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Abstract: Malware-infected hosts are used to conduct many types of cyberattacks. Most of such malware-infected
hosts are end-user devices such as PCs, mobile devices and Internet of Things (IoT) devices. In Internet protocol (IP),
the IP addresses of most end users are dynamic IP addresses that are allocated by Internet service providers (ISPs).
Some countermeasures against cyberattacks use IP addresses as unique indicators of infected hosts. However, due to
certain configurations and policies of the particular ISP, the same dynamic IP address is not always reallocated to the
same host. Therefore, the accurate detection of dynamic IP address blocks is necessary to take appropriate counter-
measures against cyberattacks. Furthermore, attacks from hosts on a cloud block have been observed. A cloud block is
defined as an IP address block used in cloud services. Cloud service administrators can take countermeasures against
these attacks, such as restricting suspicious traffic and disabling the accounts of suspicious users. Thus, to implement
such appropriate countermeasures, the detection of cloud blocks is also important. Using conventional methods, dy-
namic IP address blocks can be detected by matching a PTR record of the target IP address with predefined keywords
that indicate dynamic allocation. However, these keywords do not always match the PTR records of dynamic IP ad-
dresses. On the contrary, they can also falsely match non-dynamic IP addresses. In this study, we propose a new
method for detecting dynamic IP address blocks more accurately and with a greater coverage rate than conventional
methods. Our method focuses on a unique feature of dynamic IP addresses, namely that the PTR records of dynamic
IP address blocks are sequentially configured by network administrators. In cloud block detection, our method uses a
unique feature of cloud blocks, namely that the users of a cloud service can manually configure the PTR records of the
hosts on the cloud blocks. The performance of our method was validated through evaluation using real and manually
labeled data. We found that many hosts with the dynamic IP addresses detected by our method send malicious traffic
through validation using real traffic data collected in a large-scale darknet.
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1. Introduction

Various types of cyberattacks, such as sending spam emails,
conducting denial of service (DoS) attacks, and stealing personal
information, are sent from hosts infected with malware. Most
of such malware-infected hosts are end-user devices such as PCs
mobile devices and Internet of things (IoT) devices. In today’s
Internet, the IP addresses of most end users are dynamic IP ad-
dresses allocated by Internet service providers (ISPs). Some
countermeasures against cyber attacks use IP addresses as unique
indicators of infected hosts [2]. For example, the source IP ad-
dresses associated with previously detected malicious activity are
added to blacklists [3], [4], [5]. However, the same dynamic IP
address is not always reallocated to the same host due to the con-
figuration and policies of the particular ISP. Hence, it is not al-
ways correct to consider a dynamic IP address as a permanent
malicious host and put it on a blacklist. As another example,
source IP addresses of malware-infected hosts [6], [7] and IoT de-
vices [8], [9] in ISPs are used for user notifications. In such noti-
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fications, a malicious IP address is first detected and then the cor-
responding user for sending a notification is determined. The no-
tification should be accurate and should not be sent to the wrong
user. If the IP addresss is static, the user is easily determined.
However, if the IP address is dynamic, the detemination of user
is more complex, that is, the user should be determined based on
the timestamp and communication logs. Therefore, the accurate
detection of dynamic IP address blocks is helpful when imple-
menting appropriate IP address-based countermeasures against
cyberattacks. For example, if a dynamic IP address used by a
malicious host is detected, the IP address should not necessarily
be placed on a blacklist and notification lists since that IP address
may be reallocated to a non-malicious host, which results in a
false positive.

Conventional methods detect dynamic IP address blocks by
matching a Pointer (PTR) record of the target IP address with
predefined keywords that indicate dynamic allocation [10], [11],
[12], [13]. A PTR record is a reverse DNS record defined in
DNS configuration files, and it shows the name of the IP address.

The preliminary version of this paper was published at Computer Se-
curity Symposium 2018 (CSS2018), Oct 2018. The paper was recom-
mended to be submitted to Journal of Information Processing (JIP) by
the program chair of CSS2018.
This paper is an extended version of a paper published in APAN Re-
search Workshop 2018 [1].
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Such conventional methods detect dynamic IP address blocks us-
ing keywords such as dhcp and dynamic. However, the prede-
fined keywords do not always match the PTR records of dynamic
IP addresses. On the contrary, the keywords sometimes falsely
match the PTR records of non-dynamic IP addresses. To resolve
this problem, we propose a new method to detect dynamic IP
address blocks more accurately and with a greater coverage rate
than conventional methods. The coverage rate is defined as the
ratio of the IP addresses that could be judged as dynamic or static
to all input IP addresses. Our method focuses on a unique feature
of dynamic IP addresses, namely that the PTR records of dynamic
IP address blocks are sequentially configured by network admin-
istrators. Our method can accurately detect dynamic IP address
blocks that do not match with the predefined keywords. In other
words, our method increases the detection coverage of dynamic
IP address blocks. Moreover, cyberattacks from hosts on a cloud
block have been observed. We define a cloud block as an IP ad-
dress block used in a cloud service. Cloud service administrators
can take countermeasures against these attacks, such as restricting
suspicious traffic and disabling the accounts of suspicious users.
Thus, to take such appropriate countermeasures, detecting cloud
blocks is also important. In cloud detection, our method uses a
unique feature of cloud blocks, namely that the users of a cloud
service can manually configure the PTR records of the hosts on
the cloud blocks. Real and manually labeled data was used to
evaluate our method and results indicated that compared with the
conventional methods, our method can detect dynamic IP address
blocks more accurately and with a greater coverage rate. In addi-
tion to a particularly high accuracy rate, the coverage rate of our
method is considerably higher than those of conventional meth-
ods. Results of our evaluation further indicated that our method
can detect cloud blocks accurately. To validate our method, real
traffic data collected in a large-scale darknet was used, and results
revealed that about 80% of attacks used dynamic IP addresses.
The main contributions of our study are summarized as follows.
• A new method is proposed to detect dynamic IP ad-

dress blocks using the sequential characteristics of the PTR
records of IP addresses.

• The characteristics of dynamic/static IP addresses were ver-
ified using large and real IP address data.

• Our evaluation using real and manually labeled data indi-
cated that compared to conventional methods, our method
can detect dynamic IP address blocks more accurately and
with a greater coverage rate.

• Results of our study further revealed that our method can de-
tect cloud blocks based on the information of the IP address
blocks which are created by our method.

The remainder of this paper is organized in the following man-
ner. First, we define the types of IP addresses in Section 2.
Then, in Section 3, we explain our method that detects dynamic
IP address blocks based on the sequential characteristics of PTR
records. Our evaluation results are presented in Section 4. In Sec-
tion 5, we discuss the accuracy associated with all IP addresses.
Section 6 discusses related work. Finally, Section 7 summarizes
the conclusions of our study.

2. Background

2.1 Method of Assigning IP Addresses
2.1.1 Static IP Address Blocks

Generally, a static IP address is used for servers, such as
web servers, DNS servers, and FTP servers, which provide ser-
vices. Many PTR records corresponding to these IP addresses
are named by the types of services. For example, www is used
for web servers, ns and dns are used for DNS servers, and ftp
is used for FTP servers. Network devices, such as routers and
gateways, are also named similarly. For example, router, rt,
and rtr are used for routers and gateway and gw are used for
gateways. These PTR records are set manually for each server.
Network administrators often use numbers that are meaningful to
humans or good numbers for the IP address or PTR record. Typ-
ically, only a small number of static IP addresses among all IP
addresses allocated to an organization are used.
2.1.2 Dynamic IP Address Blocks

Currently, the Internet is used by a massive number of people,
most of whom are end users. Individuals rarely use the same In-
ternet environment continuously for a long time. In this case, as-
signing static IP addresses is not efficient because the IP address
remains unused or occupied for a long time. Thus, using dynamic
IP addresses, which involves dynamic allocation of IP addresses
when users need them, is one way to solve the problem. For ex-
ample, an ISP allocates a dynamic IP address to a user when they
start a point-to-point over ethernet (PPPoE) session. The same
dynamic IP address is not always reallocated to the same host
depending on the settings and policies of the particular ISP and
the timing of reallocation. Thus, an end user corresponding to a
dynamic IP address is not always the same user or device. Prefer-
ably such dynamic IP address blocks should be detected so that
appropriate countermeasures can be taken against cyberattacks.

2.2 Advantages of Dynamic IP Address Block Detection
Most IP addresses utilized in cyberattacks are considered to be

dynamic IP addresses. This is because attackers mainly use a bot-
net, which comprises malware-infected hosts (bots) to prevent the
attackers from being identified. These bots infect the hosts of end
users with malware by exploiting the vulnerabilities of software
and device hardware. When the host is infected with malware,
it begins connecting to command & control (C&C) servers, and
joins an existing botnet. A botnet is used for conducting various
types of cyberattacks, such as Denial of Service (DoS) attacks and
spamming. For example, the Mirai botnet affected embedded and
IoT devices with common and weak usernames or passwords or
both and then used these devices for massive distributed DoS at-
tacks [14], [15]. When detecting bots and taking countermeasures
against botnets, source IP addresses are widely used as unique in-
dicators. However, if the IP address is dynamic, the same host
does not always use the same IP address, making it difficult to
take appropriate countermeasures. Therefore, detecting dynamic
IP address blocks is helpful in taking accurate and appropriate
countermeasures against cyberattacks.
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Fig. 1 Overview of our method.

2.3 Cloud Block
Most end-user mobile and IoT devices that are targeted by mal-

ware do not explicitly configure the PTR records of their IP ad-
dresses. Moreover, most of the Dynamic IP addresses allocated
to these hosts are usually managed by the particular ISP. In this
case, end-users cannot manually configure the PTR records on
their devices. On the contrary, in the cloud blocks, users can
configure their own PTR records to use the hosts in the cloud ser-
vices in many ways. In fact, if a user wants to use the host as a
mail server or web server, they must configure the PTR record.
Taking Amazon Web Service (AWS) as an example, the users
can configure the PTR record [16]. When the malicious traffic is
sent from hosts on the cloud block, cloud service administrators
can take countermeasures against these attacks such as restricting
suspicious traffic and disabling the accounts of suspicious users.
Thus, detecting cloud blocks provides important information that
makes it possible to take appropriate countermeasures against cy-
berattacks.

3. Our Method

This section describes our proposed method for detecting dy-
namic IP address blocks using the results of reverse DNS (rDNS)
lookups of IPv4 addresses. Our target IP addresses were all IP ad-
dresses included in the rDNS results. The difference between our
method and conventional methods is that detection is not only
performed individually for the rDNS result of one IP address
but also by referring to the rDNS results of the preceding and
succeeding IP addresses. Our method considers sequential char-
acteristics when a network administrator manages IP addresses.
When allocating a substantial number of dynamic IP addresses,
a continuous number is often automatically assigned to the PTR
records, and these PTR records often display a high degree of
similarity. Therefore, in our method, an IP address block that
has PTR records with a high degree of similarity is detected as
a dynamic IP address block. Using conventional methods, nu-
merous unidentifiable IP addresses cannot be detected using key-
word matching and regular expressions. However, our method
makes it possible to detect whether such addresses are dynamic
or static. Figure 1 provides an overview of our method. Our
method includes four steps. Note that the four steps and their
procedures are carefully designed to reflect the fact of how IPv4

addresses are managed by different organizations in today’s Inter-
net. First, a pair of target IP address blocks and their correspond-
ing PTR records are used as input. Next, the delimiter position
of sequential address blocks called segments is recognized and
the segments are separated. In this step, two PTR records are
compared, namely the PTR record of an IP address and that of
the adjacent address in order. After that, we output the informa-
tion of the detected dynamic or static IP address blocks. Finally,
based on this information, the information of the detected cloud
blocks becomes the final output. Note that we skip IP addresses
that have no corresponding PTR records. We will explain each
step comprehensively in the following sections. Figure 2 shows
an example of our method and the output. The horizontal line
with the step number shows the delimiter positions recognized
using our method. Output 1 is obtained when Step 3 is com-
pleted; Output 1 shows whether the IP address block is dynamic
or static. Output 2 is obtained when Step 4 is completed; Output 2

indicates whether the IP address block belongs to a cloud block.
Our method needs some predefined parameters in Step 3-3 and
Section 3.3.3. When designing each step, we used a preliminary
dataset which is a subset of the datasets shown later in Section 4.
The preliminary dataset is composed of randomly sampled 10 IP
address blocks which include up to 80 IP addresses in total (only
0.002% of total IP addresses in the datasets). We confirmed that
the sampled IP addresses were not biased in terms of their cor-
responding countries, network operators, and service types. In
order to provide ample generalizing capability with our method,
we carefully monitored the parameter and their corresponding re-
sults to determine the optimal parameters.

3.1 Step 1: AS Separation
From the information of the target IP address block (e.g.,

192.0.2.0/24), we investigate the AS number to which each
IP address belongs. We referred to the MaxMind database [17] to
examine information of the AS number. If the target IP address
block contains IP addresses belonging to different AS numbers,
the segment is divided before and after the IP address because
the management policy and method of the IP address vary signif-
icantly between different AS numbers. In Fig. 2, 192.0.2.128
and 192.0.2.129 are separated because the AS numbers are dif-
ferent. The IP address block from 192.0.2.0 to 192.0.2.128
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Fig. 2 Example of the output of our method.

is a large segment that can be separated in this step.

3.2 Step 2: Public Suffix Separation
If the segment obtained in Step 1 contains IP addresses with

different public suffixes, the segment is divided before and af-
ter the IP address. We used the Public Suffix List (PSL) [18]
provided by the Mozilla Foundation to extract the Public Suf-
fix. In Fig. 2, the IP address segment is separated between
192.0.2.20 and 192.0.2.21 because the Public Suffixes of the
PTR records are different. The IP address block from 192.0.2.0
to 192.0.2.20 and that from 192.0.2.21 to 192.0.2.128 are
segments that can be separated in this step.

3.3 Step 3: String Separation
In this step, we focus on a string in a PTR record of an IP

address, which belongs to the segment obtained in Step 2. We
exclude the public suffix (e.g., example.net) from the PTR
record (e.g., host1.example.net) and consider only the sub-
string (e.g., host1) in this step. If there are five or more IP ad-
dresses with similar substrings, the IP address block is detected
as a dynamic IP address block. Otherwise, it is detected as a static
block. We confirmed that there are many cases in which approx-
imately four static IP addresses line up with the PTR records:
www1, www2, www3, and www4. We empirically set the threshold at
five so that they are not detected. For example, in the case shown
in Fig. 2, this step separates the segment from 192.0.2.21 to
192.0.2.128 until Step 2. PTR records having string similarity
are from 192.0.2.21 to 192.0.2.25 and from 192.0.2.29 to
192.0.2.128. Thus, these segments are detected as dynamic IP
address blocks. The segment from 192.0.2.26 to 192.0.2.28
does not exhibit string similarity; hence, it is detected as a static

IP address block. Our method considers four string similarity cri-
teria and corresponding sub steps, namely Step 3-1 (named from
IP address), Step 3-2 (Jaro–Winkler distance), Step 3-3 (obvious
static IP address), and Step 3-4 (length of the name), in order. In
Step 3-1, if the PTR records contain IP addresses, they are con-
sidered sequential and Step 3 is complete. If the PTR records do
not contain IP addresses, our method proceeds to Step 3-2. In
Step 3-2, if two PTR records have a high degree of similarity,
they are considered sequential and our method proceeds to Step
3-3. If two PTR records do not have a high degree of similarity,
Step 3 is complete at this point. If two PTR records complete
Step 3-3, these are not considered static IP addresses and we pro-
ceed to Step 3-4. If this is not the case, Step 3 is complete here.
If two PTR records complete Step 3-4, it is judged that they are
sequential. If two PTR records do not complete Step 3-4, they are
not sequential. We explain each criterion or sub-step in detail in
the following sections.
3.3.1 Step 3-1: Named from IP Address

In network management, IP addresses are often set as part of
the PTR records. We determine whether a PTR record has an IP
address-based value to detect sequential records in these types of
PTR records. We extract the numerical value of the IP addresses
that are separated by “-”, “ ”, “.” with a regular expression. We
also extract the numerical value of the IP addresses that are con-
figured in reverse order with the same process. If the PTR records
contain IP address-based values, our method characterizes these
records as having string similarity. Considering the possibility of
erroneous detection if only a numerical value is included, this op-
eration is available when the extracted value exactly matches the
target IP address.
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3.3.2 Step 3-2: Jaro–Winkler Distance
When setting a dynamic IP address in a particular block, the

network administrator often names the PTR records as “prefix +
number” (e.g., host1.example.net and host2.example.net)
in a systematic and automatic manner. Our method focuses on
this sequential characteristic. The Levenshtein distance is a way
of determining similarity between strings. This measure repeat-
edly inserts, replaces, and deletes characters in one character
string until it reaches another character string and determines the
distance based on the shortest time for this operation. However,
it is difficult to determine an appropriate threshold. For a pre-
fix + number PTR record, the number differs between sequen-
tial PTR records. When the digit in the number changes, the
Levenshtein distance is the largest. By increasing the threshold
value, detection is possible even if more digits are set. How-
ever, dissimilar PTR records are sometimes judged similar. For
example, when the threshold is 8, test9999999.example.net
and test10000000.example.net are sequential; thus, they
can be detected. However, invalid.example.net and
localhost.example.net are also judged similar in this thresh-
old setting (the threshold is 8). On the other hand, if the
threshold is too low, this method can erroneously detect when
the PTR record is a short name (e.g., ns1.example.net and
www.example.net).

Thus, to solve this problem, the Jaro–Winkler distance [19],
[20], [21], [22], [23] is used instead of the Levenshtein dis-
tance, and the python package [24] was used to calculate the Jaro-
Winkler distance in our paper. The Jaro–Winkler distance is a
measure of string similarity that considers the prefix of a charac-
ter string. It is defined as 1.0 when two strings are identical and
0 when two strings do not match at all. This method is based on
the Jaro distance [20], [21], [22], which is defined as follows:

ΦJ = W1 · c/d +W2 · c/r +Wτ · (c − τ)/c (1)

where W1 is the weight applied to the character of the first char-
acter string,
W2 is the weight applied to the character of the second character
string,
Wτ is the weight applied to the transpositions,
d is the length of the first character string,
r is the length of the second character string,
τ is the number of replaced characters, and
c is the number of common characters in a pair of strings.
If c = 0, then ΦJ = 0.

c is the number of matched characters when the positions of
two characters are within (max(d, r)/2) − 1. In practice, W1,W2,

and Wτ are set to 1/3. Based on this definition, the Jaro–Winkler
distance is defined as follows:

ΦJW = ΦJ + p · (0.08) · (1 − ΦJ) (2)

where p is the number of common characters in the prefix of a
pair of strings and is no more than 4. We empirically set the
weight applied to p at 0.08. The Jaro–Winkler distance is gener-
ally used to detect misspelled words or typographical errors. It is
also used in predictive searching to suggest candidates for predic-
tion with only a part of a character string when searching on the

Fig. 3 Example of similar strings.

Fig. 4 Example of dissimilar strings.

Web. The possibility of misjudging dissimilar strings as similar is
low when using this method because it adds weight to the prefix
which reflects sequential characteristics of the strings, and an ap-
propriate classification can be obtained even if the PTR record has
a short name. Using this method, we were able to classify similar
PTR records using a threshold based on actual data. In this case,
the threshold was set to 0.91, and if the Jaro–Winkler distance ex-
ceeded 0.91, the strings were classified as similar. Figures 3 and
4 show examples of similar and dissimilar strings, respectively.
In Fig. 3, test of the “First String” and “Second String” are the
prefix and the Jaro–Winkler distance is 0.91; thus, our method
judges that the strings are similar. In Fig. 4, since the strings do
not have a common prefix, the Jaro–Winkler distance is 0. Thus,
our method judges that the strings are not similar.
3.3.3 Step 3-3: Obvious Static IP Address

Even if the above process is performed, it is still possible that
a certain number of static IP addresses could be misjudged. If
the IP addresses that are detected as dynamic IP addresses con-
tain a keyword that indicates the IP address is a static IP ad-
dress, it is classified as static. In this case, the static keyword
was set with reference to the keyword used in conventional meth-
ods [10], [11], [12], [13]. The specific keyword list is presented
in Section 4.2.
3.3.4 Step 3-4: Length of the Name

In an IP address block, PTR records with different characteris-
tics from the preceding and following PTR records may be set as
static IP addresses in some cases. To ensure that such an IP ad-
dress is not erroneously determined as dynamic, the length of the
preceding PTR record is considered in this substep. If the length
of the PTR record differs significantly from that of the following
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Fig. 5 Example of failure when comparing long strings.

PTR record, the records are treated as dissimilar. This case is ap-
plicable when the length of one string is greater than that of the
other by three or more characters. When naming PTR records,
numbers with up to three digits are often used. Therefore, the
length difference between two names with numbers is within two
characters, but the other long character strings differ by more than
three characters. Therefore, we set the threshold as 3 characters.

An example of an erroneously judged character string when
this process was not performed is shown in Fig. 5. In Fig. 5, the
prefix of both strings is testlocalhost, but one of the follow-
ing strings has a numerical value and the other contains alphabet
characters. In other words, the strings are not sequential. How-
ever, the Jaro–Winkler distance is 0.91, implying that both strings
are identical. This is an erroneous judgment.

3.4 Step 4: Cloud Detection
There are many ways to use the hosts on the cloud block, and

users must set a PTR record when the host is used as a mail server
or Web server. Therefore, a PTR record that indicates the host is
used as static appears in the sequence of the PTR record in a cloud
block, thus the PTR records are not sequential. Using this feature
and the information of the IP address blocks obtained when Step
3 is complete, our method can detect cloud blocks. Specifically,
when the IP address blocks consist of dynamic, static, dynamic
then they fulfill this feature. Moreover if the dynamic IP ad-
dress blocks belong to the same network range then they have
a common prefix in the PTR records. In the above case that
there are static IP address blocks between dynamic IP address
blocks, our method judges that they are used in a cloud block. In
Fig. 2, the segment from 192.0.2.21 to 192.0.2.25 and from
192.0.2.29 to 192.0.2.128 have the same prefix “test”. The
segment from 192.0.2.26 to 192.0.2.28, which is a static IP
address block, is between these two dynamic IP address blocks.
Thus, our method judges that the segments from 192.0.2.21 to
192.0.2.128 are used in a cloud block.

4. Evaluation

In this section the validation of our method is explained, de-

tection accuracy is compared, and the cloud detection is evalu-
ated using a real IPv4 address and the corresponding PTR record.
Moreover, we validate whether the hosts allocated to dynamic IP
addresses that are detected by our method are benign or mali-
cious using a benign dataset and real traffic data collected from a
large-scale darknet.

4.1 Dataset
4.1.1 PTR Records of IPv4 Address

To evaluate our method, the IPv4 address and the correspond-
ing PTR record were collected in two ways. First, we used pub-
licly available rDNS results that were published as part of Project
Sonar [25]. This is a dataset containing the responses of reverse
DNS lookups corresponding to the IPv4 address, and it does not
include the results of the IP address defined in the blacklists of
the project or private IP addresses. Note that there are no cor-
responding results for these data, and if an error occurred at the
time of scanning, a PTR record did not originally exist or the IP
address was unused. We used Project Sonar’s rDNS results for
October 18, 2017 in Sections 4.2, 4.3, 4.5. We used the same
dataset for August 29, 2018 in Section 4.4. Next, we collected
additional rDNS results to supplement the Project Sonar dataset.
We sent direct reverse DNS lookup queries from our experimen-
tal environment. For these reverse DNS lookup queries, we sent
queries at a relatively low rate so that an excessive load was not
exerted on the target network. We further restricted our lookups
to the data that were not included in the Project Sonar dataset.
4.1.2 Labeled Dataset

To verify the detection results of the dynamic and static IP
addresses using our method, we calculated the detection accu-
racy using a labeled dataset. Unfortunately, there is no ground
truth regarding static/dynamic IP addresses. Thus, we need to la-
bel the data manually for evaluating our method. Basically, we
carefully labeled the data in two ways. One way is relying on
the keywords used in conventional methods [10], [11], [12], [13].
We used the keywords to determine reliable static/dynamic IP
addresses first and then we expand the target and label similar
IP addresses around the reliable IP addresses. The other way
is manual labeling by researchers and engineers engaged in net-
work/security services. They used various information regarding
the corresponding IP addresses such as PTR records, offered ser-
vices, and scanned results to determine whether the IP address is
static/dynamic. We selected multiple and various regions of IP
address blocks in the dataset. Tables 1, 2 summarize the details
of these datasets. Datasets 1 and 3 include only dynamic IP ad-
dresses whose PTR records were set sequentially. Datasets 2, 4,
5, and 6 included both dynamic and static IP addresses. Dataset
7 includes only IP addresses of a cloud block. Dataset 8 includes
only IP addresses which were not used in a cloud block.
4.1.3 Benign and Malicious Datasets

To validate whether the hosts allocated to dynamic IP addresses
detected by our method are benign or malicious, two datasets
were used.

As a benign dataset, the results of forward DNS lookups of
domain names in the Alexa Top 1 million sites [26] were used.
Highly visited Web sites work on the Web servers and static IP
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Table 1 Labeled dataset.

Dataset Range Country ISP #Total Dynamic IP Addresses #Total Static IP Addresses

Dataset 1 67.160.0.1/24 USA Comcast 510 0

Dataset 2 100.17.0.0/22 USA Verison 1,011 5

Dataset 3 104.0.0.0/22, 104.0.4.0/24 USA AT&T 1,278 0

Dataset 4 106.72.0.0/15, Japan KDDI 3,596,918 1,856

106.128.0.1 - 106.185.45.254

Dataset 5 110.79.255.6 - 110.79.255.254, Japan OCN 44,668 39

110.158.0.1 - 110.158.2.20,

110.158.64.0/18, 110.158.128.0/17

Dataset 6 143.0.84.0/22 Brazil Sim Telecom 992 9

Table 2 Labeled dataset for cloud detection.

Dataset Range Country ISP #Cloud IP Address #Not Cloud IP Address
Dataset 7 175.41.129.0/24 USA Amazon 256 0
Dataset 8 69.104.56.0/24 USA AT&T 0 256

addresses are allocated to these servers, and they could be benign
sites. In this paper, we used this dataset for June 12, 2018.

As a malicious dataset, we used darknet traffic data of NICTER
Dataset 2018 which was provided by NICT [27]. The darknet is
unused IP address space, so the traffic originally should not be ob-
served in the darknet. In fact, a significant amount of malicious
traffic was observed. For example, there were scanning packets,
reply packets of DDoS, and preparation for reflection attacks [28].
As described in Section 2, these attacks were often sent by bots.
In this paper, we investigated the source IP addresses in this traffic
data from September 18 to October 1, 2018.

Considering the features of these two datasets, we hypothe-
sized that the ratio of static IP addresses detected by our method
is high for the Alexa dataset and the ratio of dynamic IP addresses
detected by our method is high for the NICTER dataset.

4.2 Comparison of the Accuracy of Detecting Dynamic IP
Address

We evaluated the detection accuracy of our method using a la-
beled dataset and investigated whether the dynamic and static IP
address blocks were correctly judged by the proposed method.
For comparison, using the same dataset, we also verified the de-
tection accuracy of conventional methods that employ keyword
matching [10], [11], [12], [13] and regular expressions [29].

The conventional methods detected the dynamic and static IP
addresses using the corresponding predefined keywords in the
PTR record [10], [11], [12], [13]. We first prepared both the static
and dynamic keywords based on the above conventional methods.
The keywords used herein were as follows.
• Static Keywords: server, srv, svr, mx, mail,

smtp, www, ns, ftp, router, rtr, rt, gateway,

gw, dns, sw, and test

• Dynamic Keywords: dialup, modem, cable, hsb,

dyn, dynamic, wireless, pool, access, dhcp,

dialup, ppp, and adsl

The conventional method using regular expressions was
S25R [29]. S25R is a combination of regular expressions or rules
for detecting end-users who sent spam emails. S25R investigated
whether a PTR record of the target IP address matched the rules.
Although S25R has general rules and a blacklist and whitelist,

Table 3 Relationships among terms.

Actual Value

Dynamic Static

Detection Dynamic True Positive (TP) False Positive (FP)

Outcome Static False Negative (FN) True Negative (TN)

the blacklist and whitelist may detect mail servers in some cases.
Thus, for our evaluation, we only used the general rules. The
rules of regular expressions are as follows.
• ˆ[ˆ.]*[0-9][ˆ0-9.]+[0-9].*\.
• ˆ[ˆ.]\*[0-9]\{5\}
• ˆ([ˆ.]+\.)?[0-9][ˆ.]*\.[ˆ.]+\..+\.[a-z]
• ˆ[ˆ.]*[0-9]\.[ˆ.]*[0-9]-[0-9]
• ˆ[ˆ.]*[0-9]\.[ˆ.]*[0-9]\.[ˆ.]+\..+\.
• ˆ(dhcp|dialup|ppp|[achrsvx]?dsl)[ˆ.]
*[0-9]|

Here, we define the metrics used in our evaluation. The aim of
our method is to detect dynamic IP addresses. Thus, we treated
the dynamic IP addresses as positive and the static IP addresses as
negative. Table 3 summarizes the relationships among the terms
used in our evaluation. True positive (TP) indicates that the dy-
namic IP address was correctly detected as a dynamic IP address.
False negative (FN) indicates that the dynamic IP address was in-
correctly determined as a static IP address. False positive (FP)
indicates that the static IP address was incorrectly determined
as a dynamic IP address. True negative (TN) indicates that the
static IP address was correctly detected as a static IP address. TP
rate (TPR) is the rate at which the dynamic IP address was cor-
rectly determined as a dynamic IP address; TPR is defined as
T P/(T P + FN). FN rate (FNR) is the rate at which the dynamic
IP address was incorrectly determined as a static IP address; FNR
is defined as FN/(T P + FN). FP rate (FPR) is the rate at which
the static IP address was incorrectly determined as a dynamic IP
address; FPR is defined as FP/(T N + FP). TN rate (TNR) is
the rate at which the static IP address was correctly determined
as a static IP address; TNR is defined as T N/(T N + FP). We
also defined the coverage rate, which is the proportion of the IP
addresses that could be judged as dynamic or static in the entire
input IP address block.

Table 4 summarizes the evaluation results comparing the de-
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Table 4 Comparison of detection accuracy.

Dataset 1

#TPs #FNs #Total Detected Dynamic IPs #FPs #TNs #Total Detected Static IPs TPR FNR FPR TNR Cover Rate

Our Method 510 0 510 0 0 0 1.000 0.000 0.000 0.000 1.000

Keyword Matching 0 0 0 0 0 0 0.000 0.000 0.000 0.000 0.000

S25R 510 0 510 0 0 0 1.000 0.000 0.000 0.000 1.000

Dataset 2

#TPs #FNs #Total Detected Dynamic IPs #FPs #TNs #Total Detected Static IPs TPR FNR FPR TNR Cover Rate

Our Method 1,011 0 1,011 0 5 5 1.000 0.000 0.000 1.000 1.000

Keyword Matching 759 0 759 0 0 0 1.000 0.000 0.000 0.000 0.747

S25R 1,011 0 1,011 4 0 4 1.000 0.000 1.000 0.000 0.999

Dataset 3

#TPs #FNs #Total Detected Dynamic IPs #FPs #TNs #Total Detected Static IPs TPR FNR FPR TNR Cover Rate

Our Method 1,278 0 1,278 0 0 0 1.000 0.000 0.000 0.000 1.000

Keyword Matching 0 0 0 0 0 0 0.000 0.000 0.000 0.000 0.000

S25R 1,278 0 1,278 0 0 0 1.000 0.000 0.000 0.000 1.000

Dataset 4

#TPs #FNs #Total Detected Dynamic IPs #FPs #TNs #Total Detected Static IPs TPR FNR FPR TNR Cover Rate

Our Method 3,594,396 2,522 3,596,918 327 1,529 1,856 0.999 0.001 0.176 0.824 1.000

Keyword Matching 1,041,779 640 1,042,419 0 405 405 0.999 0.001 0.000 1.000 0.290

S25R 3,596,841 0 3,596,841 489 0 489 1.000 0.000 1.000 0.000 0.999

Dataset 5

#TPs #FNs #Total Detected Dynamic IPs #FPs #TNs #Total Detected Static IPs TPR FNR FPR TNR Cover Rate

Our Method 44,668 0 44,668 0 39 39 1.000 0.000 0.000 1.000 1.000

Keyword Matching 0 0 0 2 29 31 0.000 0.000 0.065 0.936 0.001

S25R 44,668 0 44,668 2 0 2 1.000 0.000 1.000 0.000 0.999

Dataset 6

#TPs #FNs #Total Detected Dynamic IPs #FPs #TNs #Total Detected Static IPs TPR FNR FPR TNR Cover Rate

Our Method 991 1 992 0 9 9 0.999 0.001 0.000 1.000 1.000

Keyword Matching 0 0 0 0 7 7 0.000 0.000 0.000 1.000 0.007

S25R 0 0 0 0 0 0 0.000 0.000 0.000 0.000 0.000

tection accuracy of all the labeled dataset. Since S25R cannot
detect a static IP address, TP and FN were always 0 for this
method. The TPRs of our method were extremely high, ranging
from 0.999 to 1.000 for every dataset. The TPRs of the conven-
tional keyword-matching method were also high. The coverage
rate was the highest: 0.747 for Dataset 2, 0.290 for Dataset 4, and
the other was virtually 0. This indicated that keyword matching
could not detect many dynamic and static IP addresses since the
keywords were predefined. The TPRs of the S25R method were
also high, but the coverage rate of S25R for Dataset 6 was 0. This
indicated that S25R also could not detect IP addresses in a cer-
tain area. Moreover, for Datasets 2, 4, and 5, both the TPR and
FPR of S25R were 1.000, and thus, S25R did not work well for
these datasets. Our method did not make an erroneous detection
in any dataset, except Dataset 4, which was a very large dataset.
For Dataset 4, the number of FPs in our method was smaller than
that of S25R. Furthermore, our method detected both dynamic
and static IP addresses.

Although the coverage rate of our method was 1 (highest), dy-
namic IP address blocks were detected with an accuracy equal to

Table 5 Result of cloud detection.

Dataset 7 Dataset 8
#Cloud IP Address 256 0
#Not Cloud IP Address 0 256

or better than those of the conventional methods.

4.3 Cloud Detection
Using labeled datasets, we investigated whether the IP address

blocks in a cloud block were correctly judged by our proposed
method. Table 5 shows that our method made correct judgement
in Dataset 7 which was a cloud block. In Dataset 8, which was
not a cloud block, our method judged the IP address blocks were
not in a cloud block, and thus, our proposed method also judged
correctly in Dataset 8.

4.4 Validation Using Benign and Malicious Dataset
Using the IP address block information in our method and the

IP addresses in benign and malicious datasets, we investigated
whether the IP addresses were dynamic IP addresses or static IP
addresses. Table 6 shows the results. Cloud Dynamic is an IP
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Table 6 Validation using benign and malicious dataset.

Dataset #Dynamic #Cloud Dynamic #Total Dynamic #Static #Cloud Static #Total Static #Total
Alexa 25,933 (8.597%) 86,542 (28.688%) 112,475 (37.285%) 142,985 (47.399%) 46,203 (15.316%) 189,188 (62.715%) 301,663
NICTER 315,786 (27.434%) 598,844 (52.025%) 914,634 (79.460%) 228,146 (19.820%) 8,288 (0.720%) 236,434 (20.540%) 1,151,068

Table 7 Density of IP address blocks.

#IP Addresses Length Density

Dynamic 1,117,666,007 1,219,738,270 0.916

Static 100,581,528 1,246,101,282 0.081

address that is detected as a dynamic IP address used in a cloud
block. Cloud Static is an IP address that is detected as a static IP
address used in a cloud block. In the Alexa dataset, the ratio of to-
tal static IP addresses was 62.714%. By contrast, in the NICTER
dataset, the ratio of total dynamic IP addresses was 79.460%.
Thus, we found that the ratio of static IP addresses was high in
the benign dataset and that of the dynamic IP addresses was high
in the malicious dataset. Further, among the detected dynamic IP
addresses in the malicious dataset, many of them were used in a
cloud block. Thus, we confirmed cloud service hosts were being
used as malicious hosts.

4.5 Validation of Our Method
Here, we validated the sequential characteristics of the PTR

records used in our method by employing a large-scale dataset.
Our method is based on the hypothesis that the dynamic IP ad-
dresses are set sequentially. If this is true, for a dynamic IP ad-
dress block, it can be assumed that there are only a few missing
IP addresses and that almost all of them are sequential. On the
other hand, static IP addresses are set manually; therefore, it is
assumed that the network administrator often chooses a number
meaningful to humans or a good number for the IP address or
PTR record. Therefore, we assumed that the static IP address is
sometimes intentionally set to be skipped. To validate these as-
sumptions, we investigated the density of the dynamic and static
IP address blocks. The targets of investigation were all the dy-
namic and static IP address blocks detected by our method for all
the IP addresses in the dataset described in Section 4.1.1. The
density of an IP address block is defined as follows:

density = N/Length (3)

where N is the number of IP addresses existing in the IP address
block, and

Length = (The Last IP address o f the block)

− (The First IP address o f the block) + 1

For example, as shown in Fig. 2, consider an IP address block
from 192.0.2.21 to 192.0.2.25. The first IP address was
192.0.2.21 and the last IP address was 192.0.2.25. Thus,
the length was 5 (= 192.0.2.25 − 192.0.2.21 + 1). Table 7
lists the results. The density of the dynamic IP address blocks
was 0.916. Thus, we believe that our hypothesis was essentially
correct. However, the density of the static IP address blocks was
relatively low (0.081), indicating that static IP addresses were set
to be skipped.

Because the static IP addresses were set to be skipped, we as-

Fig. 6 Distribution of the fourth octet of IP addresses.

Table 8 Top 10 fourth octets of IP addresses.

Fourth Octet #IP Addresses
1 708,797
2 603,773

10 582,178
9 546,392
3 525,353

11 524,611
8 513,059
5 512,647

21 512,271
20 510,025

sumed that there was a deviation in the setting of static IP ad-
dresses. We further investigated whether the number of the fourth
octet of an IP address was biased. The targets of investigation
were all the static IP address blocks detected by our method from
all the IP addresses in the dataset described in Section 4.1.1. Fig-
ure 6 shows the distribution of the fourth octet and the number
of static IP addresses. The vertical line in the figure is drawn
every fifth octet. The results indicated that spikes occured when
the fourth octet was a multiple of 10. Table 8 lists the top 10
fourth octets of the static IP addresses. Lower numbers and the
numbers in which the lower digit is 0 or 1 are prominent in this
table. Many IP addresses whose fourth octets were 1 are often
used for network gateways, and their PTR records contain gw in
many cases.

5. Discussion

Conceptually, our method is based on the idea that network
managers often name the PTR record using a “prefix + num-
ber” (e.g., host1.example.net and host2.example.net) approach.
Therefore, if the PTR records are “number + common strings,”
(e.g., 1host.example.net and 2host.example.net) the Jaro–Winkler
distance judges two strings as dissimilar in Step 3-2 of our
method, which could lead to a low degree of accuracy. In other
cases, if the PTR records are configured as “prefix + proper
noun,” (e.g., testjapan.net and testamerica.net) the hosts corre-
sponding to these PTR records may not be allocated to dynamic
IP addresses. However, the Jaro–Winkler distance between the
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strings will be high because the strings have a common prefix.
This means that the strings are judged as similar, and this causes
misjudgments by our method. In the regions which are outside
our labeled dataset, we think that the accuracy of our method
could be lower when PTR records such as those above are used.
To improve the accuracy, it would be necessary to investigate
which part of the strings has a sequential number. When the
strings have a common prefix, it would also be necessary to verify
the types of the strings after the prefix. For example, the strings
must be checked to determine if they have a sequential number or
a non-sequential number such as a proper noun.

As described in Section 4.1.3, traffic of DDoS, reflection at-
tacks, and so on were observed in the darknet traffic data in
the NICTER dataset. The source IP addresses of this traffic are
spoofed. In our experiment, we did not exclude this traffic. When
the darknet traffic data in the NICTER dataset from which the
spoofed IP addresses were excluded was used in the experiment,
the number of the static IP addresses detected in the darknet traf-
fic data in the NICTER dataset would decrease and the tendency
of many dynamic IP addresses in the malicious dataset becomes
prominent.

The target of this study is PTR records of IPv4 addresses. PTR
records of IPv6 addresses may not be registered since the num-
ber of IPv6 addresses is huge. In November 2018, a workaround
to this problem was proposed in RFC 8501 [30]. Specifically,
a DNS server dynamically creates a PTR record and replies it
when the server receives a reverse DNS lookup query. When this
workaround is applied, our proposed method can be applied to
detect dynamic IP addresses.

6. Related Work

Many researchers have studied and analyzed dynamic IP ad-
dresses, their features, and the traffic originating from them. Xie
et al. analyzed spam emails using a three-month Hotmail email
server log [10]. They found that almost all servers sending spam
emails were setup on dynamic IP addresses. They used prede-
fined dynamic keywords (e.g., ppp and dhcp) and investigated
whether the keyword matched a PTR record to detect dynamic IP
address blocks.

Jin et al. detected dynamic IP address blocks based on active
scanning [12]. They clustered real traffic data to analyze dynamic
IP address blocks. Keyword matching was used to detect whether
the IP address was dynamic or static.

Cai et al. performed block-level clustering to investigate the
management of networks [13]. They researched the nature of the
dynamic allocation of IP addresses and used predefined keywords
to detect dynamic IP addresses. They reported that approximately
40% of /24 blocks were dynamically allocated and showed that
the utilization rate differed based on the country.

Richter et al. analyzed a large CDN server log and investigated
the activities of IPv4 addresses [11]. In one of their analyses, they
surveyed the allocation of the static and dynamic IP addresses.
The static and dynamic IP addresses were detected via keyword
matching. In total, they detected /24 blocks, 456K dynamic IP
address blocks, and 262K static IP address blocks.

Asami analyzed the PTR records of sending spam emails to

propose a spam-filtering system [29]. He devised six rules for
regular expressions. If one of the rules match the PTR records of
email senders, the system rejects the email. The evaluation results
revealed that this system can reject 99% of spam emails.

Padmanabhan et al. reported that dynamic IP addresses are of-
ten reallocated [2]. They showed that dynamic IP addresses are
reallocated because of the policy or setting of the ISPs, disasters,
and blackouts. They also observed that some IP addresses were
reallocated to IP addresses with different BGP prefixes.

The aforementioned studies did not adopt concepts similar to
that of our method wherein the sequential characteristics of PTR
records were used to detect dynamic IP address blocks.

7. Conclusion

Herein, we propose a new method to detect dynamic IP ad-
dress blocks using the sequential characteristics of PTR records
corresponding to IPv4 addresses. The proposed method focuses
on a unique feature of dynamic IP addresses: or namely that the
PTR records of dynamic blocks are sequentially configured by
network administrators.

While many conventional methods use predefined keywords
to detect dynamic IP address blocks, our method does not rely
on such keyword matching for individual IP addresses. Further-
more, our method uses the continuity of the PTR records of the
preceding and succeeding IP addresses to detect dynamic IP ad-
dress blocks. Our evaluation using real and manually labeled data
revealed that compared to conventional methods, the proposed
method can detect dynamic IP address blocks more accurately
and with a greater coverage rate. The results of our study indi-
cated that our method can detect cloud blocks by using the fea-
ture that users of cloud services can configure the PTR records at
will and the information of IP address blocks of our method.

In our validation using benign and malicious datasets, we
found that the IP addresses allocated to the malicious hosts were
mostly dynamic IP addresses and many hosts on cloud services
were being misused. Hence, the results from detecting dynamic
IP addresses and cloud detection using the proposed method can
aid us in taking appropriate countermeasures against cyberattacks
associated with IP addresses.
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Editor’s Recommendation
The paper proposes a method to detect dynamically assigned

IP address ranges and cloud service ranges. The method is par-
ticularly useful for analyzing hosts with dynamic IP addresses,
such as bot-infected hosts. It is also notable that the method can
be used even for the end users who are not capable of observ-

ing large network traffic. Careful evaluation with large and broad
dataset ensures the effectiveness of the proposal. We believe that
the paper provides very useful insight for analyzing cyber threats.
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