license: Even
if the source files are grouped by license, there often exist
notation variants (e.g., misspelling, small modifications and
different expressions for the original license) in license state-
ments for a single license. Each group of source files with
a single license must be reviewed manually again to know
expression patterns for the license.

(Step 3) Creating license rules: Based on the reviews in Step 2,
license statements are tokenized as regular expressions and
license rules are created to be able to match new licenses.
Note that a “new” license indicates a license with different
variations in license statements even for the same license.

These tasks are time-consuming especially when the rule-
based license identification tools fail to detect many licenses. It
sometimes happens when a system is built reusing a large-scale
OSS or multiple kinds of OSS (i.e., the system consists of a large
number of open source files). Since many of modern software
systems are applicable to this situation, the process of creating
license rules should preferably be automated.

2.2 Technical Challenges
The final goal of our study is to construct a method to gen-

erate license rules candidates to be incorporated into rule-based
license identification tools in order to automate the manual cre-
ation process of license rules as described above. In this paper,
we focus on tackling with the issue in Step 1 where all source
files with unknown licenses must be reviewed and grouped by li-
cense manually. Automating Step 1 requires addressing at least
two technical challenges as follows.
2.2.1 Discriminating GPL/BSD-related Licenses

In our pilot study [6] where Ninka was used to detect licenses
of source files in Debian v.7.8.0, we found that Ninka judged
many source files as “unknown” licenses even for very popular
licenses such as GPLv2, although Ninka had regular expressions
to detect such licenses. After we further analyzed “unknown” li-
censes, we found that Ninka were implemented to rigidly judge
license statements to avoid misjudgments and it often judged li-
cense statements with misspelling and/or notation variances as
“unknown”.

In this paper, we try to correctly discriminate GPL/BSD-related
licenses shown in Table 1, since GPL/BSD-related licenses have
a long history (the first versions of GPL and BSD were released in
the late 1980s) and are widely used in Linux and FreeBSD distri-
butions. In Table 1, “(+)” indicates an option to specify the exis-
tence of an “or later” clause. For instance, license statements for
AGPLv3 can be expressed in two ways (i.e., “AGPLv3” and “AG-

Table 1 The GPL/BSD family licenses.

Family Licenses

GPL

AGPLv3(+)
GPLv1(+), GPLv2(+), GPLv3(+)
LGPLv2.1(+), LGPLv3(+)
LibraryGPLv2.0(+)

BSD BSD2, BSD3, BSD4

(+) for the GPL family licenses indicates that there is another license appli-
cable for the later version of the license (i.e., There are fourteen licenses in
total for the GPL family).

c© 2019 Information Processing Society of Japan 43

Journal of Information Processing Vol.27 42–50 (Jan. 2019)

PLv3 or later”). The GPL/BSD-related licenses could be distin-
guishable not by using rigid combinations of regular expressions
but by finding license names and versions including “or later”
options in license statements.
2.2.2 Creating Groups of Source Files with Unknown Li-

censes
To automate the manual review and grouping in Step 1 de-

scribed earlier, preferably groups of source files only with a single
license should be created. That is, the number of groups should
correspond to the number of licenses existing in software compo-
nents being reused. And, toward Step 2 and Step 3, groups should
not be divided due to notation variations for a single license.
If groups are divided by different notations for a single license,
groups consisting of files with different license statements will be
created and/or files with a single license will spread among differ-
ent groups. This will lead to extra reviews of license statements
in Step 2 and incorrect regular expressions in Step 3.

3. A Clustering Method toward the Auto-
mated License Rule Generation

In this section, we introduce a method to automate Step 1 dis-
cussed in the previous section, which consists of using grep and
hierarchical clustering to create clusters which would be appro-
priate as candidates for automating the license rule creation.

3.1 An Overview of the Clustering Method
Figure 1 shows an overview of the proposed method in this

paper. According to the following procedure, the method creates
clusters of unknown license statement files which are reported
by rule-based license identification tools.
(1) License statements are extracted from unknown license

statement files by using a rule-based license identification
tool such as Ninka.

(2) The extracted license statements are separately grouped so
that similar but discriminable licenses such as GPL version
1, 2 and 3 can be correctly identified. In this paper, license
statements belonging to the GPL license family and the BSD
license family are grouped by each license.

(3) The remaining unknown license statement files which are
not grouped in the previous step are divided into clusters of
unknown license statement files, based on a dendrogram cre-
ated by hierarchical clustering.

In what follows, we describe the above procedure in detail.

Fig. 1 An overview of the proposed method.

3.2 Preprocessing
3.2.1 Extracting License Statements for Unknown Licenses

Before identifying OSS licenses, Ninka (as of version 1.1) ex-
tracts license statements (See Fig. 2) from comments in source
code, using one or more of 82 words (e.g., “warranties” and
“copyright”) which are frequently used in OSS license state-
ments. Then Ninka determines which license statements cor-
respond to which OSS license, based on regular expressions in
Ninka. If Ninka cannot find matches between license statements
and OSS licenses, it outputs “unknown” which means Ninka does
not know which license statements correspond to which OSS li-
censes (i.e., Ninka does not know OSS licenses including such
the license statements.). In this study, we use Ninka to collect a
set of license statements of unknown OSS licenses.
3.2.2 Filtering Out License Statements for the GPL/BSD

Family Licenses
Although GPL (General Public License) and BSD (Berke-

ley Software Distribution) licenses are well-known and used for
many OSS products, Ninka sometimes fails to detect them due
to notation variants in the license statements for the GPL/BSD
family licenses. However, these licenses are relatively easy to
discriminate by humans since they have explicit clues (i.e., names
(GPL or BSD) and versions) that allow knowing types of licenses.
For instance, you can easily understand that the license state-
ments in Fig. 2 represent the license for GPL version 2 or later
versions because they explicitly use important phrases (“GNU
General Public License,” “either version 2 of the License, or (at
your option) any later version”) to specify the license.

Since the contents of the license statements only have mi-
nor differences among the same family licenses (i.e., differences
of versions and clauses), it would be difficult to classify li-

Fig. 2 An example of license statements extracted by Ninka.

c© 2019 Information Processing Society of Japan 44

Journal of Information Processing Vol.27 42–50 (Jan. 2019)

Table 2 Key phrases and versions to extract license statements for the GPL
family licenses.

GPL license Key phrase Versions

GPLv1 GNU General Public License version 1
GPLv2 GNU General Public License version 2
GPLv3 GNU General Public License version 3
LibraryGPLv2 GNU Library General Public License version 2
LGPLv2.1 GNU Lesser General Public License version 2.1
LGPLv3 GNU Lesser General Public License version 3
AGPLv3 GNU Affero General Public License version 3

“or later”

Fig. 3 Key phrases and conditions to extract the license statements for the
BSD family licenses.

cense statements according to types of licenses when our clus-
tering method described later is applied. To avoid the situation
in advance, in this study, license statements for the seventeen
GPL/BSD family licenses shown in Table 1 are set apart from
license statements of other OSS licenses.

The fourteen GPL family licenses are detected by using the
grep command in a combination with a key phrase, a version
name (See Table 2) and a term “later”. For the three BSD fam-
ily licenses, the kind of license is determined by checking which
clauses are included in license statements as shown in Fig. 3 *2.
The remaining license statements after the filtering process are
the target to be clustered using our proposed method described in
the next Section 3.3. That is, all OSS licenses (e.g., Apache and
MIT licenses) except for the seventeen GPL/BSD family licenses
are the target for our clustering method.

3.3 Hierarchical Clustering for License Statements
A set of license statements after the preprocessing must be

checked manually when reusing the OSS products. As we men-
tioned earlier, the manual inspection of license statements can be
costly and mistakes can occur especially when the number of li-
cense statements to be checked is very large *3. To reduce the
costs and careless mistakes in inspecting license statements, it
would be helpful to group license statements by license, since
practitioners need not check all the license statements but only
check one of them by license group.

In order to create license groups, hierarchical clustering is ap-
plied to the rest of license statements which are not extracted
by the grep-based filtering. Before using hierarchical clustering,
the license statements are converted into a matrix called Bag-of-

*2 These conditions are created based on examples of license statements
which are provided from Open Source Initiative (OSI)
http://opensource.org

*3 In this study we think that carefully inspecting over a few hundred li-
cense statements would be a burden to practitioners.

Fig. 4 Hierarchical clustering used in this study (cond. α). (MPL), (MIT)
and (Apache) under Xx mean Xx belongs to the MPL, MIT or Apache
license.

Words (BoW) model which represents the relationship between
documents (i.e., license statements) and frequency of words ap-
peared in each document. For instance, when an unknown license
statement file (d1) is composed of terms such as “This software is
GPL v2 [· · ·].”, our BoW model is represented as

BoW =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

so f tware gpl v2 · · · ti
d1 1 1 1 · · · 0
d2 1 1 0 · · · 0
d3 0 0 0 · · · 0
... · · · · · · · · · . . .

...

d j · · · · · · · · · · · · wi j

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(1)

where ti is terms included in unknown license statement files, d j

is an unknown license statement file, and wi j is the number of
a term (ti) appeared in d j. Note that we eliminate some terms
such as “This” and “is” using a general English stopwords list
before creating a Bow model. The Bag-of-Words model is used
to calculate similarity scores among license statements and create
a dendrogram based on the calculated similarities.

In this study, a dendrogram is created by Ward’s method [7] and
used to divide a set of licenses statements into groups (clusters).
Note here that it is ideal in this study that each cluster consists of
a set of same license statements so that practitioners can identify
a single OSS license only by the cluster.

In the general usage of a dendrogram, clusters are obtained by
only cutting the tree once at any height. Suppose here that a den-
drogram in Fig. 4 is obtained. In the figure, Xx represents one
data (i.e., a license statement in a source file) and Cx represents
one cluster which is created by merging a pair of two data (Xx)
or a pair of two clusters. S Cx represents a smallest cluster such
as S Ci and S C j which is created using the dissimilarity (i.e., the
distance in the bag-of-words vector space) between two data. In
the same manner, clusters such as Cm and Cn are created using
the dissimilarity between two clusters or between one cluster and
one data. The dissimilarity (d(Cm,Cn)) between Cm and Cn is
formulated as

d(Cm,Cn) = E(Cm ∪Cn) − E(Cm) − E(Cn) (2)

where E(Cx) represents a sum of squared Euclidean distances be-
tween the center of Cx and elements in Cx. The dissimilarity is
represented as height in a dendrogram. The height of a small-
est cluster (H(S Cx)) is uniquely-determined from the dissimilar-

c© 2019 Information Processing Society of Japan 45

Journal of Information Processing Vol.27 42–50 (Jan. 2019)

ity between a pair of two data (Xx) included in the cluster. The
height of a cluster (H(Cx)) is also determined by the dissimilarity
(d(Cm,Cn)) between the following two clusters.

Cutting the tree at a lower place would yield large clusters
which would contain different kinds of license statements, while
cutting the tree at a higher place would yield many small clusters
that means the same type of license statements would be scat-
tered across different clusters. It is expected that cutting a tree
only once inevitably creates such the trade-off which would re-
sult in producing inappropriate clusters, although in this study the
same type of license statements should become a single cluster.
To avoid creating inappropriate clusters by the general usage of a
dendrogram, we introduce two kinds of conditions for cutting the
tree in a dendrogram multiple times.
3.3.1 Condition α

The condition α is used to determine whether to create a large
cluster. For instance, as shown in Fig. 4, the cluster Cm should be
isolated from Cn since Cm includes license statement files with a
single license (i.e., GPLv2). Cm can be created by cutting the tree
between Cp and Cm. In order to do so, the tree will be cut if the
following equations are met.

H(Cm) > H(S Ci) and H(Cm) > H(S C j) (3)

It is assumed that S Ci and S C j should be merged as a cluster (Cm)
but should not be merged to the next level cluster (i.e., Cp) be-
cause the cluster S Ci and the cluster S C j are semantically closer
than Cm and Cn. If the equations are not met, the same processing
is applied to the next level of clusters (i.e., Cm and Cn).
3.3.2 Condition β

Since a cluster is only created by merging two data or two clus-
ters in the condition α, it cannot be created from a cluster and one
data such as Cn in the right side of the dendrogram in Fig. 4. The
condition β is an extension of the condition α that allows a clus-
ter to be created by merging a cluster and one data. Regarding a
datum in a dendrogram as a cluster only with one data, Eq. (4) is
used to create clusters such as Cm−1, Cm−2, Cn−1 and Cn (i.e., X7)
in Fig. 5.

H(Cm) > H(Cm−i) or H(Cn) > H(Cn− j) (4)

Note here again that there is no concept on the smallest cluster
under the condition β. Each data (xx) is treated as a cluster in the

Fig. 5 Hierarchical clustering used in this study (cond. β). (MPL), (MIT)
and (Apache) under Xx mean Xx belongs to the MPL, MIT or Apache
license.

beginning of the clustering procedure. In contrast to the condi-
tion α, a cluster under the condition β is created if the dissimi-
larity is lower than the next level of clusters. Since the condition
β allows one data to be a cluster, a license statement file (X7)
for the Apache license can be correctly separated from other li-
cense statement files as illustrated in Fig. 5. The condition β is
intended to create more clusters and more isolated data so that li-
cense statement files are much more correctly grouped by license.
It also means that the condition β would create multiple clusters
which should be merged as a cluster (e.g., two clusters for the
MPL license are created in Fig. 5).

4. A Case Study

This section describes a case study to investigate how well our
clustering method can support the manual inspection of OSS li-
cense statements.

4.1 Dataset
In the case study, the original dataset consists of 8,220 un-

known license statement files and includes 296 unknown licenses
in total. They were extracted by Ninka from source files in three
open source software products: Linux Kernel v4.4.6 *4, FreeBSD
v10.3.0 *5, and Debian v7.8.0 *6. We chose these operating sys-
tems for our case study, since these include not only a number
of source files but also a number of OSS licenses in general
(i.e., we assume that the proposed method should be helpful in
the situation where inspecting these files manually is very time-
consuming).

Table 3 shows the number of unknown license statement files
extracted by Ninka and the number of unknown licenses de-
scribed in the unknown license statement files. For Linux Ker-
nel v4.4.6 and FreeBSD v10.3.0, there were 3,561 and 1,821 un-
known license statement files respectively. In contrast to Linux
Kernel v4.4.6 and FreeBSD v10.3.0, Debian v7.8.0 has much
larger source files because it is a linux distribution which con-
sists of a wide variety of software packages. For Debian v7.8.0,
we randomly sampled one source file from each Debian software
package and obtained 12,725 source files in total (i.e., there were
12,725 software packages in Debian v7.8.0). As a result of apply-
ing Ninka to the source files of Debian v7.8.0, 2,838 unknown li-
cense statement files were extracted. The first author of the paper
manually reviewed all the extracted unknown license statement
files and identified OSS licenses in the unknown license state-
ment files. There were 33 licenses for Linux Kernel v4.4.6, 69
licenses for FreeBSD v10.3.0, and 194 licenses for Debian v7.8.0
as shown in the upper side of Table 3.

After creating the original dataset, we applied the filtering to
the original dataset in order to remove GPL/BSD family licenses
beforehand as we described in Section 3.2.2. A result of the
filtering is shown in the downside of Table 3, the number of
extracted unknown license statement files was 2,801 for Linux
Kernel v4.4.6, 1,230 for FreeBSD v10.3.0 and 2,446 for De-

*4 https://cdn.kernel.org/pub/linux/kernel/v4.x/linux-4.4.6.tar.xz
*5 https://github.com/freebsd/freebsd/tree/release/10.3.0
*6 http://ftp.riken.jp/Linux/debian/debian-cdimage/archive/7.8.0/source/

iso-dvd/

c© 2019 Information Processing Society of Japan 46

Journal of Information Processing Vol.27 42–50 (Jan. 2019)

Table 3 Dataset for the case study.

Project Linux v4.4.6 FreeBSD v10.3.0 Debian v7.8.0

Before filtering
of unknown license statement files 3,561 1,821 2,838
of unknown licenses 33 69 194

After filtering
of unknown license statement files 2,801 1,230 2,446
of unknown licenses 28 63 156

Table 4 Metrics to measure characteristics of clusters created by the proposed method.

Metrics Description

C The number of clusters created by our proposed method.

SLC (Single License Clusters) The number of clusters with a single license. Creating more SLC is desired in this study.
NSLC (Non-Single License Clusters) The number of clusters with multiple licenses.

RSLC (Ratio of SLC) The ratio of the number of SLC to the number of C (SLC/C). A higher ratio is desired.
RNSLC (Ratio of NSLC) The ratio of the number of NSLC to the number of C (NSLC/C). A lower ratio is desired.

SF (Single Files)
The number of single files which are not clustered. SF are not desired because creating a
license rule for each single file is not efficient.

RSF (Ratio of SF) The ratio of the number of SF to the number of C (SF/C). A lower ratio is desired.

bian v7.8.0. Finally, the number of unknown licenses was 28 for
Linux Kernel v4.4.6, 63 for FreeBSD v10.3.0 and 156 for Debian
v7.8.0.

4.2 Metrics for Evaluation
In the case study, we define seven metrics to measure character-

istics of clusters which are created by the proposed method. Us-
ing the metrics, we evaluate our proposed method quantitatively
and qualitatively. Table 4 shows the definitions of the seven met-
rics.

If our method could create an ideal clustering result, the num-
ber of created clusters (i.e., C) would correspond to the number
of licenses included in the dataset. However, our method is not so
perfect. It may produce wrong clusters which contain multiple li-
cense statements from different licenses (i.e., NSLC (Non-Single
License Clusters)). Nevertheless, our method would be useful for
practitioners to reduce the cost of manual reviews of license state-
ments if the number of NSLC is small and the number of SLC
(Single License Clusters) is large. In order to evaluate the useful-
ness of our clustering method, we introduce four metrics: SLC,
NSLC, RSLC (Ratio of SLC) and RNSLC (Ratio of NSLC).

The remaining two metrics (SF and RSF) are also introduced
for the same reason. Our method does not necessarily cluster all
license statement files since the condition α and β are used to
cut a dendrogram multiple times as we described in Section 3.3.
However, cutting a dendrogram multiple times can create single
files (SF) which are not desired in reviewing license statements
manually. SF and RSF are introduced to allow knowing which
condition is better for reducing the cost of manual reviews of sin-
gle license statements.

4.3 Results
4.3.1 Quantitative Evaluation
Objective: As shown in Table 3, the dataset in our case study in-
cludes 2,801, 1,230 and 2,446 unknown license statement files for
Linux Kernel v4.4.6, FreeBSD v10.3.0 and Debian v7.8.0 respec-
tively. When you reuse one of the three operating systems to con-
struct some sort of information systems, the license statements
must be reviewed manually to ensure the OSS licenses which are
explicitly stated in the source files of each operating system.

In the quantitative evaluation, we are interested in examining
how much our proposed method can reduce the costs in review-
ing unknown license statement files manually. Our method cre-
ates clusters (C in Table 4) consisting of unknown license state-
ment files and single files (SF in Table 4) which are not clus-
tered. More clusters contribute to reducing manual reviews of
unknown license statement files, because a cluster has multiple
license statement files and you only have to read one of them in
the cluster to review the OSS license.
Approach: To investigate how our two clustering methods can
reduce manual reviews of unknown license statement files, we
calculate the reduction rate of manual reviews as follows.

RRF =
TargetFiles − (C + S F)

TargetFiles
(5)

• TargetFiles : the number of unknown license statement files
after filtering

For instance, Linux Kernel v4.4.6 has 2,801 unknown license
statement files after filtering the GPL/BSD family licenses and
63 OSS licenses. If our clustering method can produce ideal
clusters (63 clusters for 63 licenses), you only have to review
63 unknown license statement files in total and to identify 63 li-
censes manually. The reduction rate in this ideal case is 0.978
(= (2, 801 − (63 + 0))/2, 801). However, due to the notation
variants of license statements, it is expected that multiple clus-
ters are likely created for a single OSS license and unknown li-
cense statement files will likely remain unclustered as single files.
Therefore, the reduction rate of manual reviews close to 0.978 is
desired.
Result: Table 5 shows the results of the quantitative evaluation.
Both C (clusters created) and SF (single files) under the condi-
tion α are much smaller for all the target operating systems than
that under the condition β. As a result, the reduction rate of man-
ual reviews is higher under the condition α than that under the
condition β. The reduction rate is 0.860 for Linux Kernel v4.4.6,
0.880 for FreeBSD v10.3.0 and 0.880 for Debian v7.8.0. From
the results of the quantitative evaluation, the condition α can bet-
ter cluster more unknown license statement files and help us re-
duce manual reviews of unknown license statement files.
4.3.2 Qualitative Evaluation
Objective: In the qualitative evaluation, we are interested in the

c© 2019 Information Processing Society of Japan 47

Journal of Information Processing Vol.27 42–50 (Jan. 2019)

Table 5 Clusters created by the proposed method and the reduction rate of manual reviews.

Project Linux v4.4.6 FreeBSD v10.3.0 Debian v7.8.0

of unknown license statement files after filtering 2,801 1,230 2,446
of licenses included in the above files 28 63 156

Cond. α
C (# of created clusters) 355 132 246
SF (# of single files) 38 16 48
Reduction rate of manual reviews 0.860 0.880 0.880

Cond. β
C (# of created clusters) 799 263 716
SF (# of single files) 117 47 203
Reduction rate of manual reviews 0.673 0.748 0.624

Table 6 Clustering conditions and evaluation metrics. The number in () shows the number of licenses.

Project Linux v4.4.6 FreeBSD v10.3.0 Debian v7.8.0

Cond. α

C (# of created clusters) 355 132 246
SLC (# of single license clusters) 322 (18) 121 (31) 170 (41)
NSLC (# of non-single license clusters) 33 (17) 11 (40) 76 (144)
RSLC (Ratio of SLC) 0.907 0.917 0.691
RNSLC (Ratio of NSLC) 0.093 0.083 0.309
SF (# of single files) 38 (5) 16 (7) 48 (25)
RSF (Ratio of SF) 0.107 0.121 0.195

Cond. β

C (# of created clusters) 799 263 716
SLC (# of single license clusters) 745 (22) 247 (45) 433 (52)
NSLC (# of non-single license clusters) 54 (12) 16 (31) 283 (135)
RSLC (Ratio of SLC) 0.932 0.939 0.605
RNSLC (Ratio of NSLC) 0.068 0.061 0.395
SF (# of single files) 117 (7) 47 (15) 203 (39)
RSF (Ratio of SF) 0.146 0.179 0.284

quality of clusters created by our hierarchical clustering method.
As we discussed in Section 2, the final goal of our study is to con-
struct a method to automatically generate candidate license rules.
From the quantitative evaluation, the number of created clusters
is larger than the ideal number (i.e., 63 for Linux Kernel v4.4.6,
28 for FreeBSD v10.3.0 and 156 for Debian v7.8.0 respectively)
even if we apply the better condition (i.e., condition α) to un-
known license statement files. This means that multiple clusters
can correspond to a single OSS license.

In addition, a created cluster can mistakenly include different
kinds of license statements. In such case, you have to review two
or more license statement files for the single cluster. Therefore,
a single cluster preferably has a single kind of license statement
files (i.e., a single OSS license). To address concerns about the
quality of created clusters and reveal the limitations of our hierar-
chical clustering method, we measure various aspects of created
clusters with the seven metrics introduced in Section 4.2.
Approach: As shown in Table 4, created clusters (C) are clas-
sified into single license clusters (SLC) and non-single license
clusters (NSLC). Small NSLC is better because you need to re-
view two or more license statement files for a non-single license
cluster, which means it will decrease the reduction rate of manual
reviews shown in the quantitative evaluation. Therefore, for each
condition of hierarchical clustering method, we measure SLC and
NSLC, and then calculate the ratio of SLC (RSLC) and NSLC
(RNSLC).

As we discussed earlier, small SF is also better because they
also lower the reduction rate of manual reviews. Therefore, for
each condition of hierarchical clustering method, we measure SF
and calculate RSF (the ratio of SF to created clusters (C + SF)).
Result: Table 6 shows the results of the measurements with the
seven metrics. From Table 6, we can confirm much larger single
license clusters (SLC) than the number of included OSS licenses

are created. For instance, 332 single license clusters are created
for 18 OSS licenses in Linux Kernel v4.4.6 under the condition
α (i.e., about 18 (=332/18) clusters belong to the same license
on average). We can confirm non-single license clusters (NSLC)
have many OSS licenses. For instance, 33 non-single license
clusters have 17 OSS licenses in Linux Kernel v4.4.6 under the
condition α (i.e., about 2 (=33/17) OSS licenses belong to a non-
single license cluster on average). This means that practitioners
have to carefully review NSLC not to miss OSS licenses included
in NSLC and we need to do further study to reduce NSLC to
mitigate practitioners’ efforts for manual reviews of NSLC. In
this case study, we found that both SLC and NSLC have many
statements which are not directly related to OSS licenses. For
instance, there were many copyright statements as OSS licenses
in SLC and NSLC, since we did not eliminate them from our
dataset. In the future, we may decrease NSLC by rigorously elim-
inating unrelated statement files before applying our clustering
method to the dataset.

For all the three open source operating systems, the condition β
creates much larger C and SLC than the condition α. The condi-
tion β also showed slightly higher RSLC than condition α, though
RSLC for Linux Kernel v4.4.6 and FreeBSD v10.3.0 is high un-
der both of the conditions (0.907 (α) vs. 0.932 (β) in Linux Kernel
v4.4.6 and 0.917 (α) vs. 0.939 (β) in FreeBSD v10.3.0) RSLC for
Debian v7.8.0 is much lower than that for the other operating sys-
tems (0.691 (α) vs. 0.605 (β)).

This indicates that clusters created under the condition β are
not likely to include multiple license statement files especially
for Linux Kernel v4.4.6 and FreeBSD v10.3.0. However clus-
ters created under the condition β must be reviewed many times
(322 (α) vs. 745 (β) for Linux Kernel v4.4.6, 121 (α) vs. 247 (β)
for FreeBSD v10.3.0 and 170 (α) vs. 433 (β) for Debian v7.8.0).
SF and RSF also support higher costs for manual reviews under

c© 2019 Information Processing Society of Japan 48

Journal of Information Processing Vol.27 42–50 (Jan. 2019)

the condition β. For all the three open source operating systems,
the condition β produces more SF and results in higher RSF than
those under the condition α.

5. Discussions

This section discusses the usefulness of our hierarchical clus-
tering method based on the results of our case study.

In this paper we conducted a case study using the three famous
open source operating systems to evaluate our hierarchical clus-
tering method quantitatively and qualitatively. In the quantita-
tively evaluation, as shown in Table 5, the reduction rate of man-
ual reviews marked up to 0.880 under the condition α. This means
that the condition α can contribute to reducing up to 88% of man-
ual reviews of unknown license statement files compared with
manual review tasks without our hierarchical clustering method.
In contrast, the condition β resulted in the lower reduction rate
than the condition β. The worst reduction rate was 0.624 for De-
bian v7.8.0. From the perspective on manual review costs, we
can conclude that the condition α of our hierarchical clustering
method is useful for reducing the amount of effort when there are
a lot of unknown license statement files which are not identified
by license identification tools such as Ninka.

However, our final goal is to construct a method to automati-
cally produce license rules to be incorporated into license identifi-
cation tools. In the qualitative evaluation, as shown in Table 6, the
condition βmarked higher RSLC (ratio of single license clusters)
and lower RNSLC (ratio of non-single license clusters) than α for
Linux Kernel v4.4.6 and FreeBSD v10.3.0. From the perspective
on the automated creation of license rules, a single cluster should
not have multiple kinds of license statement files. Toward the
automation of Step 3 discussed in Section 2.1, the condition β
is better than the condition α since an especially lower RNSLC
(0 is ideal) is required to represent license statements as regular
expressions. However, the difference in RSLC and RNSLC be-
tween the condition α and β is small (0.907 vs. 0.932 for Linux
Kernel v4.4.6, 0.917 vs. 0.939 for FreeBSD v10.3.0, and 0.691
vs. 0.605 for Debian v7.8.0). From a comprehensive perspective,
the condition α would be superior to the condition β since it has
the strong advantage in term of effectiveness in the reduction of
manual reviews’ costs.

RSLC of Debian v7.8.0 is much lower under both of the condi-
tion α (0.691) and β (0.605) than that of Linux Kernel v4.4.6 and
FreeBSD v10.3.0. This is due to our sampling method for source
files. We sampled one source file from one software package of
Debian v7.8.0 which has 2,838 packages *7 and 194 kinds of OSS
licenses. The result might be changed if we use the entire source
files. In the future, we need to conduct a larger-scale case study
and further investigate the root cause of smaller RSLC for Debian
v7.8.0.

6. Related Work

6.1 License Compliance
In these days, many studies are tackling with the issue on the

assurance of OSS license compliance. Sojer et al. [8] investi-

*7 12,725 source files in total.

gated commercial software’ knowledge on OSS licenses. As a
result, they found that commerce developers only have a limited
knowledge on OSS licenses and acquire the knowledge from un-
official sources of information. It is important for developers to
learn the right information about OSS licenses in the right place.
German et al. [9] proposed a method so called Kenen that semi-
automatically discriminates required licenses when reusing Java
software components. Vendome et al. [10] studied on common
understandings among developers on the reason and timing for
changing a license, through interviews of developers. Wu et
al. [11] proposed a method to detect license inconsistencies in
a large-scale OSS. As a result of an experiment using Debian
v7.8.0, license inconsistencies were detected for Debian v7.8.0.
The final goal of our study is to support rigorous compliance with
OSS licenses by helping developers to easily create license rules.

6.2 License Identification Tools
Beside Ninka [1] and FOSSology [2], Tuunanen et al. [12] also

proposed a rule-based license identification tool. Kapitsaki et
al. [13] compared functions between license identification tools
and showed advantages and disadvantages of the tools. We used
Ninka for our case study, but our approach to automating the li-
cense rule generation would be applicable to other tools in the
future.

7. Conclusion and Future Work

Toward the automated license rule generation, in this paper
we propose a method to automatically classify unknown license
statement files which are reported by rule-based license iden-
tification tools. Our method consists of (1) using grep to dis-
criminate GPL/BSD-related licenses from others and (2) cluster-
ing unknown licenses into groups with a single license. A case
study was conducted on OSS licenses of three world-famous open
source operating systems (e.g., Linux Kernel v4.4.6, FreeBSD
v10.3.0 and Debian v7.8.0). Our hierarchical clustering method
was applied to 3,561, 1,821 and 2,838 source files respectively
which were identified as “unknown” by Ninka. As a result, we
found that the condition α of our method can reduce the costs of
manual reviews by up to 88% for unknown license statement files
and is suitable as a candidate for generating license rules auto-
matically.

The proposed clustering method must also be improved in the
near future, since even the condition α still produces clusters of li-
cense statement files with different licenses (i.e., our method still
creates clusters which are not appropriate candidates for license
rule generation).

Acknowledgments This work is conducted as part of Grant-
in-Aid for Scientific Research: (A) 17H00731, (A) 18H04094
and (C) 18K11243 by Japan Society for the Promotion of Sci-
ence.

References

[1] German, D.M., Manabe, Y. and Inoue, K.: A Sentence-Matching
Method for Automatic License Identification of Source Code Files,
Proc. 25th IEEE/ACM International Conference on Automated Soft-
ware Engineering (ASE 2010), pp.437–446 (2010).

[2] Gobeille, R.: The FOSSology Project, Proc. 5th Working Conference

c© 2019 Information Processing Society of Japan 49

Journal of Information Processing Vol.27 42–50 (Jan. 2019)

on Mining Software Repositories (MSR 2008), pp.47–50 (2008).
[3] OSLC, available from 〈http://forge.ow2.org/projects/oslcv3/〉.
[4] what license, available from 〈http://www.what-license.com/〉.
[5] Ohcount, available from 〈https://github.com/blackducksw/ohcount〉.
[6] Higashi, Y., Manabe, Y. and Ohira, M.: Clustering OSS License State-

ments Toward Automatic Generation of License Rules, Proc. 7th IEEE
International Workshop on Empirical Software Engineering in Prac-
tice (IWESEP 2016), pp.30–35 (2016).

[7] Ward, J.H.: Hierarchical Grouping to Optimize an Objective Func-
tion, Journal of the American Statistical Association, Vol.58, No.301,
pp.236–244 (1963).

[8] Sojer, M. and Henkel, J.: License Risks from Ad Hoc Reuse of Code
from the Internet, Comm. ACM (CACM), Vol.54, No.12, pp.74–81
(2011).

[9] German, D. and Di Penta, M.: A Method for Open Source Li-
cense Compliance of Java Applications, IEEE Software, Vol.29, No.3,
pp.58–63 (2012).

[10] Vendome, C., Linares-Vásquez, M., Bavota, G., Di Penta, M.,
German, D.M. and Poshyvanyk, D.: When and Why Develop-
ers Adopt and Change Software Licenses, Proc. 31st International
Conference on Software Maintenance and Evolution (ICSME 2015),
pp.31–40 (2015).

[11] Wu, Y., Manabe, Y., Kanda, T., German, D.M. and Inoue, K.: A
Method to Detect License Inconsistencies in Large-Scale Open Source
Projects, Proc. 12th Working Conference on Mining Software Reposi-
tories (MSR 2015), pp.324–333 (2015).

[12] Tuunanen, T., Koskinen, J. and Kärkkäinen, T.: Automated Software
License Analysis, Automated Software Engneering, Vol.16, No.3-4,
pp.455–490 (2009).

[13] Kapitsaki, G.M., Tselikas, N.D. and Foukarakis, I.E.: An Insight into
License Tools for Open Source Software Systems, Journal of Systems
and Software, Vol.102, pp.72–87 (2015).

Yunosuke Higashi received his M.E. de-
gree in engineering from Wakayama Uni-
versity, Japan in 2017. He is currently en-
gaged in the development of financial sys-
tems at a company in Japan. His research
interests include open source software li-
cense, open source software engineering.

Masao Ohira received his Ph.D. degree
from Nara Institute of Science and Tech-
nology, Japan in 2003. Dr. Ohira is cur-
rently Associate Professor at Wakayama
University, Japan. He is interested in soft-
ware maintenance and software repository
mining. He is a director of Open Source
Software Engineering (OSSE) Laboratory

at Wakayama University. He is a member of ACM and IEEE.

Yutaro Kashiwa received his B.E.
and M.E. degrees in engineering from
Wakayama University in 2013 and 2015
respectively. He worked for Hitachi,
Ltd. as a full-time software engineer for
two years. He has been a Ph.D. student
at Wakayama University and a JSPS
research fellow since 2017. His research

interests include bug triaging and software release engineering.
He is a member of IEEE and IEEE computer society.

Yuki Manabe received his Ph.D. degree
in Information Science and Technology
from Osaka University in 2011. He is As-
sistant Professor at Kumamoto University
from 2013. His research interests include
open source software license, open source
software development and software repos-
itory mining.

c© 2019 Information Processing Society of Japan 50

